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The following study presents single and multipoint aerodynamic shape optimizations of two 

benchmark problems defined by the Aerodynamic Design Discussion Group (ADODG).  Mesh 

warping and geometry parametrization is accomplished by fitting the multi-block structured grid 

to a B-spline volumes and performing the mesh movements by using surface control points 

embedded with free-form deformation (FFD) volumes. The aerodynamic model solves the RANS 

equations with Spallart-Almaras turbulence model. A gradient based optimization algorithm is 

used with an adjoint method in order to compute the objectives and constraints derivatives with 

respect to the design variables. The objective in this work is to minimize the drag of airfoil and 

wings for transonic regimes taking into account volume and thickness constraint, including 

aerodynamic coefficients constraint.  

The first problem solved is RAE2822 airfoil in viscous transonic flow, with a lift constraint. The 

shock in the upper surface is eliminated and the drag coefficient is reduced by 50%. Also in this 

problem we started the optimization solution from a circle in order to check the robustness of both 

the flow solver and the mesh warping algorithm, while reaching a "close" solution as obtained by 

starting from rae2822 airfoil. The second problem is single and multi-point lift and pitch moment 

constrained drag minimization of the Common Research Model (CRM) wing in transonic, viscous 

flow. The CRM design is very challenging due to the tight coupling between aerodynamic 

performance, trim and stability. Other design challenges include the number of design variables 

and its effect on the optimized configuration. The single-point optimization reduced the drag 

coefficient by 7.7% using 192 design variables. The single-point designs are relatively robust to the 

flight conditions. Further robustness is achieved through a multi-point optimization with nearly 

5% drag reduction. 

Nomenclature 

M = Mach number 

𝛼 = angle of attack, deg 

𝜌 = density, kg/m3 

u, v, w  = velocity components, m/s 

p = static pressure, Pa; order of convergence 

E = energy, J 

R = residual 

Rey = Reynolds number 

FFD = free form deformation 

y+ = yplus 

Cl = lift coefficient 

Cd = drag coefficient 

Cmz = pitch moment coefficient 

t = thickness, m 

V = volume, m3 

c = chord length, m 
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GCI = grid convergence index 

N = mesh size 

LE = leading edge 

TE = trailing edge 

CRM = common research model 

S = area, m2 

L = grid level 

Subscripts 

 

baseline = initial configuration 

ref = reference value 

 

I. Introduction 

The aerodynamic shape optimization, even for only a wing design, more than ten years ago has 

been a very difficult task. A typical aerodynamic optimization process requires a robust mesh 

warping method, grid parametrization, CFD solver and optimization algorithm The tremendous 

improvements in each of these fields in the last few years, and the fact that researches made 

them available as an open source tools, allow aerodynamicists in academy as well as in industry 

actually perform an aerodynamic shape optimization, and robustly exploring a design space 

that perfectly fits the engineering requirements. These useful tools allow not only for improving 

existing designs, but also reach unconventional configurations with much improved 

performances.    

Numerical optimization approaches are usually categorized to gradient-based method and 

gradient-free methods.  The adjoint method for computing the gradients along with an optimizer 

that is the gradient-based is proven to be the most efficient method for large scale problems 

with hundreds of design variables [1] [2] [3]. Pironneau [4] first introduced the adjoint method 

for drag minimization problems, and then Jameson [5] extended to the aerodynamic 

optimization of the Euler flow in the late 1980's. Since then various researchers have applied 

this method within complex implementations for aerodynamic problems [6] [7] [8] [9] [10] 

[11].    

One of the popular sensitivity analysis methods is finite differencing, but disadvantages are its 

high computational cost and low accuracy. Mader et al. [12] presented an automatic 

differentiation tool and applied it selectively to produce code that computes the flux Jacobian 

matrix and the other partial derivatives that are necessary for the adjoint method.  

The AIAA Aerodynamic Design Optimization Discussion Group (ADODG) proposed a series 

of benchmark cases, a great initiative that allow researchers around the world to run, compare 

and make a special thorough analysis of getting the best optimal shapes. The meshes and 

configurations of the benchmarks are publicly available, and this allows direct comparisons 

with other solvers.   

Since the ADODG useful initiative many publications regarding benchmarks problems are 

available and among the research studies, the multidisciplinary design optimization (MDO) 

tools are the most remarkable. Martines et al are involved in a variety of applications, including 

the optimization of a supercritical airfoil and starting from a circle [13], aircraft aerodynamic 

[14] and aero structural optimization [15], and aero propulsive optimization. Recently Zhoujie 

et al. [16] solved a series of aerodynamic shape optimization problem based on the CRM wing. 

The model solves RANS equations with Spallart-Allamaras turbulence model. A gradient based 

optimization algorithm is used in conjunction with an adjoint method. The drag coefficient is 

minimized by 8.5% with respect to lift and pitch moment constrains while using 720 shape 



 

variables. Another issues such as multi-point, no thickness reduction and starting from random 

geometry are presented and discussed.  

