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Abstract 

According to general relativity, the cause of gravitational waves is that time and space can be bent. 

Because the curvature of space-time is closely related to the change of gravitational field energy. 

Therefore, this article attempts to explore the causes of gravitational waves from the change and 

propagation process of gravitational field energy. Such an analysis method can make the physical 

image of gravitational waves clearer, and it is believed that it can also solve more complicated 

gravitational problems in addition to the gravitational problem of symmetry. The analysis results of 

this article also show that apart from transverse waves, gravitational waves may also have 

longitudinal waves. This article gives a method to detect the presence or absence of longitudinal 

waves of gravitational waves. 

1 Elastic space-time 

We assume here that space-time is an elastic substance. Then we can use a lot of knowledge of 

elasticity to deal with the problem of space-time changes. 

Now we graphically represent the degree of curvature of space-time, as shown in Figure 1 

 

It can be seen from the figure that if it is a flat space-time, it can be expressed as a cylindrical shape. 

This reflects that space-time have not been bent. And if it is a curved space-time, it will be a twisted 

shape. Of course, for the sake of simplicity, we still consider the axisymmetric shape here. That is, 

it is symmetrical along the z-axis of cylindrical coordinates. 

Figure 1. Flat and curved spacetime 
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According to the general theory of relativity, the reason why space-time is bent is because there is 

energy in it. 

Now we assume that there is an energy E in a spacetime, and the energy corresponding to the rest 

mass is 0. But since there is energy, we can still obtain the dynamic mass m corresponding to the 

energy through the mass-energy relationship of the theory of relativity. This dynamic mass can be 

used as an intermediate variable for us to calculate the space-time bending effect. Then 

𝑚 =
𝐸

𝑐2
 

Now we consider the force analysis of Figure 2. 

 

From the force analysis in Figure 2, due to the action of two forces F1 and F2, time and space have 

been bent. At the same time, considering that this curvature of space-time is very weak, there is 

actually 

𝐹1 ≈ 𝐹2 ≈ 𝐹 

Two cross-sectional areas 

𝑆1 ≈ 𝑆2 ≈ 𝑆 

Moreover, the two included angles α1 and α2 are both very small. So 

∆𝑙 ≈ ∆𝑧 

In addition, considering the symmetry, the force on the lower half of the curved space-time in the 

figure is also symmetrical. Therefore, we only need to analyze the forces acting on half of the space-

time, and then we can extend the conclusion to the other half of space-time. As shown in Figure 3, 

we consider the force situation in the upper half of space-time 

Figure 2. Transverse wave 

F1 

F2 

y 

z x 

𝛼2 

𝛼1 

∆𝑧 

S2 S1 

∆𝑙 



 

We first analyze the force along the z-axis 

∆𝐹𝑧 = 𝐹1𝑐𝑜𝑠𝛼1 − 𝐹2𝑐𝑜𝑠𝛼2 ≈ 0 

The force along the y-axis is 

∆𝐹𝑦 = 𝐹1𝑠𝑖𝑛𝛼1 − 𝐹2𝑠𝑖𝑛𝛼2 ≈ 𝐹 (
𝑑𝑦

𝑑𝑧
|
𝑧+∆𝑧

−
𝑑𝑦

𝑑𝑧
|
𝑧
) 

Now consider that in Figure 2, the energy density of the space-time gravitational field is ℇ, which is 

equivalent to the mass density 

𝜌 =
ℇ

𝑐2
 

Then we can get from figure 3. 

∆𝐹𝑦 = 𝐹 (
𝑑𝑦

𝑑𝑧
|
𝑧+∆𝑧

−
𝑑𝑦

𝑑𝑧
|
𝑧
) = ∆𝑚

𝑑2𝑦

𝑑𝑡2
= 𝜌

𝑆∆𝑧

2

𝑑2𝑦

𝑑𝑡2
 

If ∆𝑧 → 0，then 

𝐹
𝑑2𝑦

𝑑𝑧2
= 𝜌𝑆

𝑑2𝑦

𝑑𝑡2
=
ℇ𝑆

2

𝑑2𝑦

𝑑𝑡2𝑐2
 

It can be seen that this is a wave equation. 

In addition, if the space-time bending process in Figure 3, the work done by the force F is 

∆𝑊 = 𝐹∆𝑙 ≈ 𝐹∆𝑧 

And the energy of the gravitational field in this area is  

∆𝐸 =
ℇ𝑆∆𝑧

2
 

Figure 3. Transverse wave of half spacetime 
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It can be seen, that if 

∆𝑊 = ∆𝐸 

Then  

𝐹 =
ℇ𝑆

2
 

So the above wave equation becomes 

𝑑2𝑦

𝑑𝑧2
=

𝑑2𝑦

𝑑𝑡2𝑐2
 

Obviously, this is a wave equation that travels at the speed of light. This also means that after the 

gravitational field causes space-time to bend, it can form a wave form, that is, a gravitational wave, 

and propagate out at the speed of light. 

The wave equation in the x-axis direction can also be obtained 

𝑑2𝑥

𝑑𝑧2
=

𝑑2𝑥

𝑑𝑡2𝑐2
 

If space-time is an elastic substance, it can be seen from the space-time bending mechanism of 

Figure 2 or Figure 3 that the vibration waveform in the x-axis direction is exactly 180° out of phase 

with the y-axis direction. 

