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CHAPTER 1

A COMPLETE PROOF OF BEAL’S
CONJECTURE

Abstract. — In 1997, Andrew Beal announced the following conjecture: Let
A,B,C,m, n, and l be positive integers with m,n, l > 2. If Am + Bn = Cl then
A,B, and C have a common factor. We begin to construct the polynomial P (x) =
(x − Am)(x − Bn)(x + Cl) = x3 − px + q with p, q integers depending of Am, Bn and Cl.
We resolve x3 − px+ q = 0 and we obtain the three roots x1, x2, x3 as functions of p, q and
a parameter θ. Since Am, Bn,−Cl are the only roots of x3 − px + q = 0, we discuss the
conditions that x1, x2, x3 are integers and have or not a common factor. Three numerical
examples are given.

Résumé. — En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient
A,B,C,m, n, et l des entiers positifs avec m,n, l > 2. Si Am + Bn = Cl alors A,B, et C
ont un facteur commun.
Nous commençons par construire le polynôme P (x) = (x−Am)(x−Bn)(x+Cl) = x3−px+q
avec p, q des entiers qui dépendent de Am, Bn et Cl. Nous résolvons x3− px+ q = 0 et nous
obtenons les trois racines x1, x2, x3 comme fonctions de p, q et d’un paramètre θ. Comme
Am, Bn,−Cl sont les seules racines de x3−px+q = 0, nous discutons les conditions pourque
x1, x2, x3 soient des entiers. Trois exemples numériques sont présentés.

1.1. Introduction

In 1997, Andrew Beal [4] announced the following conjecture :
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Conjecture 1.1. — Let A,B,C,m, n, and l be positive integers with
m,n, l > 2. If:

(1.1) Am +Bn = C l

then A,B, and C have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is
to construct a polynomial P (x) of three order having as roots Am, Bn and
−C l with the condition (1.1). The paper is organized as follows. In Section
1, we begin with the trivial case where Am = Bn. In Section 2, we consider
the polynomial P (x) = (x−Am)(x−Bn)(x+C l) = x3 − px+ q. We express
the three roots of P (x) = x3 − px + q = 0 in function of two parameters ρ, θ
that depend of Am, Bn, C l. The Sections 3,4 and 5 are the main parts of the
paper. We write that A2m = 4p

3 cos
2 θ

3. As A2m is an integer, it follows that

cos2 θ

3 must be written as a
b
where a, b are two positive coprime integers. We

discuss the conditions of divisibility of p, a, b so that the expression of A2m is
an integer. Depending of each individual case, we obtain that A,B,C have or
not a common factor. We present three numerical examples in section 6 and
we give conclusions in the last section.

1.1.1. Trivial Case. — We consider the trivial case when Am = Bn. The
equation (1.1) becomes:

(1.2) 2Am = C l

then 2|C l =⇒ 2|C =⇒ ∃ c ∈ N∗/ C = 2c, it follows 2Am = 2lcl =⇒ Am =
2l−1cl. As l > 2, then 2|Am =⇒ 2|A =⇒ 2|Bn =⇒ 2|B. The conjecture (3.1)
is verified.

We suppose in the following that Am > Bn.

1.2. Preliminaries

Let m,n, l ∈ N∗ > 2 and A,B,C ∈ N∗ such:

(1.3) Am +Bn = C l
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We call:

P (x) = (x−Am)(x−Bn)(x+ C l) = x3 − x2(Am +Bn − C l)
+x[AmBn − C l(Am +Bn)] + C lAmBn(1.4)

Using the equation (1.3), P (x) can be written as:

(1.5) P (x) = x3 + x[AmBn − (Am +Bn)2] +AmBn(Am +Bn)

We introduce the notations:

p = (Am +Bn)2 −AmBn(1.6)
q = AmBn(Am +Bn)(1.7)

As Am 6= Bn, we have :

(1.8) p > (Am −Bn)2 > 0

Equation (1.5) becomes:

(1.9) P (x) = x3 − px+ q

Using the equation (1.4), P (x) = 0 has three different real roots : Am, Bn

and −C l.

Now, let us resolve the equation:

(1.10) P (x) = x3 − px+ q = 0

To resolve (1.10) let:

(1.11) x = u+ v

Then P (x) = 0 gives:
(1.12)
P (x) = P (u+v) = (u+v)3−p(u+v)+q = 0 =⇒ u3+v3+(u+v)(3uv−p)+q = 0

To determine u and v, we obtain the conditions:

u3 + v3 = −q(1.13)
uv = p/3 > 0(1.14)

Then u3 and v3 are solutions of the second order equation:

(1.15) X2 + qX + p3/27 = 0

Its discriminant ∆ is written as :

(1.16) ∆ = q2 − 4p3/27 = 27q2 − 4p3

27 = ∆̄
27
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Let:

∆̄ = 27q2 − 4p3 = 27(AmBn(Am +Bn))2 − 4[(Am +Bn)2 −AmBn]3

= 27A2mB2n(Am +Bn)2 − 4[(Am +Bn)2 −AmBn]3(1.17)

Noting :

α = AmBn > 0(1.18)
β = (Am +Bn)2(1.19)

we can write (1.17) as:

(1.20) ∆̄ = 27α2β − 4(β − α)3

As α 6= 0, we can also rewrite (1.20) as :

(1.21) ∆̄ = α3
(

27β
α
− 4

(
β

α
− 1

)3)
We call t the parameter :

(1.22) t = β

α

∆̄ becomes :

(1.23) ∆̄ = α3(27t− 4(t− 1)3)

Let us calling :

(1.24) y = y(t) = 27t− 4(t− 1)3

Since α > 0, the sign of ∆̄ is also the sign of y(t). Let us study the sign of y.
We obtain y′(t):

(1.25) y′(t) = y′ = 3(1 + 2t)(5− 2t)

y′ = 0 =⇒ t1 = −1/2 and t2 = 5/2, then the table of variations of y is given
below:
The table of the variations of the function y shows that y < 0 for t > 4. In
our case, we are interested for t > 0. For t = 4 we obtain y(4) = 0 and for
t ∈]0, 4[=⇒ y > 0. As we have t = β

α > 4 because as Am 6= Bn:

(1.26) (Am −Bn)2 > 0 =⇒ β = (Am +Bn)2 > 4α = 4AmBn

Then y < 0 =⇒ ∆̄ < 0 =⇒ ∆ < 0. Then, the equation (1.15) does not have
real solutions u3 and v3. Let us find the solutions u and v with x = u+ v is a
positive or a negative real and u.v = p/3.
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Figure 1. The table of variations

1.2.1. Expressions of the roots. —

Proof. — The solutions of (1.15) are:

X1 = −q + i
√
−∆

2(1.27)

X2 = X1 = −q − i
√
−∆

2(1.28)

We may resolve:

u3 = −q + i
√
−∆

2(1.29)

v3 = −q − i
√
−∆

2(1.30)

Writing X1 in the form:

(1.31) X1 = ρeiθ

with:

ρ =
√
q2 −∆

2 =
p
√
p

3
√

3
(1.32)

and sinθ =
√
−∆
2ρ > 0(1.33)

cosθ = − q

2ρ < 0(1.34)
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Then θ [2π] ∈ ] + π

2 ,+π[, let:

π

2 < θ < +π ⇒ π

6 <
θ

3 <
π

3 ⇒
1
2 < cos

θ

3 <

√
3

2(1.35)

and:

(1.36) 1
4 < cos2 θ

3 <
3
4

hence the expression of X2:

(1.37) X2 = ρe−iθ

Let:

u = reiψ(1.38)

and j = −1 + i
√

3
2 = ei

2π
3(1.39)

j2 = ei
4π
3 = −1 + i

√
3

2 = j̄(1.40)

j is a complex cubic root of the unity ⇐⇒ j3 = 1. Then, the solutions u and
v are:

u1 = reiψ1 = 3
√
ρei

θ
3(1.41)

u2 = reiψ2 = 3
√
ρjei

θ
3 = 3
√
ρei

θ+2π
3(1.42)

u3 = reiψ3 = 3
√
ρj2ei

θ
3 = 3
√
ρei

4π
3 e+i θ3 = 3

√
ρei

θ+4π
3(1.43)

and similarly:

v1 = re−iψ1 = 3
√
ρe−i

θ
3(1.44)

v2 = re−iψ2 = 3
√
ρj2e−i

θ
3 = 3
√
ρei

4π
3 e−i

θ
3 = 3
√
ρei

4π−θ
3(1.45)

v3 = re−iψ3 = 3
√
ρje−i

θ
3 = 3
√
ρei

2π−θ
3(1.46)

We may now choose uk and vh so that uk + vh will be real. In this case, we
have necessary :

v1 = u1(1.47)
v2 = u2(1.48)
v3 = u3(1.49)
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We obtain as real solutions of the equation (1.12):

x1 = u1 + v1 = 2 3
√
ρcos

θ

3 > 0(1.50)

x2 = u2 + v2 = 2 3
√
ρcos θ+2π

3 = − 3
√
ρ
(
cos θ3 +

√
3sin θ3

)
< 0(1.51)

x3 = u3 + v3 = 2 3
√
ρcos θ+4π

3 = 3
√
ρ
(
−cos θ3 +

√
3sin θ3

)
> 0(1.52)

We compare the expressions of x1 and x3, we obtain:

2 3
√
pcos θ3

?︷︸︸︷
> 3
√
p
(
−cos θ3 +

√
3sin θ3

)
3cos θ3

?︷︸︸︷
>
√

3sin θ3(1.53)

As θ3 ∈ ] + π

6 ,+
π

3 [, then sinθ3 and cosθ3 are > 0. Taking the square of the two
members of the last equation, we get:

(1.54) 1
4 < cos2 θ

3

which is true since θ3 ∈ ] + π

6 ,+
π

3 [ then x1 > x3. As Am, Bn and −C l are the
only real solutions of (1.10), we consider, as Am is supposed great than Bn,
the expressions:
(1.55)

Am = x1 = u1 + v1 = 2 3
√
ρcos

θ

3

Bn = x3 = u3 + v3 = 2 3
√
ρcos

θ + 4π
3 = 3

√
ρ

(
−cosθ3 +

√
3sinθ3

)

−C l = x2 = u2 + v2 = 2 3
√
ρcos

θ + 2π
3 = − 3

√
ρ

(
cos

θ

3 +
√

3sinθ3

)
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1.3. Preamble of the Proof of the Main Theorem

Theorem 1.2. — Let A,B,C,m, n, and l be positive integers with
m,n, l > 2. If:

(1.56) Am +Bn = C l

then A,B, and C have a common factor.

Proof. — Am = 2 3
√
ρcos

θ

3 is an integer ⇒ A2m = 4 3
√
ρ2cos2 θ

3 is also an inte-
ger. But :

(1.57) 3
√
ρ2 = p

3

Then:

(1.58) A2m = 4 3
√
ρ2cos2 θ

3 = 4p3 .cos
2 θ

3 = p.
4
3 .cos

2 θ

3

As A2m is an integer and p is an integer, then cos2 θ

3 must be written under
the form:

(1.59) cos2 θ

3 = 1
b

or cos2 θ

3 = a

b

with b ∈ N∗; for the last condition a ∈ N∗ and a, b coprime.