Aerodynamic design optimization process is very sensitive to the starting design sometimes 

and requires trial and error to get a converged optimal design. Xialong et al. [13] addresses this 

need by developing ways to overcome robustness issues arising from mesh warping, shape 

parametrization and CFD solver. They demonstrated the NACA0012 and RAE-2822 airfoil 

benchmarks to show the dominant factors influence the convergence efficiency. In addition 

they solved a challenging aerodynamic shape optimization case that starts from a circle in order 

to test the framework robustness. Another experience with this challenge is demonstrated in the 

present paper, inspired by Xialong et al [13].  

 A thorough analysis regarding the ADODG benchmark cases is demonstrated by Christopher 

et al. [17] while using the Jetstream optimization code algorithm. For the NACA 0012 

optimization the drag coefficient is reduced by 42 counts and the shock is weakened. For RAE-

2822, successful optimizations eliminate the shock, reducing drag coefficient to 119 counts in 

the best case. In the CRM wing cases, significant shape changes and performance 

improvements are reported.  

Zouhlo et al. [16] presented a series of RANS-based aerodynamic shape optimization of a 

blended wing body configuration to understand the tradeoffs between the trim, stability and 

bending moment and the aerodynamic performance. Single-point designs as well as robust 

multi-point optimization are demonstrated.  

The 4th Drag Prediction Workshop (DPW-4) CRM wing-body-tail configuration was chosen by 

Song Chen et al. [14] as the baseline model. Series of wing-body-tail optimizations minimized 

the drag coefficient subject to lift, pitching moment and geometric constraints. The single-point 

trim constrained optimization achieved a reduction of 4.1% of the total drag of the trimmed 

baseline. They found that considering the trim during optimization is a better approach than 

using a fixed wing moment constraint, and simultaneous optimization of wing and tail rotation 

is the best way to obtain an improved performance. 

The present paper demonstrates a modest experience and first steps done towards the 

construction of an aerodynamic shape optimization capability while applying the Adflow 

algorithm which is part of the MDO lab framework that made available as an open-source in 

the last year (2019-2020). In this paper a large set of results are presented for the computational 

complicated and intensive NASA Common Research model (CRM) wing. This is a lift 

constrained drag minimization problem. Besides the single-point optimization problem, two 

additional problems for the same CRM wing that are not part of ADODG benchmark are solved: 

a case with no thickness constraints and multi-point optimization.  

The tools that are used for this study are a subset of the multidisciplinary design optimization 

(MDO) framework of aerodynamic configurations (MACH) [18]. With this software one can 

perform aero-structural optimization, but in the present study only the MACH's components 

relevant for aerodynamic shape optimization are used: CFD solver, mesh warping, geometric 

parametrization and optimization algorithm.  The availability of these open-source tools and 

benchmarks enabled further studies in CFD-based aerodynamic design optimization.   

This paper is organized as follows. The introduction of the optimization tools are briefly 

described in Section 2. Sections 3 and 4 describe the optimization results of the RAE-2822 and 

CRM wing.   

II. Methodology 

The drag minimization of the problems presented in this work is obtained by using a CFD solver 

coupled with and adjoint solver to compute the objectives and constraints sensitivities, a robust 



 

mesh warping routine and a gradient based optimizer. These tools are part of the MACH 

framework proven to be a useful tool for aerodynamic structural optimization. The pyGeo 

routine used for geometric manipulation, iDWarp for mesh deformation, Adflow as the flow 

solver and SLSQP as the numerical optimization algorithm.   

A. CFD solver 

The CFD solver used in this research is three dimensional multi-block structured finite volume 

solver (SUmb). The parallel implicit solver is capable of solving the Euler and Reynolds 

averaged Navier-Stokes (RANS) equations (steady and unsteady) [19]. The discretization of 

the governing equations is done by a finite volume approach with a central formulation over 

structured meshes. The convective terms are computed by the Jameson-Schmidt-Turkel [20] 

scheme using flux splitting upwind scheme with Van-Albeda limiter. Viscous fluxes are 

computed to second order accuracy using a central difference approach. The residual smoothing 

is made by employing an explicit 5th order Runge-Kutta algorithm employing well known 

steady-state acceleration techniques including local time stepping, implicit residual smoothing 

and geometric multigrid. For RANS analysis the turbulent equations are solved in coupled 

fashion using diagonally-dominant alternating direction implicit (DD-ADI) scheme. In order to 

improve convergence, the solver is also equipped with a diagonallized ADI method for the 

mean flow equations and Newton-Krylov (NK) solver. The computational coordinates is x, y 

and z axes, while x in the stream-wise direction, y vertical, and z span-wise. The origin is 

located at the airfoil (or wing) leading edge. 

The steady state mean flow equations discretized using a finite volume cell centered 

formulation , yielding  a set of ordinary differential equations that can be written as follows: 

𝑅(𝑤𝑖𝑗𝑘) = 0, where 𝑤 is  a vector of the mean flow varibales: 𝑤 = {𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸}𝑇, and 

𝑅  is the residual obtained by evaluating the sum of integral fluxes of the governing equations, 

to the second order of accuracy.  

