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Abstract

In this manuscript, we define a conformal map from the unit disc onto the semi plane. Later,
we define a function f(z) = (s — 1){(s). We prove that f(z) belongs to the Hardy space,
H %(]D)). We apply Jensen’s formula noting that the measure associated with the singular
interior factor of f is zero. Finally, we get
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1 Introduction

The Riemann zeta function, ((s) is defined as the analytic continuation of the Dirichlet series

(o9}

1

(s) == s
n=1

which converges in the half plane %(s) > 1. The Riemann zeta function is a meromorphic function

on the whole complex s-plane, which is holomorphic everywhere except for a simple pole

at s =1 with residue 1. All the non trivial zeros of the Riemann zeta function lie in the

critical strip 0 < R(s) < 1. Riemann Hypothesis states that all the non trivial zeros of the

Riemann zeta function lies on the critical line R(s)= 1.

Levinson [6], in 1974 proved that more than one third of zeros of Riemann zeta function are on the

critical line. Balazard et al.[1] in 1999 proved an equivalent of the Riemann Hypothesis. Shaoji Feng

[7], in 2012 proved that atleast 41.28 % of the zeros of Riemann zeta function are on the critical line.

Pratt et al.[8] in 2020 proved that more than five-twelfths of the zeros are on the critical line.

2 Main Result

Let, ZER( p)>1 be the sum over the hypothetical zeros with real part greater than % of the Riemann
zeta function, ¢(s). In the sum, the zeros of multiplicity n are counted n times. Balazard et al.[1]

proved that
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and the Riemann Hypothesis is true if and only if [1],
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The goal of this paper is to prove the following result.

Theorem 1: If ((s) denotes the Riemann zeta function then
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We start the proof of Theorem 1 as follows: Let, f be a function in the Hardy Space H?(ID) where
D={z€C]| |zl <1} and 0 < p < co. Denote by f* the function defined almost everywhere on the
unit circle 0D = {z € C | |z| = 1} by,
() = lim f(re?)

r—1-
Let, z € D where D = {z € C | |z] < 1}. For i = v/—1, write

s—s(z)—l—i— L
B 2 2i+z2) itz

The formula s(z) defines an injective, onto and conformal representation of unit disc D in the semi
plane R(s) > 3
By Jensen’s Formula ([2, Theorem 3.61]) for f(0) # 0 and r < 1,

L toglfre®) s = 10g|£0)] + S log = (3)

2m - || <7, f(a)=0 |Oé|

where in the sum, Z|a\<r F(a)=07 ZETOs of multiplicity n are counted n times.

Denote the singular interior factor of f by,
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Asr — 1,7 < 1, equation (3) becomes ([1] or [3, p. 68]),
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3 | el @nlas = toglf )1+ > o+ [ a0 (@
- || <1, f(a)=0 -

Now we consider the function,
f(z) = (s = 1)¢(s)

where s = —— then,
itz

f(z):_i—izc(i—ii—z>

Lemma 1.1: f belongs to the Hardy space, H%(]D)) that is f € H%(ID))

Proof. ((s) has the following property [9, p.95],

1
C(s)l = Osl), [s] = 00, R(s) = 5
If, |z| < 1 then R (ﬁ) > 1 so we have,
z ) c
= <
1= | ()| < s
for some positive constant c.
Fre”) € —— < —
lie=® + 7|2 ~ cos2(0)
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ANES cs
= re 3 < .
IFre®)]* < (cos?(9))s
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where I' denotes the Gamma function. Hence, f € H %(]])) -

Now using the above lemma we proceed to prove another lemma.

Lemma 1.2: Measure i associated to the singular interior factor of f is zero.

Proof. To prove that the measure p associated to the singular interior factor of f is zero, we adopt
the method used by Bercovivi and Foias [10, Proposition 2.1]
Some theorems in Hardy space theory are ([4] and [5]),

Theorem (a): If f € HP(D) where p > 0, then f has non tangential finite limit on the unit circle
almost everywhere denoted by f*(e%?), and log | f(e?)| is integrable unless f(z) = 0. Also f(e'?) € LP
[4, p.17, Theorem 2.2]

Theorem (b): Every function f(z) # 0 in HP(D) (p > 0) has a unique factorisation of the form
f(z) = B(2)S(2)F(z), where B(z) is a Blaschke product, S(z) is a singular inner function which is
determined by a positive singular measure p and F(z) is an outer function such that F € H?(D) [4,
p.24, Theorem 2.8]. Also, |B(z)| < 1in |z| <1 [4, p.19, Theorem 2.4].

Theorem (c): Let f € HP(D), p > 0, and let I be an open arc on dD. If f(z) is analytic across
T, then its inner factor and its outer factor are analytic across I'. If f(z) is continuous across I', then
its outer factor is continuous across I' [5, p.74, Theorem 6.3]

Theorem (d): If measure p # 0 , then there is a point e? for which

lim S(z)=0
z—eif
non tangentially [5, p.73, Theorem 6.2]

Moreover if
u((6— .0+ b))

li =
nso  hlogl/h >
then for every n = 1,2, ... [5, p.74, (6.4)]
im G

z—eif (1 — |Z|2)n
Now, f(z) = (s — 1){(s) where s = H%
We have proved earlier that f € H3 (D) , so by Theorem (b), f(z) has a decomposition

f(z) = B(2)S(2)F(2)

Define aset M = {z € C | |z] =1,z # —i}

We know that (s — 1)((s) is analytic across the line R(s) = 1. Since f(z) is analytic across arc M,
so by Theorem (c) its inner factor and outer factor are analytic across M. So, f(z) is analytic across
M.