Notations: In the following of the paper, the scalars a, b, ..., z, α, β, ...,
A,B,C, ... and ∆,Φ, ... represent positive integers except the parameters θ, ρ,
or others cited in the text, are reals.

1.3.1. Case cos2 θ

3 = 1
b
. — We obtain:

(1.60) A2m = p.
4
3 .cos

2 θ

3 = 4.p
3.b

As 1
4 < cos2 θ

3 <
3
4 ⇒

1
4 <

1
b
<

3
4 ⇒ b < 4 < 3b⇒ b = 1, 2, 3.

1.3.1.1. b = 1. — b = 1⇒ 4 < 3 which is impossible.
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1.3.1.2. b = 2. — b = 2⇒ A2m = p.
4
3 .

1
2 = 2.p

3 ⇒ 3|p⇒ p = 3p′ with p′ 6= 1
because 3� p, we obtain:

A2m = (Am)2 = 2p
3 = 2.p′ =⇒ 2|p′ =⇒ p′ = 2αp2

1

with 2 - p1, α+ 1 = 2β
Am = 2βp1(1.61)

BnC l = 3
√
ρ2
(

3− 4cos2 θ

3

)
= p′ = 2αp2

1(1.62)

From the equation (1.61), it follows that 2|Am =⇒ A = 2iA1, i ≥ 1 and
2 - A1. Then, we have β = i.m = im. The equation (1.62) implies that
2|(BnC l) =⇒ 2|Bn or 2|C l.

1.3.1.2.1. Case 2|Bn. — : If 2|Bn =⇒ 2|B =⇒ B = 2jB1 with 2 - B1. The
expression of BnC l becomes:

Bn
1C

l = 22im−1−jnp2
1

- If 2im− 1− jn ≥ 1, 2|C l =⇒ 2|C according to C l = 2imAm1 + 2jnBn
1 and the

conjecture (3.1) is verified.
- If 2im − 1 − jn ≤ 0 =⇒ 2 - C l, then the contradiction with C l = 2imAm1 +
2jnBn

1 .

1.3.1.2.2. Case 2|C l. — : If 2|C l: with the same method used above, we
obtain the identical results.

1.3.1.3. b = 3. — b = 3⇒ A2m = p.
4
3 .

1
3 = 4p

9 ⇒ 9|p⇒ p = 9p′ with p′ 6= 1,
as 9� p then A2m = 4p′. If p′ is prime, it is impossible. We suppose that p′
is not a prime, as m ≥ 3, it follows that 2|p′, then 2|Am. But BnC l = 5p′ and
2|(BnC l). Using the same method for the case b = 2, we obtain the identical
results.

1.3.2. Case a > 1, cos2 θ

3 = a

b
. — We have:

(1.63) cos2 θ

3 = a

b
; A2m = p.

4
3 .cos

2 θ

3 = 4.p.a
3.b

where a, b verify one of the two conditions:

(1.64) {3|a and b|4p} or {3|p and b|4p}

and using the equation (1.36), we obtain a third condition:

(1.65) b < 4a < 3b
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For these conditions, A2m = 4 3
√
ρ2cos2 θ

3 = 4p3 .cos
2 θ

3 is an integer.

Let us study the conditions given by the equation (1.64) in the following two
sections.

1.4. Hypothesis : {3|a and b|4p}

We obtain :

(1.66) 3|a =⇒ ∃a′ ∈ N∗ / a = 3a′

1.4.1. Case b = 2 and 3|a : — A2m is written as:

(1.67) A2m = 4p
3 .cos

2 θ

3 = 4p
3 .
a

b
= 4p

3 .
a

2 = 2.p.a
3

Using the equation (1.66), A2m becomes :

(1.68) A2m = 2.p.3a′

3 = 2.p.a′

but cos2 θ

3 = a

b
= 3a′

2 > 1 which is impossible, then b 6= 2.

1.4.2. Case b = 4 and 3|a : — A2m is written :

A2m = 4.p
3 cos2 θ

3 = 4.p
3 .

a

b
= 4.p

3 .
a

4 = p.a

3 = p.3a′

3 = p.a′(1.69)

and cos2 θ

3 = a

b
= 3.a′

4 <

(√
3

2

)2

= 3
4 =⇒ a′ < 1(1.70)

which is impossible. Then the case b = 4 is impossible.

1.4.3. Case b = p and 3|a : — We have :

(1.71) cos2 θ

3 = a

b
= 3a′

p

and:

A2m = 4p
3 .cos

2 θ

3 = 4p
3 .

3a′

p
= 4a′ = (Am)2(1.72)

∃a” / a′ = a”2(1.73)
and BnC l = p−A2m = b− 4a′ = b− 4a”2(1.74)
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The calculation of AmBn gives :

AmBn = p.

√
3

3 sin
2θ
3 − 2a′

or AmBn + 2a′ = p.

√
3

3 sin
2θ
3(1.75)

The left member of (1.75) is an integer and p also, then 2
√

3
3 sin

2θ
3 is written

under the form :

(1.76) 2
√

3
3 sin

2θ
3 = k1

k2

where k1, k2 are two coprime integers and k2|p =⇒ p = b = k2.k3, k3 ∈ N∗.

** A-1- We suppose that k3 6= 1, we obtain :

(1.77) Am(Am + 2Bn) = k1.k3

Let µ be a prime integer with µ|k3, then µ|b and µ|Am(Am + 2Bn) =⇒ µ|Am
or µ|(Am + 2Bn).

** A-1-1- If µ|Am =⇒ µ|A and µ|A2m, but A2m = 4a′ =⇒ µ|4a′ =⇒ (µ = 2,
but 2|a′) or (µ|a′). Then µ|a it follows the contradiction with a, b coprime.

** A-1-2- If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn then µ 6= 2 and µ - Bn.
We write µ|(Am + 2Bn) as:

(1.78) Am + 2Bn = µ.t′

It follows :

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p:

(1.79) p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am)

As p = b = k2.k3 and µ|k3 then µ|b =⇒ ∃µ′ and b = µµ′, so we can write:

(1.80) µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am)

From the last equation, we obtain µ|Bn(Bn−Am) =⇒ µ|Bn or µ|(Bn−Am).

** A-1-2-1- If µ|Bn which is in contradiction with µ - Bn.
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** A-1-2-2- If µ|(Bn −Am) and using that µ|(Am + 2Bn), we arrive to :

(1.81) µ|3Bn


µ|Bn

or

µ = 3

** A-1-2-2-1- If µ|Bn =⇒ µ|B, it is the contradiction with µ - B cited above.

** A-1-2-2-2- If µ = 3, then 3|b, but 3|a then the contradiction with a, b

coprime.

** A-2- We assume now k3 = 1, then :

A2m + 2AmBn = k1(1.82)
b = k2(1.83)

2
√

3
3 sin

2θ
3 = k1

b
(1.84)

Taking the square of the last equation, we obtain:
4
3sin

2 2θ
3 = k2

1
b2

16
3 sin

2 θ

3cos
2 θ

3 = k2
1
b2

16
3 sin

2 θ

3 .
3a′

b
= k2

1
b2

Finally:

(1.85) 42a′(p− a) = k2
1

but a′ = a”2, then p− a is a square. Let:

(1.86) λ2 = p− a = b− a = b− 3a”2 =⇒ λ2 + 3a”2 = b

The equation (1.85) becomes:

(1.87) 42a”2λ2 = k2
1 =⇒ k1 = 4a”λ

taking the positive root, but k1 = Am(Am + 2Bn) = 2a”(Am + 2Bn), then :

(1.88) Am + 2Bn = 2λ =⇒ λ = a” +Bn

** A-2-1- As Am = 2a” =⇒ 2|Am =⇒ 2|A =⇒ A = 2iA1, with i ≥ 1 and
2 - A1, then Am = 2a” = 2imAm1 =⇒ a” = 2im−1Am1 , but im ≥ 3 =⇒ 4|a”. As
p = b = A2m +AmBn +B2n = λ = 2im−1Am1 +Bn. Taking its square, then :

λ2 = 22im−2A2m
1 + 2imAm1 Bn +B2n
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As im ≥ 3, we can write λ2 = 4λ1 + B2n =⇒ λ2 ≡ B2n(mod 4) =⇒ λ2 ≡
B2n ≡ 0(mod 4) or λ2 ≡ B2n ≡ 1(mod 4).

** A-2-1-1- We suppose that λ2 ≡ B2n ≡ 0(mod 4) =⇒ 4|λ2 =⇒ 2|(b − a).
But 2|a because a = 3a′ = 3a”2 = 3 × 22(im−1)A2m

1 and im ≥ 3. Then 2|b, it
follows the contradiction with a, b coprime.

** A-2-1-2- We suppose now that λ2 ≡ B2n ≡ 1(mod 4). As Am = 2im−1Am1
and im − 1 ≥ 2, then Am ≡ 0(mod4). As B2n ≡ 1(mod4), then Bn

verifies Bn ≡ 1(mod4) or Bn ≡ 3(mod4) which gives for the two cases
BnC l ≡ 1(mod 4).

We have also p = b = A2m+AmBn+B2n = 4a′+Bn.C l = 4a”2 +BnC l =⇒
BnC l = λ2 − a”2 = Bn.C l, then λ, a” ∈ N∗ are solutions of the Diophantine
equation :

(1.89) x2 − y2 = N

with N = BnC l > 0. Let Q(N) be the number of the solutions of (1.89)
and τ(N) is the number of suitable factorization of N , then we announce the
following result concerning the solutions of the equation (1.89) (see theorem
27.3 in [6]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

Let (u, v), u, v ∈ N∗ be another pair, solution of the equation (1.89), then
u2 − v2 = x2 − y2 = N = BnC l, but λ = x and a” = y verify the equation
(1.88) given by x − y = Bn, it follows u, v verify also u − v = Bn, that gives
u + v = C l, then u = x = λ = a” + Bn and v = a”. We have given a proof
of the uniqueness of the solutions of the equation (1.89) with the condition
x − y = Bn. As N = BnC l ≡ 1(mod 4) =⇒ Q(N) = [τ(N)/2] > 1. But
Q(N) = 1, then the contradiction.

Hence, the case k3 = 1 is impossible.
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Let us verify the condition (1.65) given by b < 4a < 3b. In our case, the
condition becomes :

(1.90) p < 3A2m < 3p with p = A2m +B2n +AmBn

and 3A2m < 3p =⇒ A2m < p that is verified. If :

p < 3A2m =⇒ 2A2m −AmBn −B2n
?︷︸︸︷
> 0

Studying the sign of the polynomial Q(Y ) = 2Y 2 − BnY − B2n and taking
Y = Am > Bn, the condition 2A2m − AmBn − B2n > 0 is verified, then the
condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b
implies to verify that Am > Bn which is true.

1.4.4. Case b|p⇒ p = b.p′, p′ > 1, b 6= 2, b 6= 4 and 3|a : —

(1.91) A2m = 4.p
3 .

a

b
= 4.b.p′.3.a′

3.b = 4.p′a′

We calculate BnC l:

(1.92) BnC l = 3
√
ρ2
(

3sin2 θ

3 − cos
2 θ

3

)
= 3
√
ρ2
(

3− 4cos2 θ

3

)

but 3
√
ρ2 = p

3, using cos
2 θ

3 = 3.a′

b
, we obtain:

(1.93)

BnC l = 3
√
ρ2
(

3− 4cos2 θ

3

)
= p

3

(
3− 43.a′

b

)
= p.