B. Free Form Deformation (FFD) and mesh warping 

The geometry parametrization is done by the FFD approach [21]. In this approach the geometry 

is located inside a B-Spline control volume while the coordinates are mapped to the external 

surface of the volume by Newton search algorithm. All the geometric modifications are made 

on the external surfaces of the FFD volume. Any modification of the FFD boundaries indirectly 

modifies the internal geometry. The main assumption of this approach is a constant topology 

throughout the optimization process.   

After the FFD volumes modify the geometry during the optimization process, the mesh must 

be warped in order to solve the flow field for the modified geometry. In this work the algebraic 

mesh perturbation scheme is used, which is developed by Kenway et al. [21]. 

C. Optimization algorithm 

In this research work the SLSQP (sequential least square programming) optimization algorithm 

is applied. It is part of the pyOpt framework Perez [22] which is an open source software. The 

algorithm SLSQP [23] is evolved from the least squares solver [8]. It uses a quasi-Newton 

Hessian approximation and an L1-test function in the line search algorithm.    

 

III. RAE-2822 Airfoil in viscous transonic flow 

A. Problem formulation 

The first optimization problem presented here is the drag coefficient minimization of the 

ADODG RAE-2822 airfoil viscous transonic flow. Mesh convergence study was performed 

with three families of meshes. The Mach number 𝑀 = 0.734 calculated at Reynolds number 



 

𝑅𝑒𝑦 = 6.5𝑀. The aerodynamic optimization problem formulation is summarized in Table 1, 

where 𝐶𝑙 and 𝐶𝑚 are the lift and moment coefficient. The lift coefficient is constrained to 𝑐𝑙 =

0.824 and the pitch moment coefficient about the quarter chord must be higher than 𝑐𝑚𝑧 =

−0.092. The airfoil area must be no less than the initial area. The design space includes 25 

control points in chord wise direction, as vertical movement of the FFD control points in y 

direction. Relative thickness (t/c) constraints are enforced at 25 positions along the chord to 

ensure that the airfoil thickness is larger or equal to that of the baseline. 

 

 

 

Table 1: ADODG RAE-2822 case problem statement 

     

Objective Name Quantity Lower value, m Upper value, m 

Design variables Minimum Cd 1 - - 

 y 40 -0.05 0.05 

Constraints 𝛼 1 1 5 

 𝐶𝑚 1 -0.092 - 

 𝐶𝑙 1 0.824 0.824 

 t/c 400 10−4 - 

 

A 3-D airfoil geometry is constructed with a span of 0.1 m in 𝑧 direction, with two symmetry 

planes.  The O-grid topology includes 31360 (level L1) cells with 246 cells in chord wise 

direction and 129 cells perpendicular to the airfoil surface. The minimum cell size close to the 

boundary is 3 ∗ 10−6 𝑚, reaching 𝑦+ ≈ 0.4 in zero angle of attack. Grid convergence study 

was conducted while refining the grid in chordwise and normal direction, keeping 𝑦+~1. The 

aerodynamic coefficients results of four different grid refinement levels are collected in  

Table 2 computed in 𝑀 = 0.734 and 𝛼 = 2.47°.  

B. Grid convergence study 

Grid convergence study has been made based on the Grid Convergence Index (GCI) method, 

for examining the spatial convergence of CFD simulations presented in the book by Roache 

[24]. Roache suggests a GCI to provide a consistent manner in reporting the results of grid 

convergence studies and also an error band on the grid convergence of the solution. This 

approach is also based upon a grid refinement estimator derived from the theory of Richardson 

Extrapolation [7]. The GCI on the fine grid is defined as: 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠

𝑟𝑝−1
 where  𝐹𝑠 is a factor 

of safety (recommended to be 𝐹𝑠 = 1.25 for comparisons over three or more grids). The GCI 

for coarser grid is defined as:𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠𝑟𝑝

𝑟𝑝−1
, while each grid level yield solutions that are in 

the asymptotic range of convergence for the computed solution. The parameter p is the order 

of convergence (here a second order accuracy is involved, so theoretically the maximum value 

is p=2), and r is the effective grid ratio: 𝑟 = (
𝑁1

𝑁2
)

1
𝑑⁄

where N is the total number of grid points 

in executive grid levels, and d is the flow dimension. Since the grid was adapted only in two 

directions (chordwise and normal directions) and in spite of the fact that we actually solve 3D 

problem, a d=2 is defined. The asymptotic range of convergence can be checked by observing 



 

the two GCI values as computed over three grids,𝐺𝐶𝐼23 = 𝑟𝑝𝐺𝐶𝐼12  while values approximately 

unity indicates that the solutions are within the asymptotic range of convergence.  

For this purpose three levels of grid refinement have been checked to assess the effect on the 

numerical accuracy, while the total grid cells number: 𝐿0 = (490𝑋257) 126162 cells, 𝐿1 =

(245𝑋129) 31360 cells and 𝐿2 = (123𝑋65) 7872 cells. The grids generated with clustering 

cells near the walls which results in a maximum of  𝑦+ ≈ 0.4 in all the computed angles of 

attack.     