By Theorem (d), if p # 0 then lim,_, i (lljjy)n =0

Lemma 1.2(a): If 4 # 0 then lim,_,q <1 f(—ir) =0

Proof.
f(=ir) = B(—ir)S(—ir)F(—ir)
. 9 . S(—ir )
F(in)] = (1= 2P F(in) s B

3



By Theorem (b) above, |B(—ir)| <1 for r <1

By Theorem (d) above, lim,_,1 ,<1 |g(_72’“))3| =0

Since by Theorem (b), F € H3 (D) so we get [4, p.36, lemma),

(1= 1P ()] < 8|5

where ||F||, = lim,_; {i fozﬂ |F(7“ei9)|pd9}; giving the following inequality,

(1 = r2)PF(=ir)] < 8|1 — r)*F(~ir)| < 64||F|,

Using these bounds in | f(—ir)| = ‘(1 —r2)3F (—ir) g(:g))g B(—ir)| since the middle term goes to zero

by Theorem (d) and the remaining two terms are bounded, so we get

lim |f(—ir)|=0

r—1,r<1

Since, |.| is continuous function, we get , |lim,_1 r<1 f(—ir)] = 0 so,

lim f(—ir)=0

r—1,r<1

In this case ,

. T 1
7«_}111,?<11—7«C<1—r> =0

lim (x—1){(z)=0

r—00, >0

_ 1
Let, z = 1=

which is a contradiction as the above limit is co.

Hence our assumption that p # 0 is wrong. So, we must have

p=0 (5)

We are ready for another lemma useful in applying Jensen’s formula later.

Lemma 1.3:

/ " log |7 (¢*)ldo = 0

—T

Proof. Let,
1= [ toglre)jap

—T

We have, f(z) = (s — 1)(s) where s =

I:/ log

et 1
z’+e“‘)C (z’+ei9)‘d9

Write,
I=K+ L
where
™ 10
K= log | —— | df
o 0g 'L+ 619
and x :
)
L= 1 — || df
/_W o C(Hew)’

Lemma 1.3(b):



Proof. .
K= —/ log|i+ei9’d9

—T

By Jensen’s formula, since m(z) =i + z is analytic in |z] < 1 so we have K =0

Lemma 1.3(c):
4 )
1 . dgd =0
/_ﬂ o8 <<z+ew)‘
Proof.
7i = 1—&-itaun E—Q
i4e® 22 4 2

L:/ log

. _ 0
Substitute ¢ = 7 — 5 then,

L:Q/ log C<+tan¢> do
nja 272
w/2 1 i 3 /4 1 i
L:2/ 10g§<+tan¢)‘dqb+2/ 10g§<+tan¢>’d¢
— 2 2 /2 2 2
Define
L1:2/ log C(+tan¢> do
/4 2739
and
L2:2/ log C<+tangz5) do
s 272
In L, substitute ¢t = tag¢ which is a valid substitution as t = ta§¢ is injective on (—m/4,7/2)
<] it
L, :/ —°g|§(2 i Mo
1 1 +t
In Lo, substitute p = tag‘b which is a valid substitution as p = ta;¢ is injective on (7/2,37/4)
L /1 log|¢ (5 +ip)] ,
2= —1,.2
oo 1 +p
< log |¢ (L +ip
-1 it+tDp
Hence,
L=Li+L;=0

= 10g|f*(ei9)\d9 =0
O

Next, we proceed to another lemma.
: ) is analytic in |z| <7, r <1 and log|f(0)| =0

Lemma 1.4: f(2) = —7( (i+z



Proof. Let, w(z) = w%z and define

h(z) = (z = 1)¢(2)
h(z) is entire function and w(z) is analytic in |z| < r, r < 1 so the composition h(w(z)) = f(2) is
analytic in |z| <7, r < 1. Hence, f is continuous at zero.

f(0) = lim f(z)

z—0
TETERES
Let, n = H%Z then
£(0) = lim(n = 1)) = 1 @
log | f(0)] =0 (8)

Now, we proceed to next lemma.

Since, f(0) # 0 and f(z) = —75¢ (H%Z) so f(a) = 0 corresponds to ¢ (HZ_ ) =0.
Let, p denote non trivial zeros of Riemann zeta function then,

1
14+ a

p:

Lemma 1.8:

Z log E1| = Z log

o <1, (2)=0 R(p)> 5,¢()=0

_r
1-p

Proof. p= - gives a =i (177”) so || < 1 corresponds to R(p) > 1 and f(a) = 0 corresponds to

¢(p) = 0. Hence we get

Z log ﬁ = Z log

=

] <1,f(e)=0 R(p)>3.¢(p)=0

O
Using equation (5),(6),(8) and (9) in equation (4), we get,
P

R(p)>5,¢(p)=0
Using equation (1) and (10) gives,

[ skl

N

This proves equation (2) and completes the proof of Theorem 1. Hence the Riemann Hypothesis is
true.
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