(
1− 4.a′

b

)
= p′(b− 4a′)

As p = b.p′, and p′ > 1, so we have :

BnC l = p′(b− 4a′)(1.94)
and A2m = 4.p′.a′(1.95)

** B-1- We suppose that p′ is prime, then A2m = 4ap′ = (Am)2 =⇒ p′|a. But
BnC l = p′(b− 4a′) =⇒ p′|Bn or p′|C l.

** B-1-1- If p′|Bn =⇒ p′|B =⇒ B = p′B1 with B1 ∈ N∗. Hence :
p′n−1Bn

1C
l = b− 4a′. But n > 2⇒ (n− 1) > 1 and p′|a′, then p′|b =⇒ a and

b are not coprime, then the contradiction.
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** B-1-2- If p′|C l =⇒ p′|C. The same method used above, we obtain the same
results.

** B-2- We consider that p′ is not a prime integer.

** B-2-1- p′, a are supposed coprime: A2m = 4ap′ =⇒ Am = 2a′.p1 with
a = a′2 and p′ = p2

1, then a′, p1 are also coprime. As Am = 2a′.p1 then 2|a′ or
2|p1.

** B-2-1-1- 2|a′, then 2|a′ =⇒ 2 - p1. But p′ = p2
1.

** B-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** B-2-1-1-2- We suppose that p1 is not prime, we can write it as
p1 = ωm =⇒ p′ = ω2m, then: BnC l = ω2m(b− 4a′).

** B-2-1-1-2-1- If ω is prime, it is different of 2, then ω|(BnC l) =⇒ ω|Bn or
ω|C l.

** B-2-1-1-2-1-1- If ω|Bn =⇒ ω|B =⇒ B = ωjB1 with ω - B1, then
Bn

1 .C
l = ω2m−nj(b− 4a′).

** B-2-1-1-2-1-1-1- If 2m − n.j = 0, we obtain Bn
1 .C

l = b − 4a′. As
C l = Am + Bn =⇒ ω|C l =⇒ ω|C, and ω|(b − 4a′). But ω 6= 2 and ω is
coprime with a′ then coprime with a, then ω - b. The conjecture (3.1) is
verified.

** B-2-1-1-2-1-1-2- If 2m − nj ≥ 1, in this case with the same method, we
obtain ω|C l =⇒ ω|C and ω|(b− 4a′) and ω - a and ω - b. The conjecture (3.1)
is verified.

** B-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C

l = b − 4a′. As ω|C
using C l = Am + Bn then C = ωh.C1 =⇒ ωn.j−2m+h.lBn

1 .C
l
1 = b − 4a′. If

n.j − 2m + h.l < 0 =⇒ ω|Bn
1C

l
1, it follows the contradiction that ω - B1 or

ω - C1. Then if n.j − 2m + h.l > 0 and ω|(b − 4a′) with ω, a, b coprime and
the conjecture (3.1) is verified.
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** B-2-1-1-2-1-2- We obtain the same results if ω|C l.

** B-2-1-1-2-2- Now, p′ = ω2m and ω not prime, we write ω = ωf1 .Ω with ω1
prime - Ω and f ≥ 1 an integer, and ω1|A. ThenBnC l = ω2f.m

1 Ω2m(b−4a′) =⇒
ω1|(BnC l) =⇒ ω1|Bn or ω1|C l.

** B-2-1-1-2-2-1- If ω1|Bn =⇒ ω1|B =⇒ B = ωj1B1 with ω1 - B1, then
Bn

1 .C
l = ω2mf−nj

1 Ω2m(b− 4a′):

** B-2-1-1-2-2-1-1- If 2f.m − n.j = 0, we obtain Bn
1 .C

l = Ω2m(b − 4a′). As
C l = Am + Bn =⇒ ω1|C l =⇒ ω1|C =⇒ ω1|(b − 4a′). But ω1 6= 2 and ω1 is
coprime with a′, then coprime with a, we deduce ω1 - b. Then the conjecture
(3.1) is verified.

** B-2-1-1-2-2-1-2- If 2f.m−n.j ≥ 1, we have ω1|C l =⇒ ω1|C =⇒ ω1|(b−4a′)
and ω1 - a and ω1 - b. The conjecture (3.1) is verified.

** B-2-1-1-2-2-1-3- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C
l = Ω2m(b − 4a′).

As ω1|C using C l = Am + Bn, then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C

l
1 =

Ω2m(b−4a′). If n.j−2m.f+h.l < 0 =⇒ ω1|Bn
1C

l
1, it follows the contradiction

with ω1 - B1 and ω1 - C1. Then if n.j − 2m.f + h.l > 0 and ω1|(b− 4a′) with
ω1, a, b coprime and the conjecture (3.1) is verified.

** B-2-1-1-2-2-2- We obtain the same results if ω1|C l.

** B-2-1-2- If 2|p1, then 2|p1 =⇒ 2 - a′ =⇒ 2 - a. But p′ = p2
1.

** B-2-1-2-1- If p1 = 2, we obtain Am = 4a′ =⇒ 2|a′, then the contradiction
with a, b coprime.

** B-2-1-2-2- We suppose that p1 is not prime and 2|p1, as Am = 2a′p1,
p1 is written as p1 = 2m−1ωm =⇒ p′ = 22m−2ω2m. It follows BnC l =
22m−2ω2m(b− 4a′) =⇒ 2|Bn or 2|C l.

** B-2-1-2-2-1- If 2|Bn =⇒ 2|B, as 2|A, then 2|C. From BnC l =
22m−2ω2m(b − 4a′), it follows if 2|(b − 4a′) =⇒ 2|b but as 2 - a, there is
no contradiction with a, b coprime and the conjecture (3.1) is verified.
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** B-2-1-2-2-2- If 2|C l, using the same method as above, we obtain the
identical results.

** B-2-2- p′, a are supposed not coprime. Let ω be a prime integer so that
ω|a and ω|p′.

** B-2-2-1- We suppose firstly ω = 3. As A2m = 4ap′ =⇒ 3|A, but 3|p′ =⇒ 3|p,
as p = A2m + B2n + AmBn =⇒ 3|B2n =⇒ 3|B, then 3|C l =⇒ 3|C. We write
A = 3iA1, B = 3jB1, C = 3hC1 and 3 coprime with A1, B1 and C1 and
p = 32imA2m

1 +32njB2n
1 +3im+jnAm1 B

n
1 = 3k.g with k = min(2im, 2jn, im+jn)

and 3 - g. We have also (ω = 3)|a and (ω = 3)|p′ that gives a = 3αa1 = 3a′ =⇒
a′ = 3α−1a1, 3 - a1 and p′ = 3µp1, 3 - p1 with A2m = 4a′p′ = 32imA2m

1 =
4 × 3α−1+µ.a1.p1 =⇒ α + µ − 1 = 2im. As p = bp′ = b.3µp1 = 3µ.b.p1.
The exponent of the term 3 of p is k, the exponent of the term 3 of the
left member of the last equation is µ. If 3|b it is a contradiction with a, b

coprime. Then, we suppose that 3 - b, and the equality of the exponents:
min(2im, 2jn, im + jn) = µ, recall that α + µ − 1 = 2im. But BnC l =
p′(b − 4a′) that gives 3(nj+hl)Bn

1C
l
1 = 3µp1(b − 4 × 3(α−1)a1). We have also

Am + Bn = C l gives 3imAm1 + 3jnBn
1 = 3hlC l1. Let ε = min(im, jn), we have

ε = hl = min(im, jn). Then, we obtain the conditions:

k = min(2im, 2jn, im+ jn) = µ(1.96)
α+ µ− 1 = 2im(1.97)

ε = hl = min(im, jn)(1.98)
3(nj+hl)Bn

1C
l
1 = 3µp1(b− 4× 3(α−1)a1)(1.99)

** B-2-2-1-1- α = 1 =⇒ a = 3a1 = 3a′ and 3 - a1, the equation (1.97) becomes:

µ = 2im

and the first equation (1.96) is written as:

k = min(2im, 2jn, im+ jn) = 2im

- If k = 2im, then 2im ≤ 2jn =⇒ im ≤ jn =⇒ hl = im, and (1.99) gives
µ = 2im = nj+ hl = im+nj =⇒ im = jn = hl. Hence 3|A, 3|B and 3|C and
the conjecture (3.1) is verified.
- If k = 2jn =⇒ 2jn = 2im =⇒ im = jn = hl. Hence 3|A, 3|B and 3|C and
the conjecture (3.1) is verified.
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- If k = im + jn = 2im =⇒ im = jn =⇒ ε = hl = im = jn case that is seen
above and we deduce that 3|A, 3|B and 3|C, and the conjecture (3.1) is verified.

** B-2-2-1-2- α > 1 =⇒ α ≥ 2 and a′ = 3α−1a1.
- If k = 2im =⇒ 2im = µ, but µ = 2im+ 1− α that is impossible.
- If k = 2jn = µ =⇒ 2jn = 2im + 1 − α. We obtain 2jn < 2im =⇒ jn <

im =⇒ 2jn < im + jn, k = 2jn is just the minimum of (2im, 2jn, im + jn).
We obtain jn = hl < im and the equation (1.99) becomes:

Bn
1C

l
1 = p1(b− 4× 3(α−1)a1)

The conjecture (3.1) is verified.

- If k = im + jn ≤ 2im =⇒ jn ≤ im and k = im + jn ≤ 2jn =⇒ im ≤
jn =⇒ im = jn =⇒ k = im + jn = 2im = µ but µ = 2im + 1 − α that is
impossible.

- If k = im + jn < 2im =⇒ jn < im and 2jn < im + jn = k that is a
contradiction with k = min(2im, 2jn, im+ jn).

** B-2-2-2- We suppose that ω 6= 3. We write a = ωαa1 with ω - a1 and
p′ = ωµp1 with ω - p1. As A2m = 4ap′ = 4ωα+µ.a1.p1 =⇒ ω|A =⇒ A = ωiA1,
ω - A1. But BnC l = p′(b−4a′) = ωµp1(b−4a′) =⇒ ω|BnC l =⇒ ω|Bn or ω|C l.

** B-2-2-2-1- ω|Bn =⇒ ω|B =⇒ B = ωjB1 and ω - B1. From Am + Bn =
C l =⇒ ω|C l =⇒ ω|C. As p = bp′ = ωµbp1 = ωk(ω2im−kA2m

1 + ω2jn−kB2n
1 +

ωim+jn−kAm1 B
n
1 ) with k = min(2im, 2jn, im+ jn). Then :

- If µ = k, then ω - b and the conjecture (3.1) is verified.
- If k > µ, then ω|b, but ω|a we deduce the contradiction with a, b coprime.
- If k < µ, it follows from :

ωµbp1 = ωk(ω2im−kA2m
1 + ω2jn−kB2n

1 + ωim+jn−kAm1 B
n
1 )

that ω|A1 or ω|B1 that is a contradiction with the hypothesis.

** B-2-2-2-2- If ω|C l =⇒ ω|C =⇒ C = ωhC1 with ω - C1. From Am + Bn =
C l =⇒ ω|(C l −Am) =⇒ ω|B. Then, we obtain the same results as B-2-2-2-1-
above.