A polar graph of the drag coefficient is presented in Figure 1. The GCI values including the 

asymptotic range of convergence and an estimation of the aerodynamic coefficient values at 

zero grid spacing are detailed in Table 3, computed at 𝛼 = 0°. Based on this study we can say, 

for example, that 𝐶𝑑 is estimated to be 𝐶𝑑 = 0.0097742 with an error band of 9.2455%. The 

grid resolution studies confirmed that the computed aerodynamic coefficients values are grid 

converged. 

 
Figure 1: Drag coefficient Vs. angle of attack in grid convergence study 

 

Table 2: Mesh convergence checks for RAE-2822 airfoil at M=0.734, 𝛂 = 𝟑° 

Grid level Cd Cl Cmz Y+ 𝜶 [𝒅𝒆𝒈] 

L0,  490X257-126162 cells  0.0223 0.7739 0.0921 0.4 3 

L1, 245X129-31360 cells 0.0270 0.8963 0.1114 0.4 3 

L2, 123X65-7872 cells 0.0260 0.8642 0.1048 0.4 3 

 

 

 

 

 

 

Table 3: Aerodynamic coefficient results of the grid convergence study at 𝛂 = 𝟎° 

 Grid level Grid ratio, r GCI [%] 
Richardson 

 extrapolation 

Asymptotic 

 convergence range 

 

𝑪𝒅 

L0 1 - 0.0097742 1.02576 

L1 2.0 9.2455 - - 

L2 4.0 12.153 - - 

 L0 1 - 0.3444 0.9984 



 

𝑪𝒍 L1 2.0 0.0187   

L2 4.0 0.2151   

 

𝑪𝒎 

L0 1 - 0.0973 1.0057 

L1 2.0 3.3818   

L2 4.0 4.0707   

 

In order to evaluate the grid convergence and accuracy, the numerical results of the pressure 

coefficient value around the airfoil is compared to experimental results for the RAE-2822 [25]. 

The flow conditions were changed according to the experiment setup to 𝑀 = 0.73 and 

corrected wind tunnel angle of attack 𝛼 = 2.79°. The analysis with the finest grid level gives a 

lift coefficient 𝐶𝑙 = 0.8746, drag coefficient 𝐶𝑑 = 0.02196 and pitch moment coefficient 

𝐶𝑚𝑧 = 0.10806. The experimental results are: 𝐶𝑙 = 0.803, 𝐶𝑑 = 0.0168 and 𝐶𝑚𝑧 = 0.099. In 

Figure 3 the pressure coefficient values distribution are compared.   

 

         (a)        (b) 

Figure 2: a) Fine grid of RAE-2822 used for optimization. b) The FFD grid includes 40 control 

points 

 
Figure 3:Comparison of computational and experimental pressure coefficient values 



 

C. Optimization results 

The drag, lift and pitch moment coefficients are plotted (see Figure 4) against the optimization 

iterations number. The drag coefficient reduction of 971 Counts (1 drag count = 10−4𝐶𝑑 ) 

(49.2%) was obtained. The optimized results were obtained after 100 design iterations and the 

lift, drag and pitch moment coefficients are compared in Table 4. Figure 5 shows the pressure 

coefficient distribution (left figure) and the baseline and optimized airfoil shape. It is clearly 

seen that the shock wave appeared in the baseline configuration is eliminated in the optimized 

shape. The airfoil's thickness is reduced by nearly 15% compared to the initial value.  

The flow converge to a density residual of  10−12 and the adjoint equation convergence was 

set also to   10−12. The optimality convergence tolerance of SLSQP optimization algorithm 

was set to 10−6. In this case different number of design variables was checked, but increasing 

the number of control points higher than 40 (20 chordwise stations and 2 symmetry planes) has 

a negligible effect on the optimal shape and pressure distribution.  

In Table 4 the optimized results are compared with those reported by other published results.  

A possible source to the difference in the results is that the mesh topology and flow solvers 

used by each paper are different. Another reason that should contribute to different results is 

the mesh warping and parametrization method. 

 
Figure 4: Drag, lift and pitch moment coefficients against the number of iterations 



 

                                (a)         (b) 

Figure 5: Baseline and optimized results. a) Pressure coefficient distribution. b) A comparison of 

the airfoil shapes 

 

Table 4: Comparison of optimized results between the present work, Christopher et al. [17] and 

Xiaolong et al. [13]  

Change (Counts) Cd (Optimized) Cd (initial) Cl AoA 

[deg] 

Case 

96.8 0.01002 0.01970 0.8237 2.47 Present work 

88.5 0.010989 0.019841 0.824 2.817 Christopher et al. [17] 

88.6 0.010975 0.019841 0.824 2.817 Xiaolong He et al. [13] 

 

(a)                                                                    (b) 

Figure 6: Mach number distribution of the baseline (a) and optimized (b) results 

 

 

D. Optimization starting from a circle 

Now a new challenging aerodynamic optimization process is created by starting from a circle, 

while the previous case started from an airfoil RAE-2822. This is a much bigger challenge that 

examines effectiveness of the FFD parametrization process as well as the ability of the flow 

solver to reach convergence. However, besides all these robustness demonstrations, this starting 

condition has no industrial benefit what so ever. This is no surprise since no one would start 

from a circle in order to reach an optimized airfoil. The same flow conditions and constraints 

are used as for the previous case of RAE-2822 case. 