It can be seen from the above analysis that although conclusions consistent with general relativity 

can be obtained, the derivation of this article is more concise and the physical picture is clearer. 

Therefore, if the conclusion of the derivation of this article is valid, the method can be used to solve 

the more complicated problems of gravitational wave propagation. 

2 Gravitational wave longitudinal wave 

The wave equation obtained in the previous section is a transverse wave, which is consistent with 

the result of general relativity. However, it can be seen from the analysis of this article that, in fact, 

gravitational waves can also be longitudinal waves. 

Since the vibration direction of time and space is in the z-axis direction, the displacement generated 

on the z-axis is represented by 𝑢(𝑧) here. In Figure 4, when a force acts on a space-time section, it 

will cause a slight displacement 𝑑𝑢(𝑧) in the section.  



 

Among them, F1 in the S1 position can make the time and space of this position produce a 

displacement 𝑑𝑢(𝑧 + ∆𝑧) 

Then the actual force at the position of section S1 due to space-time bending is: 

𝐹1
𝑑𝑢

𝑑𝑧
|
𝑧+∆𝑧

≈ 𝐹
𝑑𝑢

𝑑𝑧
|
𝑧+∆𝑧

 

In the same way, the actual force at the S2 position is: 

𝐹2
𝑑𝑢

𝑑𝑧
|
𝑧
≈ 𝐹

𝑑𝑢

𝑑𝑧
|
𝑧
 

In this way, the total space-time force of the length ∆𝑧 in the figure is  

∆𝐹 = 𝐹 (
𝑑𝑢

𝑑𝑧
|
𝑧+∆𝑧

−
𝑑𝑢

𝑑𝑧
|
𝑧
) 

Consider  

∆𝐹 = 𝜌𝑆∆𝑧
𝑑2𝑢

𝑑𝑡2
= ℇ𝑆∆𝑧

𝑑2𝑢

𝑑𝑡2𝑐2
 

Then  

𝐹 (
𝑑𝑢

𝑑𝑧
|
𝑧+∆𝑧

−
𝑑𝑢

𝑑𝑧
|
𝑧
) = 𝜌𝑆∆𝑧

𝑑2𝑢

𝑑𝑡2
= ℇ𝑆∆𝑧

𝑑2𝑢

𝑑𝑡2𝑐2
 

If ∆𝑧 → 0, then  

𝐹
𝑑2𝑢

𝑑𝑧2
= ℇ𝑆

𝑑2𝑢

𝑑𝑡2𝑐2
 

And if the work done by these two forces is exactly equal to the energy of the gravitational field, 

then the work done by force F is: 
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Figure 4. Longitudinal wave 
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∆𝑊 = 𝐹∆𝑧 

And the energy of the gravitational field in this area is: 

∆𝐸 = ℇ𝑆∆𝑧 

Then we can also obtain the wave equation with the speed of light: 

𝑑2𝑢

𝑑𝑧2
=

𝑑2𝑢

𝑑𝑡2𝑐2
 

But the wave equation reflects the longitudinal wave form of gravitational waves. 

3 Detection of gravitational waves and 

longitudinal waves 

At present, the LIGO device has been able to detect gravitational waves predicted by general 

relativity theory. However, after a slight improvement, it is believed that the device can still be used 

to detect longitudinal waves of gravitational waves. 

It is relatively easy to identify gravitational transverse waves. As shown in Figure 5, the gravitational 

wave detector has two arms perpendicular to each other. Corresponding to the x-axis and y-axis 

respectively. If gravitational waves propagate along the z-axis, the detector can detect the alternate 

length of the two arms. For example, if Arm 1 is elongated, Arm 2 will be shortened at the same 

time. And vice versa. By analyzing the relative length changes of the two Arms, the incident 

direction of gravitational waves can also be determined.  

 

If it is a longitudinal wave, you only need to keep the incident direction of the gravitational wave 

parallel to the plane of the detector. One of the two Arms can be in the z-axis direction of the 

gravitational wave propagation. In this way, if there is a longitudinal wave, the detector can find 

Figure 5. Gravitational wave detection device 
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that only the length of the Arm in the z-axis direction will change periodically, and the length of the 

other Arm will not change. Of course, if it is a transverse wave, the length change of Arm is just the 

opposite. 

As for the propagation direction of gravitational waves, it can be determined by other astronomical 

observation data. The direction adjustment of the detector can be realized by the rotation of the earth. 

That is, by measuring in different time periods, different propagation directions of gravitational 

waves can be obtained. 

4 Conclusions 

The gravitational wave solution is an important achievement of general relativity. Therefore, 

detecting the presence or absence of gravitational waves has become an important experimental 

evidence for testing general relativity. 

However, the calculation process of the gravitational wave solution of general relativity is more 

complicated. After using the method of tensor analysis, the complicated mathematical derivation 

process can easily conceal the physical meaning of it. 

In this paper, we try to use the assumption of elastic space-time, combined with the propagation of 

gravitational field energy, to obtain gravitational wave solutions. The physical meaning is easier to 

understand. The entire derivation process of gravitational waves is also relatively simple, and I 

believe this will help solve some more complicated problems of the generation and propagation of 

gravitational waves. 

In addition, the analysis in this article also shows that if the hypothesis of this article is true, 

gravitational waves should not only have transverse waves, but also longitudinal waves. 

This article believes that the existing LIGO gravitational wave measurement device can be used to 

measure at different time periods to prove whether the longitudinal wave form of gravitational 

waves exists. 
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