1.4.5. Case b = 2p and 3|a : — We have :

cos2 θ

3 = a

b
= 3a′

2p =⇒ A2m = 4p.a
3b = 4p

3 .
3a′

2p = 2a′ = (Am)2 =⇒ 2|a′ =⇒ 2|a
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Then 2|a and 2|b that is a contradiction with a, b coprime.

1.4.6. Case b = 4p and 3|a : — We have :

cos2 θ

3 = a

b
= 3a′

4p =⇒ A2m = 4p.a
3b = 4p

3 .
3a′

4p = a′ = (Am)2 = a”2

with Am = a”

Let us calculate AmBn, we obtain:

AmBn = p
√

3
3 .sin

2θ
3 −

2p
3 cos

2 θ

3 = p
√

3
3 .sin

2θ
3 −

a′

2 =⇒

AmBn + A2m

2 = p
√

3
3 .sin

2θ
3

Let:

(1.100) A2m + 2AmBn = 2p
√

3
3 sin

2θ
3

The left member of (1.100) is an integer and p is an integer, then 2
√

3
3 sin

2θ
3

will be written as :
2
√

3
3 sin

2θ
3 = k1

k2

where k1, k2 are two integers coprime and k2|p =⇒ p = k2.k3.

** C-1- Firstly, we suppose that k3 6= 1. Then :

A2m + 2AmBn = k3.k1

Let µ be a prime integer and µ|k3, then µ|Am(Am + 2Bn) =⇒ µ|Am or
µ|(Am + 2Bn).

** C-1-1- If µ|(Am = a”) =⇒ µ|(a”2 = a′) =⇒ µ|(3a′ = a). As
µ|k3 =⇒ µ|p =⇒ µ|(4p = b), then the contradiction with a, b coprime.

** C-1-2- If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn, then:

(1.101) µ 6= 2 and µ - Bn

µ|(Am + 2Bn), we write:
Am + 2Bn = µ.t′
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Then:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

=⇒ p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am)

As b = 4p = 4k2.k3 and µ|k3 then µ|b =⇒ ∃µ′ so that b = µ.µ′, we obtain:

µ′.µ = µ(4µt′2 − 8t′Bn) + 4Bn(Bn −Am)

The last equation implies µ|4Bn(Bn − Am), but µ 6= 2 then µ|Bn or
µ|(Bn −Am).

** C-1-1-1- If µ|Bn =⇒ then the contradiction with (1.101).

** C-1-1-2- If µ|(Bn −Am) and using µ|(Am + 2Bn), we have :

µ|3Bn =⇒


µ|Bn

or

µ = 3

** C-1-1-2-1- If µ|Bn then the contradiction with (1.101).

** C-1-1-2-2- If µ = 3, then 3|b, but 3|a then the contradiction with a, b

coprime.

** C-2- We assume now that k3 = 1, then:

A2m + 2AmBn = k1(1.102)
p = k2

2
√

3
3 sin

2θ
3 = k1

p

We take the square of the last equation, we obtain :
4
3sin

2 2θ
3 = k2

1
p2

16
3 sin

2 θ

3cos
2 θ

3 = k2
1
p2

16
3 sin

2 θ

3 .
3a′

b
= k2

1
p2

Finally:

(1.103) a′(4p− 3a′) = k2
1
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but a′ = a”2, then 4p− 3a′ is a square. Let :

λ2 = 4p− 3a′ = 4p− a = b− a

The equation (1.103) becomes :

(1.104) a”2λ2 = k2
1 =⇒ k1 = a”λ

taking the positive root. Using (1.102), we have:

k1 = Am(Am + 2Bn) = a”(Am + 2Bn)

Then :

Am + 2Bn = λ

Now, we consider that b − a = λ2 =⇒ λ2 + 3a”2 = b, then the couple (λ, a”)
is a solution of the Diophantine equation:

(1.105) X2 + 3Y 2 = b

with X = λ and Y = a”. But using one theorem on the solutions of the
equation given by (1.105), b is written under the form (see theorem 37.4 in
[1]):

b = 22s × 3t.pt11 · · · ptgg q
2s1
1 · · · q2sr

r

where pi are prime integers so that pi ≡ 1(mod6), the qj are also prime
integers so that qj ≡ 5(mod 6). Then, as b = 4p :

- If t ≥ 1 =⇒ 3|b, but 3|a, then the contradiction with a, b coprime.

** C-2-2-1- Hence, we suppose that p is written under the form:

p = pt11 · · · p
tg
g q

2s1
1 · · · q2sr

r

with pi ≡ 1(mod6) and qj ≡ 5(mod6). Finally, we obtain that p ≡
1(mod 6). We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A2m +AmBn +B2n in
function of the values of Am, Bn(mod 6). We obtain the table below:
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Am , Bn 0 1 2 3 4 5
0 0 1 4 3 4 1
1 1 3 1 1 3 1
2 4 1 0 1 4 3
3 3 1 1 3 1 1
4 4 3 4 1 0 1
5 1 1 3 1 1 3

Table 1. Table of p (mod 6)

** C-2-2-1-1- Case Am ≡ 0(mod 6) =⇒ 2|(Am = a”) =⇒ 2|(a′ = a”2) =⇒
2|a, but 2|b, then the contradiction with a, b coprime. All the cases of the
first line of the table 1 are to reject.

** C-2-2-1-2- Case Am ≡ 1(mod 6) and Bn ≡ 0(mod 6), then 2|Bn =⇒ Bn =
2B′ and p is written as p = (Am + B′)2 + 3B′2 with (p, 3) = 1, if not 3|p,
then 3|b, but 3|a, then the contradiction with a, b coprime. Hence, the pair
(Am +B′, B′) is solution of the Diophantine equation:

(1.106) x2 + 3y2 = p

The solution x = Am +B′, y = B′ is unique because x− y verify x− y = Am.
If (u, v) another pair solution of (1.106), with u, v ∈ N∗, then we obtain:

u2 + 3v2 = p

u− v = Am

Then u = v+Am and we obtain the equation of second degree 4v2 + 2vAm −
2B′(Am+2B′) = 0 that gives as positive root v1 = B′ = y, then u = Am+B′ =
x. It follows that p in (1.106) has an unique representation under the form
X2 +3Y 2 with X, 3Y coprime. As p is an odd integer number, we applique one
of Euler’s theorems on convenient numbers "numerus idoneus" (see [2],[3]) :
Let m be an odd number relatively prime to n which is properly represented by
x2+ny2. If the equation m = x2+ny2 has only one solution with x, y > 0, then
m is a prime number. Then p is prime and 4p has an unique representation
(we put U = 2u, V = 2v, with U2 + 3V 2 = 4p and U − V = 2Am). But
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b = 4p =⇒ λ2 + 3a”2 = (2(Am + B′))2 + 3(2B′)2, the representation of 4p is
unique gives:

λ = 2(Am +B′) = 2a” +Bn = 2a” +Bn

and a” = 2B′ = Bn = Am

But Am > Bn, then the contradiction.

** C-2-2-1-3- Case Am ≡ 1(mod 6) and Bn ≡ 2(mod 6), then Bn is even, see
C-2-2-1-2-.

** C-2-2-1-4- Case Am ≡ 1(mod 6) and Bn ≡ 3(mod 6), then 3|Bn =⇒ Bn =
3B′. We can write b = 4p = (2Am + 3B′)2 + 3(3B′)2 = λ2 + 3a”2. The unique
representation of b as x2 + 3y2 = λ2 + 3a”2 =⇒ a” = Am = 3B′ = Bn, then
the contradiction with Am > Bn.

** C-2-2-1-5- Case Am ≡ 1(mod6) and Bn ≡ 5(mod6), then C l ≡
0(mod 6) =⇒ 2|C l, see C-2-2-1-2-.

** C-2-2-1-6- Case Am ≡ 2(mod6) =⇒ 2|a” =⇒ 2|a, but 2|b, then the
contradiction with a, b coprime.

** C-2-2-1-7- Case Am ≡ 3(mod6) and Bn ≡ 1(mod6), then C l ≡
4(mod 6) =⇒ 2|C l =⇒ C l = 2C ′, we can write that p = (C ′ − Bn)2 + 3C ′2,
see C-2-2-1-2-.

** C-2-2-1-8- Case Am ≡ 3(mod 6) and Bn ≡ 2(mod 6), then Bn is even, see
C-2-2-1-2-.

** C-2-2-1-9- Case Am ≡ 3(mod 6) and Bn ≡ 4(mod 6), then Bn is even, see
C-2-2-1-2-.

** C-2-2-1-10- Case Am ≡ 3(mod6) and Bn ≡ 5(mod6), then C l ≡
2(mod 6) =⇒ 2|C l, see C-2-2-1-2-.

** C-2-2-1-11- Case Am ≡ 4(mod6) =⇒ 2|a” =⇒ 2|a, but 2|b, then the
contradiction with a, b coprime.
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** C-2-2-1-12- Case Am ≡ 5(mod 6) and Bn ≡ 0(mod 6), then Bn is even,
see C-2-2-1-2-.

** C-2-2-1-13- Case Am ≡ 5(mod6) and Bn ≡ 1(mod6), then C l ≡
0(mod 6) =⇒ 2|C l, see C-2-2-1-2-.

** C-2-2-1-14- Case Am ≡ 5(mod6) and Bn ≡ 3(mod6), then C l ≡
2(mod 6) =⇒ 2|C l =⇒ C l = 2C ′, p is written as p = (C ′ − Bn)2 + 3C ′2, see
C-2-2-1-2-.

** C-2-2-1-15- Case Am ≡ 5(mod 6) and Bn ≡ 4(mod 6), then Bn is even,
see C-2-2-1-2-.

We have achieved the study all the cases of the table 1 giving contradictions.

Then the case k3 = 1 is impossible.

1.4.7. Case 3|a and b = 2p′ b 6= 2 with p′|p : — 3|a =⇒ a = 3a′, b = 2p′
with p = k.p′, then:

A2m = 4.p
3 .

a

b
= 4.k.p′.3.a′

6p′ = 2.k.a′

We calculate BnC l:

BnC l = 3
√
ρ2
(

3sin2 θ

3 − cos
2 θ

3

)
= 3
√
ρ2
(

3− 4cos2 θ

3

)

but 3
√
ρ2 = p

3, then using cos2 θ

3 = 3.a′

b
:

BnC l = 3
√
ρ2
(

3− 4cos2 θ

3

)
= p

3

(
3− 43.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − 2a′)

As p = b.p′, and p′ > 1, then we have:

BnC l = k(p′ − 2a′)(1.107)
and A2m = 2k.a′(1.108)

** D-1- We suppose that k is prime.

** D-1-1- If k = 2, then we have p = 2p′ = b =⇒ 2|b, but A2m = 4a′ =
(Am)2 =⇒ Am = 2a” with a′ = a”2, then 2|a” =⇒ 2|(a = 3a”2), it follows the
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contradiction with a, b coprime.