 

For this purpose a structured O-mesh is constructed for the circle geometry by using pyHyp 

procedure, while the mesh includes 31605 cells (245 cells in the spatial direction and 129 in the 

normal direction). The farfield is located 100C.  

 First the transonic problem is solved by using a single unmodified FFD frame that includes 

total of 20 control points (10 points in chordwise direction in top and lower circle parts, 

separately, and total of 40 control points).  But, in this approach an anomalous shapes 

encountered during the optimization process, besides the difficulties to reach convergence since 

IDWarp fails due to negative volumes cells. One way to handle this problem (which finally did 

not accomplished) is to generate the mesh for the modified geometry by using pyHyp, but since 

all the optimization process already took more than 200 iterations, this approach is finally 

abandoned.  

The second approach includes a modified FFD parametrization. In this way the optimization 

problem is decomposed to three stages which differs one form the other in the FFD resolution. 

In the first stage the FFD frame includes 3 control points (total of 12) in chordwise direction. 

Three control points accomplish a large thickness reduction in four iterations only. The first 

stage includes a total of 16 iterations for reaching a nice smooth airfoil, while the optimized 

results including the final shape serve as a starting conditions to the second optimization stage. 

In the second stage three control points are added to the FFD (total of 24 equally spaced control 

points) and after 70 more iterations reached convergence. The second stage manages to achieve 

a supercritical airfoil shape, which again serves as a starting condition to the third and final 

stage. In the third stage 4 control points are added to the FFD (total of 40 control points). The 

third stage refines the shape mainly where the shock occurs and after more 28 iterations reached 

final convergence. In Figure 7 the three adapted FFD frames are presented. The optimization 

histories are demonstrated in Figure 9. The drag coefficient of the optimized shapes starting 

from a circle with adaptive FFD is 0.501 counts higher than the optimized shape obtained while 

starting from RAE-2822. This optimization approach requires 114 iterations. Figure 12 presents 

a comparison of the final optimized shapes, which are similar to each other. Also presented is 

a comparison of the pressure coefficient distribution for the  

              (a)         (b)          (c) 

Figure 7: Adaptive FFD approach for the optimization starting from a circle. a) First stage 

includes 4 control points. b) Second stage includes 12 control points. c) Third stage includes 20 

control points  



 

          (a)          (b) 

         (c)         (d)  

Figure 8: The four initial iterations in the first stage of the optimization starting from a circle.   

 
Figure 9: The first stage optimization histories of the optimization starting from a circle 



 

 
Figure 10: The second stage optimization histories of the optimization starting from a circle 

 
Figure 11: The third stage optimization histories of the optimization starting from a circle 

 



 

          (a)          (b) 

Figure 12: A comparison between the optimized airfoils.  a) Airfoil shapes. b) Pressure coefficient 

distribution values 

 

IV. Common Research Model (CRM) wing in Turbulent Transonic Flow 

A. Problem formulation 

In this section the drag minimization of the CRM wing is presented. The CRM wing is extracted 

from the wing-body configuration and was developed for applied CFD validations studies [26]. 

The sectional shape and twist are optimized in order to minimize the drag coefficient at constant 

lift coefficient of Cl=0.5, pitch moment coefficient constraint 𝐶𝑚𝑧 ≥ 0.17, and at Mach number 

of 0.85. The Reynolds number, based on the root chord diameter, is 5 × 106 (altitude of 12500 

m).  

Several FFD frames are generated and examined in different approaches and numbers of control 

points. The main insight from this investigation is that the FFD volume has a dominant 

importance because it directly relates to how the wing is parametrized. The FFD is fitted very 

close to the wing surface to allow for better control on the warping procedure. Based on my 

experience, for faster optimization convergence the control points must be spatially equally set 

up close to the surface. In Figure 13 the final FFD used for optimization process is presented.  

The control points used are the y-coordinates normal movements of 192 control points on the 

FFD frame, 24 chordwise and 8 in the spanwise direction (see  

 

 

Table 5 and Table 6). The angle of attack is also included in the design variables. The root 

trailing and leading edges control points are fixed in order to not permit any twist. The trailing 

edge control points are fixed in order to avoid mesh warping failure, since the tiny thickness in 

this area.  The thickness is controlled by 192 control points in the same order and is set to be 

25% greater than the baseline thickness at each control point. The volume is constrained to be 

greater than or equal to the baseline volume.  A list of the control points and constraints are 

presented in Table 7.  



 

 

 

 

Table 5: List of design variables used for the optimization of the CRM wing 

Type Count Design Variables 

Y -direction 192 shape 

−10° − 10°, Around 30%   7 twist 

1
°

− 10
°
 1 Angle of attack 

 200 Total 

 

Table 6: Lower and upper bounds for the y-coordinates FFD control points 

 𝒁 ≤ 𝟏. 𝟕𝟕𝟑 𝟏. 𝟕𝟕𝟑 < 𝒁 ≤ 𝟐. 𝟕𝟐 𝟐. 𝟕𝟐 < 𝒁 ≤ 𝟑. 𝟕 

Lower/Upper bounds ±0.00375 ±0.01 ±0.0005 

 

Table 7: List of constraints for the optimization of the CRM wing 

Type Count Constraints 

≥ 0.25 × 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  192 Thickness 

≥ 𝑉𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  1 Volume 

< 32 LE, TE control points 

= 1 Lift Coef., Cl 

≥ −0.092 1 Pitch moment Coef. Cmz 

 226 Total 

 

B. Initial geometry and grid convergence study 

The CRM wing is extracted from the wing-body-tail configuration while replacing the body 

and tail with a symmetry plane, and the root of the remaining wing is moved to the symmetry 

plane. The wing geometry is scaled by 275.8 inch, the mean aerodynamic chord, and the origin 

is located at the root leading edge. Moment's reference point is (1.2007, 0, 0.007669). The 

reference are for the aerodynamic force coefficients calculations is 𝑆𝑟𝑒𝑓 = 3.407 squared 

reference units. The initial volume is 𝑉𝑟𝑒𝑓 = 0.2617 cubed reference units. The wing half span 

is 𝐿 = 3.7 reference units. 

For the grid convergence study three structured hyperbolic volume O-meshes are generated by 

using pyHyp routine. The initial surface mesh is generated by using the commercial ICEMCFD 

software. The farfield is located 50L. The coarse grid (level L2) is refined in three directions 

by a factor of 1.5 and the aerodynamic coefficients and baseline grid size are listed in Table (). 

The grids generated with clustering cells near the walls which results in a maximum of y+=20, 

for the coarsest mesh. Grid convergence study has been made based on the GCI method, for 

examining the spatial convergence of CFD simulations presented in the book by Roache [24]. 

The GCI values including the asymptotic range of convergence and an estimation of the 

aerodynamic coefficient values at zero grid spacing are detailed in Table 8, computed at 𝛼 =

2.4°. Based on this study we can say that 𝐶𝑑 is estimated to be 𝐶𝑑 = 0.02060245 with an error 

band of 0.00041%.  The grid resolution studies confirmed that the computed aerodynamic 

coefficients values are grid converged.  

It is clearly seen that fine mesh analysis shows that there is some benefit to make an 

optimization on a finer mesh. However, since all this aerodynamic optimization study is done 

for an industrial applications, and in industry (compared to academy) there are an inflexible 

time (and funding) limitations, the subsequent single-point, multi-point and no thickness 



 

reduction problems are conducted using the coarse mesh (Level L5). In this mesh level we can 

say the error band in predicted Cd value is 0.0875%. 

 

Table 8: Grid convergence study parameters for the CRM wing 

Grid level Grid ratio, r GCI [%] Cd Y+ 

Zero grid spacing   0.02060245  

L0, 4470784 cells 1 - 0.020603 1 

L1, 1549184 cells 1.25 0.000411 0.020605 0.5 

L2, 1216512 cells 1.42 0.020344 0.020704 0.9 

L3, 811008 cells 1.76 0.035433 0.020658 1 

L4, 481280 cells 2.10 0.027674 0.020736 2.5 

L5, 288768 cells 2.49 0.087445 0.020514 4 

L6, 180096 cells 2.91 0.000527 0.020513 6 
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C. Single-point optimization results 

For this CRM wing optimization the simulation is started with the DDADI until five order of 

magnitude reduction in the total residual norm is achieved. Then the solver is switched to ANK 

for better performance. The relatively selected lower convergence level (10-5) for the switch 

between the solvers improves the robustness of the nonlinear solver, although it comes at the 

cost of sub-optimal performance for simpler cases. The optimality convergence condition in 

SLSQP is 10−6.  

This optimization problem is challenging to converge mainly because it is sensitive to the mesh 

warping procedure and the size of the control point's movement values. At the first experience 

the lower and upper bounds of the y-coordinate control points are defined to move is ±0.5 

reference units, respectively. This general and straightforward approach results in failures in 

the warping procedure after few iterations since the large thickness difference along the wing 

span. Therefore, in order to overcome this limitation, no unified lower and upper thickness 

bounds are defined, in a way that the wing is divided to eight spanwise sections, with each 

section consisting of 22 chordwise points (the trailing edge control points are fixed). The lower 

and upper bounds for each section, from the wing root to the wing tip is detailed in Table 6.  