** D-1-2- We suppose k 6= 2. From A2m = 2k.a′ = (Am)2 =⇒ k|a′ and
2|a′ =⇒ a′ = 2.k.a”2 =⇒ Am = 2.k.a”. Then k|Am =⇒ k|A =⇒ A = ki.A1
with i ≥ 1 and k - A1. kimAm1 = 2ka” =⇒ 2a” = kim−1Am1 . From
BnC l = k(p′ − 2a′) =⇒ k|(BnC l) =⇒ k|Bn or k|C l.

** D-1-2-1- We suppose that k|Bn =⇒ k|B =⇒ B = kj .B1 with j ≥ 1 and
k - B1. It follows knj−1Bn

1C
l = p′−2a′ = p′−4ka”2. As n ≥ 3 =⇒ nj−1 ≥ 2,

then k|p′ but k 6= 2 =⇒ k|(2p′ = b), but k|a′ =⇒ k|(3a′ = a). It follows the
contradiction with a, b coprime.

** D-1-2-2- If k|C l we obtain the identical results.

** D-2- We suppose that k is not prime. Let ω be an integer prime so that
k = ωs.k1, with s ≥ 1, ω - k1. The equations (1.107-1.108) become:

BnC l = ωs.k1(p′ − 2a′)
and A2m = 2ωs.k1.a

′

** D-2-1- We suppose that ω = 2, then we have the equations:

A2m = 2s+1.k1.a
′(1.109)

BnC l = 2s.k1(p′ − 2a′)(1.110)

** D-2-1-1- Case: 2|a′ =⇒ 2|a, but 2|b, then the contradiction with a, b

coprime.

** D-2-1-2- Case: 2 - a′. As 2 - k1, the equation (1.109) gives 2|A2m =⇒ A =
2iA1, with i ≥ 1 and 2 - A1. It follows that 2im = s+ 1.

** D-2-1-2-1- We suppose that 2 - (p′ − 2a′) =⇒ 2 - p′. From the equation
(1.110), we obtain that 2|BnC l =⇒ 2|Bn or 2|C l.

** D-2-1-2-1-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2jB1 with 2 - B1 and
j ≥ 1, then Bn

1C
l = 2s−jnk1(p′ − 2a′):

- If s−jn ≥ 1, then 2|C l =⇒ 2|C, and no contradiction with C l = 2imAm1 +
2jnBn

1 , and the conjecture (3.1) is verified.
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- If s − jn ≤ 0, from Bn
1C

l = 2s−jnk1(p′ − 2a′) =⇒ 2 - C l, then the
contradiction with C l = 2imAm1 + 2jnBn

1 =⇒ 2|C l.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the
identical results if 2|C l.

** D-2-1-2-2- We suppose now that 2|(p′−2a′) =⇒ p′−2a′ = 2µ.Ω, with µ ≥ 1
and 2 - Ω. We recall that 2 - a′. The equation (1.110) is written as:

BnC l = 2s+µ.k1.Ω

This last equation implies that 2|(BnC l) =⇒ 2|Bn or 2|C l.

** D-2-1-2-2-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2jB1 with j ≥ 1 and
2 - B1. Then Bn

1C
l = 2s+µ−jn.k1.Ω:

- If s+µ− jn ≥ 1, then 2|C l =⇒ 2|C, no contradiction with C l = 2imAm1 +
2jnBn

1 , and the conjecture (3.1) is verified.
- If s+µ−jn ≤ 0, from Bn

1C
l = 2s+µ−jnk1.Ω =⇒ 2 - C l, then contradiction

with C l = 2imAm1 + 2jnBn
1 =⇒ 2|C l.

** D-2-1-2-2-2- We obtain the identical results if 2|C l.

** D-2-2- We suppose that ω 6= 2. We have then the equations:

A2m = 2ωs.k1.a
′(1.111)

BnC l = ωs.k1.(p′ − 2a′)(1.112)

As ω 6= 2, from the equation (1.111), we have 2|(k1.a
′). If 2|a′ =⇒ 2|a, but

2|b, then the contradiction with a, b coprime.

** D-2-2-1- Case: 2 - a′ and 2|k1 =⇒ k1 = 2µ.Ω with µ ≥ 1 and 2 - Ω. From
the equation (1.111), we have 2|A2m =⇒ 2|A =⇒ A = 2iA1 with i ≥ 1 and
2 - A1, then 2im = 1 + µ. The equation (1.112) becomes:

(1.113) BnC l = ωs.2µ.Ω.(p′ − 2a′)

From the equation (1.113), we obtain 2|(BnC l) =⇒ 2|Bn or 2|C l.

** D-2-2-1-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2jB1, with j ∈ N∗ and
2 - B1.
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** D-2-2-1-1-1- We suppose that 2 - (p′ − 2a′), then we have Bn
1C

l =
ωs2µ−jnΩ(p′ − 2a′):

- If µ−jn ≥ 1 =⇒ 2|C l =⇒ 2|C, no contradiction with C l = 2imAm1 +2jnBn
1

and the conjecture (3.1) is verified.
- If µ− jn ≤ 0 =⇒ 2 - C l then the contradiction with C l = 2imAm1 + 2jnBn

1 .

** D-2-2-1-1-2- We suppose that 2|(p′− 2a′) =⇒ p′− 2a′ = 2α.P , with α ∈ N∗
and 2 - P . It follows that Bn

1C
l = ωs2µ+α−jnΩ.P :

- If µ+ α− jn ≥ 1 =⇒ 2|C l =⇒ 2|C, no contradiction with C l = 2imAm1 +
2jnBn

1 and the conjecture (3.1) is verified.
- If µ + α − jn ≤ 0 =⇒ 2 - C l then the contradiction with C l =

2imAm1 + 2jnBn
1 .

** D-2-2-1-2- We suppose now that 2|Cn =⇒ 2|C. Using the same method
described above, we obtain the identical results.

1.4.8. Case 3|a and b = 4p′ b 6= 2 with p′|p : — 3|a =⇒ a = 3a′, b = 4p′
with p = k.p′, k 6= 1 if not b = 4p this case has been studied (see paragraph
1.4.6), then we have :

A2m = 4.p
3 .

a

b
= 4.k.p′.3.a′

12p′ = k.a′

We calculate BnC l:

BnC l = 3
√
ρ2
(

3sin2 θ

3 − cos
2 θ

3

)
= 3
√
ρ2
(

3− 4cos2 θ

3

)

but 3
√
ρ2 = p

3, then using cos2 θ

3 = 3.a′

b
:

BnC l = 3
√
ρ2
(

3− 4cos2 θ

3

)
= p

3

(
3− 43.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − a′)

As p = b.p′, and p′ > 1, we have :

BnC l = k(p′ − a′)(1.114)
and A2m = k.a′(1.115)

** E-1- We suppose that k is prime. From A2m = k.a′ = (Am)2 =⇒ k|a′
and a′ = k.a”2 =⇒ Am = k.a”. Then k|Am =⇒ k|A =⇒ A = ki.A1
with i ≥ 1 and k - A1. kmiAm1 = ka” =⇒ a” = kmi−1Am1 . From
BnC l = k(p′ − a′) =⇒ k|(BnC l) =⇒ k|Bn or k|C l.
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** E-1-1- We suppose that k|Bn =⇒ k|B =⇒ B = kj .B1 with j ≥ 1 and
k - B1. Then kn.j−1Bn

1C
l = p′ − a′. As n.j − 1 ≥ 2 =⇒ k|(p′ − a′). But

k|a′ =⇒ k|a, then k|p′ =⇒ k|(4p′ = b) and we arrive to the contradiction that
a, b are coprime.

** E-1-2- We suppose that k|C l, using the same method with the above
hypothesis k|Bn, we obtain the identical results.

** E-2- We suppose that k is not prime.

** E-2-1- We take k = 4 =⇒ p = 4p′ = b, it is the case 1.4.3 studied above.

** E-2-2- We suppose that k ≥ 6 not prime. Let ω be a prime so that
k = ωs.k1, with s ≥ 1, ω - k1. The equations (1.114-1.115) become:

BnC l = ωs.k1(p′ − a′)(1.116)
and A2m = ωs.k1.a

′(1.117)

** E-2-2-1- We suppose that ω = 2.

** E-2-2-1-1- If 2|a′ =⇒ 2|(3a′ = a), but 2|(4p′ = b), then the contradiction
with a, b coprime.

** E-2-2-1-2- We consider that 2 - a′. From the equation (1.117), it follows
that 2|A2m =⇒ 2|A =⇒ A = 2iA1 with 2 - A1 and:

BnC l = 2sk1(p′ − a′)

** E-2-2-1-2-1- We suppose that 2 - (p′ − a′), from the above expression, we
have 2|(BnC l) =⇒ 2|Bn or 2|C l.

** E-2-2-1-2-1-1- If 2|Bn =⇒ 2|B =⇒ B = 2jB1 with 2 - B1. Then Bn
1C

l =
22im−jnk1(p′ − a′):

- If 2im − jn ≥ 1 =⇒ 2|C l =⇒ 2|C, no contradiction with C l = 2imAm1 +
2jnBn

1 and the conjecture (3.1) is verified.
- If 2im − jn ≤ 0 =⇒ 2 - C l, then the contradiction with C l =

2imAm1 + 2jnBn
1 =⇒ 2|C l.
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** E-2-2-1-2-1-2- If 2|C l =⇒ 2|C, using the same method described above, we
obtain the identical results.

** E-2-2-1-2-2- We suppose that 2|(p′− a′). As 2 - a′ =⇒ 2 - p′, 2|(p′− a′) =⇒
p′ − a′ = 2α.P with α ≥ 1 and 2 - P . The equation (1.116) is written as :

(1.118) BnC l = 2s+αk1.P = 22im+αk1.P

then 2|(BnC l) =⇒ 2|Bn or 2|C l.

** E-2-2-1-2-2-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2jB1, with 2 - B1.
The equation (1.118) becomes Bn

1C
l = 22im+α−jnk1P :

- If 2im + α − jn ≥ 1 =⇒ 2|C l =⇒ 2|C, no contradiction with C l =
2imAm1 + 2jnBn

1 and the conjecture (3.1) is verified.
- If 2im + α − jn ≤ 0 =⇒ 2 - C l, then the contradiction with

C l = 2imAm1 + 2jnBn
1 =⇒ 2|C l.

** E-2-2-1-2-2-2- We suppose that 2|C l =⇒ 2|C. Using the same method
described above, we obtain the identical results.

** E-2-2-2- We suppose that ω 6= 2. We recall the equations:

A2m = ωs.k1.a
′(1.119)

BnC l = ωs.k1(p′ − a′)(1.120)

** E-2-2-2-1- We suppose that ω, a′ are coprime, then ω - a′. From the
equation (1.119), we have ω|A2m =⇒ ω|A =⇒ A = ωiA1 with ω - A1 and
s = 2im.

** E-2-2-2-1-1- We suppose that ω - (p′ − a′). From the equation (1.120)
above, we have ω|(BnC l) =⇒ ω|Bn or ω|C l.

** E-2-2-2-1-1-1- If ω|Bn =⇒ ω|B =⇒ B = ωjB1 with ω - B1. Then Bn
1C

l =
22im−jnk1(p′ − a′):

- If 2im− jn ≥ 1 =⇒ ω|C l =⇒ ω|C, no contradiction with C l = ωimAm1 +
ωjnBn

1 and the conjecture (3.1) is verified.
- If 2im − jn ≤ 0 =⇒ ω - C l, then the contradiction with C l =

ωimAm1 + ωjnBn
1 =⇒ ω|C l.
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** E-2-2-2-1-1-2- If ω|C l =⇒ ω|C, using the same method described above,
we obtain the identical results.