Figure 13: The computational structured mesh (a) and the FFD mesh (b) of the CRM 

wing geometry 

 



 

 
Figure 14:Drag, lift and pitch moment coefficients convergence histories for the single-point 

optimization of the CRM wing 

 
Figure 15:A comparison (mirror view) of the pressure coefficient distribution on the upper 

surface of the baseline (left) and optimized wing (right). The results obtained with mesh level L5. 



 

  

(a)                                                                     (b) 

Figure 16; Twist (a) and thickness (b) distribution along the CRM wing span. A comparison 

between the baseline and optimized geometry. 

The objective function Cd, the lift and pitch moment coefficients histories are presented in 

Figure 14. The optimization process decreased the drag coefficient from 208.14 counts to 

192.17 counts, namely 16 counts which is a reduction of 7.7%. Taking into account that this 

wing is designed and tested by experienced engineers, and compared to the impressive work 

presented by the MDO group [16] which demonstrated a reduction of 8.5% with mesh consists 

of 28.8 million cells, this is a significant improvement.  

The pressure coefficient distribution on the upper surface for both the baseline and optimized 

wing is shown in Figure 15 . One can see the appearance of shock waves generated on the 

baseline wing, while in the optimized wing these shocks are eliminated. This effect is also 

demonstrated by the equally spaced pressure contour lines which indicates a shock free 

solution.  

The thickness distribution obtained in the optimized wing is different than the baseline wing 

(see Figure 16). The optimization algorithm allows thickness reduction of nearly 25%, the 

lower bound of the thickness constraint. The sectional pressure coefficient is presented in  

 

Figure 17 for four sectional regions scaled from the wing root. Finally, the lift distribution of 

the optimized wing (see Figure 18) appears to be more elliptical than that of the baseline wing, 

especially close to the root. 

 

 

 

   



 

  

(a)                                                                      (b) 

                                (c)                                                                         (d) 

 

 

Figure 17: Sectional Cp distribution at four locations along the CRM wing span, while the 

numbers 2.35% (a), 26.7% (b), 55.7% (c) and 94.4% (d) represents normalized locations from 

the wing root. 



 

 
Figure 18: Baseline, optimized and elliptical normalized lift distribution along the CRM wing 

span 

 

Table 9: Results for the CRM wing single-point optimization 

Optimized 

alpha 

Optimized 

Cmz 

Y+ Cl Delta Cd 

(counts) 

Optimized 

Cd 

Baseline 

Cd 

Mesh 

size 

Mesh 

level 

2.91 0.1699 0.9 0.4998 14.9 0.019217 0.020704 1216512 L00 

3.00 0.1699 1 0.4999 16.1 0.019043 0.020658 811008 L11 

3.24 0.1700 1 0.5000 13.3 030.0194  7360.020  481280 L22 

3.39 0.1699 4 0.5000 11.5 0.019363 40.02051  288768 L33 

2.88 0.1699 10 0.4999 10.9 0.017840 0.018937 288768 L44 

 

Another grid convergence study is conducted in order to check if the correct design trends are 

captured. For this purpose the single point optimization process is repeated five times with 

different mesh resolutions and the results are summarized in Table 9.  The difference between 

the Richardson's extrapolation (zero grid spacing, presented in Table 8) and the drag coefficient 

for Level L00 is within 1 drag count. In addition, the difference between the baseline and 

optimized drag coefficients is approximately 14 counts on average while reaching an 

asymptotic level of 16 counts. The desired drag resolution of 1 count is achieved between the 

two finest levels, including the lift and pitch moment constraints. According to this grid 

convergence study and the fact the main focus of this analysis is to establish an aerodynamic 

optimization capability in a way that would fit the time and resources limitations exist in 

industrial applications, the remaining optimization cases are computed by using the coarser 

mesh L33.   

 

D. Single-point optimization without thickness reduction 

As already mentioned, the CRM optimization case is challenging to converge mainly because 

of the varying thickness which becomes 30% lower at the wing tip compared to the wing root 

thickness. This mesh warping method is strongly affected by this constraint and it results in a 



 

very tight values that define the control point's movements. It is clearly shown that the baseline 

wing has two shocks on upper surface, one at the middle and smaller one close to the wing tip. 

Since the main challenge of this problem is to minimize the wave drag generated by shock 

waves while satisfying the minimum thickness constraint, it results in a much lower thickness 

values at the tip, and not sure that the optimized wing can withstand structural constraints, 

which are not taken into consideration in this optimization problem.  

Another point of view on this issue is that a wing with a low outboard thickness would probably 

weights much higher, since the wing structural strengthening is unavoidable. This is what 

motivates the following optimization, reducing the wave drag without reducing the wing 

thickness at all. All other constraints remains the same as is detailed in Table 7.  

The optimization histories are presented in Figure 19. The optimization procedure reduced the 

drag coefficient from 205 counts to 195 counts, nearly 3 counts higher than the optimized wing 

that allowed 25% of the baseline thickness. This optimization process is faster, and it takes 

nearly 150 iterations compared to the optimization described in previous chapter.  

 
Figure 19: Drag, lift and pitch moment coefficients histories for the CRM wing optimization with 

no thickness reduction 



 

 
Figure 20: A comparison (mirror view) of the pressure coefficient distribution on the upper 

surface of the baseline (left) and optimized wing (right) with no thickness reduction. The results 

obtained with mesh level L2. 

                                  (a)                                                                      (b) 

Figure 21: Twist (a) and normalized lift distribution (b) along the CRM wing span, optimized 

with no thickness reduction. 

E. Five-points aerodynamic shape optimization 

This section follows the multi-point optimization conditions studied in [10]. The problem 

includes five-points with variables Cl and variables Mach number. The Cl and Mach number 

variation is done by perturbing the nominal values by 10%. The operating points are 

summarized as follows: C1: 𝐶𝑙 = 0.5, 𝑀 = 0.85, C2: 𝐶𝑙 = 0.55, 𝑀 = 0.85, C3: 𝐶𝑙 =

0.45, 𝑀 = 0.85, C4: 𝐶𝑙 = 0.5, 𝑀 = 0.84, C5: 𝐶𝑙 = 0.5, 𝑀 = 0.86. The objective function is 

the averaged drag coefficient. The pitching moment coefficient is only satisfied at the nominal 

operating point (C1).  



 

 
Figure 22: Average drag, lift and pitch moment coefficients histories for the five-points CRM 

wing optimization  

 

The optimization histories are presented in Figure 22. The five-point optimizations converged 

successfully after only 14 design iterations and the lift and pitch moment constraints are 

obtained. The pressure coefficient distribution on the upper surface for the optimized five-point 

case compared to the single-point case, is presented in Figure 23. The sectional pressure plots 

computed at the nominal condition (C1) are displayed in Figure 24. The five-point case, 

compared to the single-point optimization shows poorer performance at the nominal flight 

conditions. The drag coefficient at the nominal flight conditions (C1) is reduced from 207.5 

counts to 201.94 counts, 8.3 counts higher than the single-point case, while the averaged drag 

coefficient is reduced by 5.6 counts.  The optimized wing contains a weak shock wave in the 

middle of the wing, which exists in all the operating conditions.  

The thickness distribution in the nominal conditions (M=0.8) obtained in the five-point 

optimized wing is different than the single-point case (see Figure 25). The optimization 

algorithm allow thickness reduction of nearly 25%, the lower bound of the thickness constraint. 

The resulted five-point optimized wing is less twisted and thinner than the single-point 

optimized wing.  



 

 
Figure 23: A comparison (mirror view) of the pressure coefficient distribution on the upper 

surface of the single-point optimized wing (left) and the five-point optimized wing (right). The 

results obtained with mesh level L22. 

                                 (a)                                                                       (b) 



 

                                  (c)                                                                     (d) 

Figure 24: Sectional Cp distribution at four locations along the CRM wing span, while the 

numbers 2.35% (a), 26.7% (b), 55.7% (c) and 94.4% (d) represents normalized locations from 

the wing root. 

                                (a)                                                                         (b) 

Figure 25: Twist (a) and normalized lift distribution (b) along the five-points optimized CRM 

wing span. The results are for the nominal flow conditions (M=0.8). 

 

V. Conclusions 

This study presents a modest experience to construct an aerodynamic optimization capabilities 

based on the gradient based algorithms together with an adjoint method that computes the 

required gradients efficiently, developed in the University of Michigan MDO Lab. The main 

motivation for this research is analyzing the sensitivity and robustness of the flow solver, mesh 

warping method and the optimization algorithm to reduced sized problems, in a way that would 

fit the time and resources limitations exist in industrial applications. The effectiveness of the 

optimization process is demonstrated by benchmarking the ADODG RAE-2822 and CRM wing 

optimization cases. For both ADODG cases we obtain well converged results which are 

comparable to the results from previous work.  

For the RAE-2822 case, a drag coefficient reduction of 971 Counts (49.2%) was obtained 

within 100 design iterations. The main challenge of this problem involves minimizing the wave 

drag while satisfying the thickness and lift constraints. The shock wave appeared in the baseline 

configuration is eliminated in the optimized shape and the thickness is reduced by nearly 15% 

compared to the initial value. 



 

Also in this case, the robustness of the flow solver and mesh warping algorithm is demonstrated 

by starting the optimization process from a circle geometry (and not airfoil RAE-2822). In spite 

of the fact that this preferred starting condition might not be of interest for industrial 

applications, it definitely examines the robustness of the numerical method as well as the FFD 

parametrization method. The optimized shapes starting from RAE-2822 and circle are similar 

to each other except for minor differences. The drag coefficient of optimized shapes starting 

from a circle and from the RAE-2822 differ by 0.501 counts only.  

For the CRM wing case, the single-point optimization on the coarse mesh with 192 FFD control 

points reduces the drag coefficient by 16 counts (7.7%). The no thickness reduction case results 

in additional five counts compared to the optimized with that allowed 25% of the baseline 

thickness. The five-point optimization gives higher drag coefficient at the nominal condition 

compared to the single-point optimization, and also in this case a significant shape changes and 

improved performance are achieved.   
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