** E-2-2-2-1-2- We suppose that ω|(p′−a′) =⇒ ω - p′ if not ω|a′, ω|(p′−a′) =⇒
p′ − a′ = ωα.P with α ≥ 1 and ω - P . The equation (1.120) becomes :

(1.121) BnC l = ωs+αk1.P = ω2im+αk1.P

then ω|(BnC l) =⇒ ω|Bn or ω|C l.

** E-2-2-2-1-2-1- We suppose that ω|Bn =⇒ ω|B =⇒ B = ωjB1, with ω - B1.
The equation (1.121) is written as Bn

1C
l = 22im+α−jnk1P :

- If 2im + α − jn ≥ 1 =⇒ ω|C l =⇒ ω|C, no contradiction with C l =
ωimAm1 + ωjnBn

1 and the conjecture (3.1) is verified.
- If 2im + α − jn ≤ 0 =⇒ ω - C l, then the contradiction with

C l = ωimAm1 + ωjnBn
1 =⇒ ω|C l.

** E-2-2-2-1-2-2- We suppose that ω|C l =⇒ ω|C, using the same method
described above, we obtain the identical results.

** E-2-2-2-2- We suppose that ω, a′ are not coprime, then a′ = ωβ.a” with
ω - a”. The equation (1.119) becomes:

A2m = ωsk1a
′ = ωs+βk1.a”

We have ω|A2m =⇒ ω|A =⇒ A = ωiA1 with ω - A1 and s+ β = 2im.

** E-2-2-2-2-1- We suppose that ω - (p′ − a′) =⇒ ω - p′ =⇒ ω - (b = 4p′).
From the equation (1.120), we obtain ω|(BnC l) =⇒ ω|Bn or ω|C l.

** E-2-2-2-2-1-1- If ω|Bn =⇒ ω|B =⇒ B = ωjB1 with ω - B1. Then Bn
1C

l =
2s−jnk1(p′ − a′):

- If s − jn ≥ 1 =⇒ ω|C l =⇒ ω|C, no contradiction with C l = ωimAm1 +
ωjnBn

1 and the conjecture (3.1) is verified.
- If s − jn ≤ 0 =⇒ ω - C l, then the contradiction with C l =

ωimAm1 + ωjnBn
1 =⇒ ω|C l.

** E-2-2-2-2-1-2- If ω|C l =⇒ ω|C, using the same method described above,
we obtain the identical results.
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** E-2-2-2-2-2- We suppose that ω|(p′−a′ = p′−ωβ.a”) =⇒ ω|p′ =⇒ ω|(4p′ =
b), but ω|a′ =⇒ ω|a. Then the contradiction with a, b coprime.

The study of the cases of 1.4.8 is achieved.

1.4.9. Case 3|a and b|4p :. — a = 3a′ and 4p = k1b. As A2m = 4p
3 cos

2 θ

3 =
4p
3

3a′

b
= k1a

′ and BnC l:

BnC l = 3
√
ρ2
(

3sin2 θ

3 − cos
2 θ

3

)
= p

3

(
3− 4cos2 θ

3

)
= p

3

(
3− 43a′

b

)
= k1

4 (b−4a′)

As BnC l is an integer, we must obtain 4|k1, or 4|(b− 4a′) or (2|k1 and 2|(b−
4a′)).
** F-1- If k1 = 1⇒ b = 4p : it is the case 1.4.6.

** F-2- If k1 = 4⇒ p = b : it is the case 1.4.3.

** F-3- If k1 = 2 and 2|(b− 4a′): in this case, we have A2m = 2a′ =⇒ 2|a′ =⇒
2|a. 2|(b− 4a′) =⇒ 2|b then the contradiction with a, b coprime.

** F-4- If 2|k1 and 2|(b−4a′): 2|(b−4a′) =⇒ b−4a′ = 2αλ, α and λ ∈ N∗ ≥ 1
with 2 - λ; 2|k1 =⇒ k1 = 2tk′1 with t ≥ 1 ∈ N∗ with 2 - k′1 and we have:

A2m = 2tk′1a′(1.122)
BnC l = 2t+α−2k′1λ(1.123)

From the equation (1.122), we have 2|A2m =⇒ 2|A =⇒ A = 2iA1, i ≥ 1 and
2 - A1.
** F-4-1- We suppose that t = α = 1, then the equations (1.122-1.123) become
:

A2m = 2k′1a′(1.124)
BnC l = k′1λ(1.125)

From the equation (1.124) it follows that 2|a′ =⇒ 2|(a = 3a′). But
b = 4a′ + 2λ =⇒ 2|b, then the contradiction with a, b coprime.

** F-4-2- We suppose that t+ α− 2 ≥ 1 and we have the expressions:

A2m = 2tk′1a′(1.126)
BnC l = 2t+α−2k′1λ(1.127)
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** F-4-2-1- We suppose that 2|a′ =⇒ 2|a, but b = 2αλ+ 4a′ =⇒ 2|b, then the
contradiction with a, b coprime.

** F-4-2-2- We suppose that 2 - a′. From (1.126), we have 2|A2m =⇒ 2|A =⇒
A = 2iA1 and BnC l = 2t+α−2k′1λ =⇒ 2|BnC l =⇒ 2|Bn or 2|C l.

** F-4-2-2-1- We suppose that 2|Bn. We have 2|B =⇒ B = 2jB1, j ≥ 1 and
2 - B1. The equation (1.127) becomes Bn

1C
l = 2t+α−2−jnk′1λ:

- If t + α − 2 − jn > 0 =⇒ 2|C l =⇒ 2|C, no contradiction with C l =
2imAm1 + 2jnBn

1 and the conjecture (3.1) is verified.
- If t + α − 2 − jn < 0 =⇒ 2|k′1λ, but 2 - k′1 and 2 - λ. Then this case is

impossible.
- If t+ α− 2− jn = 0 =⇒ Bn

1C
l = k′1λ =⇒ 2 - C l then it is a contradiction

with C l = 2imAm1 + 2jnBn
1 .

** F-4-2-2-2- We suppose that 2|C l. We use the same method described
above, we obtain the identical results.

** F-5- We suppose that 4|k1 with k1 > 4⇒ k1 = 4k′2, we have :

A2m = 4k′2a′(1.128)
BnC l = k′2(b− 4a′)(1.129)

** F-5-1- We suppose that k′2 is prime, from (1.128), we have k′2|a′. From
(1.129), k′2|(BnC l) =⇒ k′2|Bn or k′2|C l.

** F-5-1-1- We suppose that k′2|Bn =⇒ k′2|B =⇒ B = k′β2 .B1 with β ≥ 1
and k′2 - B1. It follows that we have k′nβ−1

2 Bn
1C

l = b − 4a′ =⇒ k′2|b then the
contradiction with a, b coprime.

** F-5-1-2- We obtain identical results if we suppose that k′2|C l.

** F-5-2- We suppose that k′2 is not prime.

** F-5-2-1- We suppose that k′2 and a′ are coprime. From (1.128), k′2 can
be written under the form k′2 = q2j

1 .q
2
2 and q1 - q2 and q1 prime. We have

A2m = 4q2j
1 .q

2
2a
′ =⇒ q1|A and BnC l = q2j

1 .q
2
2(b− 4a′) =⇒ q1|Bn or q1|C l.
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** F-5-2-1-1- We suppose that q1|Bn =⇒ q1|B =⇒ B = qf1 .B1 with q1 - B1.
We obtain Bn

1C
l = q2j−fn

1 q2
2(b− 4a′):

- If 2j − f.n ≥ 1 =⇒ q1|C l =⇒ q1|C but C l = Am + Bn gives also q1|C and
the conjecture (3.1) is verified.
- If 2j − f.n = 0, we have Bn

1C
l = q2

2(b− 4a′), but C l = Am +Bn gives q1|C,
then q1|(b − 4a′). As q1 and a′ are coprime, then q1 - b, and the conjecture
(3.1) is verified.
- If 2j − f.n < 0 =⇒ q1|(b− 4a′) =⇒ q1 - b because a′ is coprime with q1, and
C l = Am +Bn gives q1|C, and the conjecture (3.1) is verified.

** F-5-2-1-2- We obtain identical results if we suppose that q1|C l.

** F-5-2-2- We suppose that k′2, a′ are not coprime. Let q1 be a prime so
that q1|k′2 and q1|a′. We write k′2 under the form qj1.q2 with j ≥ 1, q1 - q2.
From A2m = 4k′2a′ =⇒ q1|A2m =⇒ q1|A. Then from BnC l = qj1q2(b− 4a′), it
follows that q1|(BnC l) =⇒ q1|Bn or q1|C l.

** F-5-2-2-1- We suppose that q1|Bn =⇒ q1|B =⇒ B = qβ1 .B1 with β ≥ 1 and
q1 - B1. Then, we have qnβ1 Bn

1C
l = qj1q2(b− 4a′) =⇒ Bn

1C
l = qj−nβ1 q2(b− 4a′).

- If j − nβ ≥ 1, then q1|C l =⇒ q1|C, but C l = Am + Bn gives q1|C, then the
conjecture (3.1) is verified.
- If j − nβ = 0, we obtain Bn

1C
l = q2(b− 4a′), but C l = Am +Bn gives q1|C,

then q1|(b − 4a′) =⇒ q1|b because q1|a′ =⇒ q1|a, then the contradiction with
a, b coprime.
- If j − nβ < 0 =⇒ q1|(b − 4a′) =⇒ q1|b, because q1|a′ =⇒ q1|a, then the
contradiction with a, b coprime.

** F-5-2-2-2- We obtain identical results if we suppose that q1|C l.

** F-6- If 4 - (b−4a′) and 4 - k1 it is impossible. We suppose that 4|(b−4a′)⇒
4|b, and b− 4a′ = 4t.g , t ≥ 1 with 4 - g, then we have :

A2m = k1a
′

BnC l = k1.4t−1.g

** F-6-1- We suppose that k1 is prime. From A2m = k1a
′ we deduce easily

that k1|a′. From BnC l = k1.4t−1.g we obtain that k1|(BnC l) =⇒ k1|Bn or
k1|C l.
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** F-6-1-1- We suppose that k1|Bn =⇒ k1|B =⇒ B = kj1.B1 with j > 0 and
k1 - B1, then kn.j1 Bn

1C
l = k1.4t−1.g =⇒ kn.j−1

1 Bn
1C

l = 4t−1.g. But n ≥ 3 and
j ≥ 1, then n.j − 1 ≥ 2. We deduce as k1 6= 2 that k1|g =⇒ k1|(b− 4a′), but
k1|a′ =⇒ k1|b, then the contradiction with a, b coprime.

** F-6-1-2- We obtain identical results if we suppose that k1|C l.

** F-6-2- We suppose that k1 is not prime 6= 4, (k1 = 4 see case F-2, above)
with 4 - k1.

** F-6-2-1- If k1 = 2k′ with k′ odd > 1. Then A2m = 2k′a′ =⇒ 2|a′ =⇒ 2|a,
as 4|b it follows the contradiction with a, b coprime.

** F-6-2-2- We suppose that k1 is odd with k1 and a′ coprime. We
write k1 under the form k1 = qj1.q2 with q1 - q2, q1 prime and j ≥ 1.
BnC l = qj1.q24t−1g =⇒ q1|Bn or q1|C l.

** F-6-2-2-1- We suppose that q1|Bn =⇒ q1|B =⇒ B = qf1 .B1 with q1 - B1.
We obtain Bn

1C
l = qj−f.n1 q24t−1g.

- If j − f.n ≥ 1 =⇒ q1|C l =⇒ q1|C, but C l = Am + Bn gives also q1|C and
the conjecture (3.1) is verified.
- If j − f.n = 0, we have Bn

1C
l = q24t−1g, but C l = Am +Bn gives q1|C, then

q1|(b − 4a′). As q1 and a′ are coprime then q1 - b and the conjecture (3.1) is
verified.
- If j − f.n < 0 =⇒ q1|(b − 4a′) =⇒ q1 - b because q1, a

′ are primes.
C l = Am +Bn gives q1|C and the conjecture (3.1) is verified.

** F-6-2-2-2- We obtain identical results if we suppose that q1|C l.

** F-6-2-3- We suppose that k1 and a′ are not coprime. Let q1 be a prime
so that q1|k1 and q1|a′. We write k1 under the form qj1.q2 with q1 - q2. From
A2m = k1a

′ =⇒ q1|A2m =⇒ q1|A. From BnC l = qj1q2(b− 4a′), it follows that
q1|(BnC l) =⇒ q1|Bn or q1|C l.

** F-6-2-3-1- We suppose that q1|Bn =⇒ q1|B =⇒ B = qβ1 .B1 with β ≥ 1 and
q1 - B1. Then we have qnβ1 Bn

1C
l = qj1q2(b− 4a′) =⇒ Bn

1C
l = qj−nβ1 q2(b− 4a′):

- If j−nβ ≥ 1, then q1|C l =⇒ q1|C, but C l = Am +Bn gives q1|C, and the
conjecture (3.1) is verified.
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- If j − nβ = 0, we obtain Bn
1C

l = q2(b − 4a′), but q1|A and q1|B then
q1|C and we obtain q1|(b − 4a′) =⇒ q1|b because q1|a′ =⇒ q1|a, then the
contradiction with a, b coprime.

- If j − nβ < 0 =⇒ q1|(b − 4a′) =⇒ q1|b, then the contradiction with a, b

coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that q1|C l.

1.5. Hypothèse: {3|p and b|4p}

1.5.1. Case b = 2 and 3|p : — 3|p ⇒ p = 3p′ with p′ 6= 1 because 3 � p,
and b = 2, we obtain:

A2m = 4p.a
3b = 4.3p′.a

3b = 4.p′.a
2 = 2.p′.a

As:
1
4 < cos2 θ

3 = a

b
= a

2 <
3
4 ⇒ 1 < 2a < 3⇒ a = 1 =⇒ cos2 θ

3 = 1
2

but this case was studied (see case 1.3.1.2).

1.5.2. Case b = 4 and 3|p : — we have 3|p =⇒ p = 3p′ with p′ ∈ N∗, it
follows :

A2m = 4p.a
3b = 4.3p′.a

3× 4 = p′.a

and:
1
4 < cos2 θ

3 = a

b
= a

4 <
3
4 ⇒ 1 < a < 3⇒ a = 2

as a, b are coprime, then the case b = 4 and 3|p is impossible.

1.5.3. Case: b 6= 2, b 6= 4, b 6= 3, b|p and 3|p : — As 3|p, then p = 3p′ and :

A2m = 4p
3 cos

2 θ

3 = 4p
3
a

b
= 4× 3p′

3
a

b
= 4p′a

b

We consider the case: b|p′ =⇒ p′ = bp” and p” 6= 1 (If p” = 1, then p = 3b,
see paragraph 1.5.8 Case k′ = 1). Finally, we obtain:

A2m = 4bp”a
b

= 4ap” ; BnC l = p”.(3b− 4a)

** G-1- We suppose that p” est prime, then A2m = 4ap” = (Am)2 =⇒ p”|a.
But BnC l = p”(3b− 4a) =⇒ p”|Bn or p”|C l.
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** G-1-1- If p”|Bn =⇒ p”|B =⇒ B = p”B1 with B1 ∈ N∗. Then
p”n−1Bn

1C
l = 3b − 4a. As n > 2, then (n − 1) > 1 and p”|a, then

p”|3b =⇒ p” = 3 or p”|b.

** G-1-1-1- If p” = 3 =⇒ 3|a, with a that we write as a = 3a′2, but
Am = 6a′ =⇒ 3|Am =⇒ 3|A =⇒ A = 3A1, then 3m−1Am1 = 2a′ =⇒ 3|a′ =⇒
a′ = 3a”. As p”n−1Bn

1C
l = 3n−1Bn

1C
l = 3b − 4a =⇒ 3n−2Bn

1C
l = b − 36a”2.

As n > 2 =⇒ n− 2 ≥ 1, then 3|b and the contradiction with a, b coprime.

** G-1-1-2- We suppose that p”|b, as p”|a, then the contradiction with a, b

coprime.

** G-1-2- If we suppose p”|C l, we obtain identical results (contradictions).

** G-2- We consider now that p” is not prime.

** G-2-1- p”, a coprime: A2m = 4ap” =⇒ Am = 2a′.p1 with a = a′2 and
p” = p2

1, then a′, p1 are also coprime. As Am = 2a′.p1, then 2|a′ or 2|p1.

** G-2-1-1- We suppose that 2|a′, then 2|a′ =⇒ 2 - p1, but p” = p2
1.

** G-2-1-1-1- If p1 est prime, it is impossible with Am = 2a′.p1.

** G-2-1-1-2- We suppose that p1 is not prime so we can write p1 = ωm =⇒
p” = ω2m. Then BnC l = ω2m(3b− 4a).

** G-2-1-1-2-1- If ω est prime, ω 6= 2, then ω|(BnC l) =⇒ ω|Bn or ω|C l.

** G-2-1-1-2-1-1- If ω|Bn =⇒ ω|B =⇒ B = ωjB1 with ω - B1, then
Bn

1 .C
l = ω2m−nj(3b− 4a).

** G-2-1-1-2-1-1-1- If 2m − n.j = 0, we obtain Bn
1 .C

l = 3b − 4a. As
C l = Am + Bn =⇒ ω|C l =⇒ ω|C, and ω|(3b − 4a). But ω 6= 2 and ω, a′ are
coprime, then ω, a are coprime, it follows ω - (3b), then ω 6= 3 and ω - b, the
conjecture (3.1) is verified.

** G-2-1-1-2-1-1-2- If 2m − nj ≥ 1, using the method as above, we obtain
ω|C l =⇒ ω|C and ω|(3b − 4a) and ω - a and ω 6= 3 and ω - b, then the



1.5. HYPOTHÈSE: {3|p and b|4p} 44

conjecture (3.1) is verified.

** G-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C

l = 3b − 4a. From
Am + Bn = C l =⇒ ω|C l =⇒ ω|C, then C = ωh.C1, with ω - C1, we obtain
ωn.j−2m+h.lBn

1 .C
l
1 = 3b − 4a. If n.j − 2m + h.l < 0 =⇒ ω|Bn

1C
l
1 then the

contradiction with ω - B1 or ω - C1. It follows n.j − 2m + h.l > 0 and
ω|(3b− 4a) with ω, a, b coprime and the conjecture is verified.

** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if
ω|C l.

** G-2-1-1-2-2- We suppose that p” = ω2m and ω is not prime. We
write ω = ωf1 .Ω with ω1 prime - Ω, f ≥ 1, and ω1|A. Then BnC l =
ω2f.m

1 Ω2m(3b− 4a) =⇒ ω1|(BnC l) =⇒ ω1|Bn or ω1|C l.

** G-2-1-1-2-2-1- If ω1|Bn =⇒ ω1|B =⇒ B = ωj1B1 with ω1 - B1, then
Bn

1 .C
l = ω2.m−nj

1 Ω2m(3b− 4a):

** G-2-1-1-2-2-1-1- If 2f.m − n.j = 0, we obtain Bn
1 .C

l = Ω2m(3b − 4a). As
C l = Am + Bn =⇒ ω1|C l =⇒ ω1|C, and ω1|(3b − 4a). But ω1 6= 2 and ω1, a

′

are coprime, then ω, a are coprime, it follows ω1 - (3b), then ω1 6= 3 and ω1 - b,
and the conjecture (3.1) is verified.

** G-2-1-1-2-2-1-2- If 2f.m−n.j ≥ 1, we have ω1|C l =⇒ ω1|C and ω1|(3b−4a)
and ω1 - a and ω1 6= 3 and ω1 - b, it follows that the conjecture (3.1) is verified.

** G-2-1-1-2-2-1-3- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C
l = Ω2m(3b − 4a).

As ω1|C using C l = Am + Bn, then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C

l
1 =

Ω2m(3b − 4a). If n.j − 2m.f + h.l < 0 =⇒ ω1|Bn
1C

l
1, then the contradiction

with ω1 - B1 and ω1 - C1. Then if n.j − 2m.f + h.l > 0 and ω1|(3b− 4a) with
ω1, a, b coprime and the conjecture (3.1) is verified.

** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if
ω1|C l.

** G-2-1-2- We suppose that 2|p1: then 2|p1 =⇒ 2 - a′ =⇒ 2 - a, but p” = p2
1.
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** G-2-1-2-1- We suppose that p1 = 2, we obtain Am = 4a′ =⇒ 2|a′, then the
contradiction with a, b coprime.

** G-2-1-2-2- We suppose that p1 is not prime and 2|p1. As Am = 2a′p1,
p1 can written as p1 = 2m−1ωm =⇒ p” = 22m−2ω2m. Then BnC l =
22m−2ω2m(3b− 4a) =⇒ 2|Bn or 2|C l.

** G-2-1-2-2-1- We suppose that 2|Bn =⇒ 2|B. As 2|A, then 2|C. From
BnC l = 22m−2ω2m(3b − 4a) it follows that if 2|(3b − 4a) =⇒ 2|b but as 2 - a
there is no contradiction with a, b coprime and the conjecture (3.1) is verified.

** G-2-1-2-2-2- We suppose that 2|C l, using the same method above, we
obtain identical results.

** G-2-2- We suppose that p”, a are not coprime: let ω be an integer prime
so that ω|a and ω|p”.

** G-2-2-1- We suppose that ω = 3. As A2m = 4ap” =⇒ 3|A, or 3|p, As
p = A2m + B2n + AmBn =⇒ 3|B2n =⇒ 3|B, then 3|C l =⇒ 3|C. We write
A = 3iA1, B = 3jB1, C = 3hC1 with 3 coprime with A1, B1 and C1 and
p = 32imA2m

1 +32njB2n
1 +3im+jnAm1 B

n
1 = 3k.g with k = min(2im, 2jn, im+jn)

and 3 - g. We have also (ω = 3)|a and (ω = 3)|p” that gives a = 3αa1, 3 - a1
and p” = 3µp1, 3 - p1 with A2m = 4ap” = 32imA2m

1 = 4 × 3α+µ.a1.p1 =⇒
α + µ = 2im. As p = 3p′ = 3b.p” = 3b.3µp1 = 3µ+1.b.p1, the exponent of the
factor 3 of p is k, the exponent of the factor 3 of the left member of the last
equation is µ+ 1 added of the exponent β of 3 of the term b, with β ≥ 0, let
min(2im, 2jn, im + jn) = µ + 1 + β and we recall that α + µ = 2im. But
BnC l = p”(3b − 4a), we obtain 3(nj+hl)Bn

1C
l
1 = 3µ+1p1(b − 4 × 3(α−1)a1) =

3µ+1p1(3βb1− 4× 3(α−1)a1), 3 - b1. We have also Am +Bn = C l =⇒ 3imAm1 +
3jnBn

1 = 3hlC l1. We call ε = min(im, jn), we have ε = hl = min(im, jn). We
obtain the conditions:

k = min(2im, 2jn, im+ jn) = µ+ 1 + β(1.130)
α+ µ = 2im(1.131)

ε = hl = min(im, jn)
3(nj+hl)Bn

1C
l
1 = 3µ+1p1(3βb1 − 4× 3(α−1)a1)
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** G-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 - a1, the equation (1.131) becomes:

1 + µ = 2im

and the first equation (1.130) is written as:

k = min(2im, 2jn, im+ jn) = 2im+ β

- If k = 2im =⇒ β = 0 then 3 - b. We obtain 2im ≤ 2jn =⇒ im ≤ jn, and
2im ≤ im + jn =⇒ im ≤ jn. The third equation gives hl = im and the last
equation gives nj + hl = µ + 1 = 2im =⇒ im = nj, then im = nj = hl and
Bn

1C
l
1 = p1(b− 4a1). As a, b are coprime, the conjecture (3.1) is verified.

- If k = 2jn or k = im + jn, we obtain β = 0, im = jn = hl and
Bn

1C
l
1 = p1(b− 4a1). As a, b are coprime, the conjecture (3.1) is verified.

** G-2-2-1-2- α > 1 =⇒ α ≥ 2.
- If k = 2im =⇒ 2im = µ+ 1 + β, but µ = 2im− α that gives α = 1 + β ≥

2 =⇒ β 6= 0 =⇒ 3|b, but 3|a then the contradiction with a, b coprime.
- If k = 2jn = µ+1+β ≤ 2im =⇒ µ+1+β ≤ µ+α =⇒ 1+β ≤ α =⇒ β ≥ 1.

If β ≥ 1 =⇒ 3|b but 3|a, then the contradiction with a, b coprime.
- If k = im+ jn =⇒ im+ jn ≤ 2im =⇒ jn ≤ im, and im+ jn ≤ 2jn =⇒

im ≤ jn, then im = jn. As k = im+ jn = 2im = 1 +µ+β and α+µ = 2im,
we obtain α = 1 + β ≥ 2 =⇒ β ≥ 1 =⇒ 3|b, then the contradiction with a, b
coprime.

** G-2-2-2- We suppose that ω 6= 3. We write a = ωαa1 with ω - a1 and
p” = ωµp1 with ω - p1. As A2m = 4ap” = 4ωα+µ.a1.p1 =⇒ ω|A =⇒ A = ωiA1,
ω - A1. But BnC l = p”(3b − 4a) = ωµp1(3b − 4a) =⇒ ω|BnC l =⇒ ω|Bn or
ω|C l.

** G-2-2-2-1- We suppose that ω|Bn =⇒ ω|B =⇒ B = ωjB1 and ω - B1.
From Am + Bn = C l =⇒ ω|C l =⇒ ω|C. As p = bp′ = 3bp” = 3ωµbp1 =
ωk(ω2im−kA2m

1 + ω2jn−kB2n
1 + ωim+jn−kAm1 B

n
1 ) with k = min(2im, 2jn, im+

jn). Then:
- If k = µ, then ω - b and the conjecture (3.1) is verified.
- If k > µ, then ω|b, but ω|a then the contradiction with a, b coprime.
- If k < µ, it follows from:

3ωµbp1 = ωk(ω2im−kA2m
1 + ω2jn−kB2n

1 + ωim+jn−kAm1 B
n
1 )

that ω|A1 or ω|B1 then the contradiction with ω - A1 or ω - B1.
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** G-2-2-2-2- If ω|C l =⇒ ω|C =⇒ C = ωhC1 with ω - C1. From Am + Bn =
C l =⇒ ω|(C l − Am) =⇒ ω|B. Then, using the same method as for the case
G-2-2-2-1-, we obtain identical results.

1.5.4. Case b = 3 and 3|p : — As 3|p =⇒ p = 3p′, We write :

A2m = 4p
3 cos

2 θ

3 = 4p
3
a

b
= 4× 3p′

3
a

3 = 4p′a
3

As A2m is an integer and a, b are coprime and cos2 θ

3 < 1 (see equation (1.35)),
then we have necessary 3|p′ =⇒ p′ = 3p” with p” 6= 1, if not p = 3p′ =
3 × 3p” = 9, but 9 � (p = A2m + B2n + AmBn), the hypothesis p” = 1 is
impossible, then p” > 1, and we obtain:

A2m = 4p′a
3 = 4× 3p”a

3 = 4p”a ; BnC l = p”.(9− 4a)

As 1
4 < cos2 θ

3 = a

b
= a

3 <
3
4 =⇒ 3 < 4a < 9 =⇒ as a > 1, a = 2 and we

obtain:

(1.132) A2m = 4p”a = 8p” ; BnC l = 3p”(9− 4a)
3 = p”

The two last equations above imply that p” is not a prime. We can write p”
as :p” =

∏
i∈I p

αi
i where pi are distinct primes, αi elements of N and i ∈ I a

finite set of indices. We can write also p” = pα1
1 .q1 with p1 - q1. From (1.132),

we have p1|A and p1|BnC l =⇒ p1|Bn or p1|C l.

** H-1- We suppose that p1|Bn =⇒ B = pβ1
1 .B1 with p1 - B1 and β1 ≥ 1.

Then, we obtain Bn
1C

l = pα1−nβ1
1 .q1 with the following cases:

- If α1− nβ1 ≥ 1 =⇒ p1|C l =⇒ p1|C, in accord with p1|(C l = Am +Bn), it
follows that the conjecture (3.1) is verified.

- If α1 − nβ1 = 0 =⇒ Bn
1C

l = q1 =⇒ p1 - C l, it is a contradiction with
p1|(Am −Bn) =⇒ p1|C l. Then this case is impossible.

- If α1 − nβ1 < 0, we obtain pnβ1−α1
1 Bn

1C
l = q1 =⇒ p1|q1, it is a contradic-

tion with p1 - q1. Then this case is impossible.

** H-2- We suppose that p1|C l, using the same method as for the case p1|Bn,
we obtain identical results.



1.5. HYPOTHÈSE: {3|p and b|4p} 48

1.5.5. Case 3|p and b = p: — We have cos2 θ

3 = a

b
= a

p
et:

A2m = 4p
3 cos

2 θ

3 = 4p
3 .
a

p
= 4a

3

As A2m is an integer, it implies that 3|a, but 3|p =⇒ 3|b. As a and b are
coprime, then the contradiction and the case 3|p and b = p is impossible.

1.5.6. Case 3|p and b = 4p : — 3|p =⇒ p = 3p′, p′ 6= 1 because 3 � p,
then b = 4p = 12p′.

A2m = 4p
3 cos

2 θ

3 = 4p
3
a

b
= a

3 =⇒ 3|a

as A2m is an integer. But 3|p =⇒ 3| [(4p) = b], then the contradiction with
a, b coprime and the case b = 4p is impossible.

1.5.7. Case 3|p and b = 2p : — 3|p =⇒ p = 3p′, p′ 6= 1 because 3 � p,
then b = 2p = 6p′.

A2m = 4p
3 cos

2 θ

3 = 4p
3
a

b
= 2a

3 =⇒ 3|a

as A2m is an integer. But 3|p =⇒ 3|(2p) =⇒ 3|b, then the contradiction with
a, b coprime and the case b = 2p is impossible.

1.5.8. Case 3|p and b 6= 3 a divisor of p : — We have b = p′ 6= 3, and p
is written as p = kp′ with 3|k =⇒ k = 3k′ and :

A2m = 4p
3 cos

2 θ

3 = 4p
3 .
a

b
= 4ak′

BnC l = p

3 .
(

3− 4cos2 θ

3

)
= k′(3p′ − 4a) = k′(3b− 4a)

** I-1- k′ 6= 1:

** I-1-1- We suppose that k′ est prime, then A2m = 4ak′ = (Am)2 =⇒ k′|a.
But BnC l = k′(3b− 4a) =⇒ k′|Bn or k′|C l.

** I-1-1-1- If k′|Bn =⇒ k′|B =⇒ B = k′B1 with B1 ∈ N∗. Then
k′n−1Bn

1C
l = 3b − 4a. As n > 2, then (n − 1) > 1 and k′|a, then

k′|3b =⇒ k′ = 3 or k′|b.



1.5. HYPOTHÈSE: {3|p and b|4p} 49

** I-1-1-1-1- If k′ = 3 =⇒ 3|a, with a that we can write it under the
form a = 3a′2. But Am = 6a′ =⇒ 3|Am =⇒ 3|A =⇒ A = 3A1
with A1 ∈ N∗. Then 3m−1Am1 = 2a′ =⇒ 3|a′ =⇒ a′ = 3a”. But
k′n−1Bn

1C
l = 3n−1Bn

1C
l = 3b − 4a =⇒ 3n−2Bn

1C
l = b − 36a”2. As

n ≥ 3 =⇒ n− 2 ≥ 1, then 3|b. Hence the contradiction with a, b coprime.

** I-1-1-1-2- We suppose that k′|b, but k′|a, then the contradiction with a, b
coprime.

** I-1-1-2- We suppose that k′|C l, using the same method as for the case
k′|Bn, we obtain identical results.

** I-1-2- We consider that k′ is not a prime.

** I-1-2-1- We suppose that k′, a coprime: A2m = 4ak′ =⇒ Am = 2a′.p1 with
a = a′2 and k′ = p2

1, then a′, p1 are also coprime. As Am = 2a′.p1 then 2|a′ or
2|p1.

** I-1-2-1-1- We suppose that 2|a′, then 2|a′ =⇒ 2 - p1, but k′ = p2
1.

** I-1-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** I-1-2-1-1-2- We suppose that p1 is not prime and it can be written as
p1 = ωm =⇒ k′ = ω2m. Then BnC l = ω2m(3b− 4a).

** I-1-2-1-1-2-1- If ω is prime 6= 2, then ω|(BnC l) =⇒ ω|Bn or ω|C l.

** I-1-2-1-1-2-1-1- If ω|Bn =⇒ ω|B =⇒ B = ωjB1 with ω - B1, then Bn
1 .C

l =
ω2m−nj(3b− 4a).

- If 2m−n.j = 0, we obtain Bn
1 .C

l = 3b−4a, as C l = Am+Bn =⇒ ω|C l =⇒
ω|C, and ω|(3b−4a). But ω 6= 2 and ω, a′ are coprime, then ω - (3b) =⇒ ω 6= 3
and ω - b. Hence, the conjecture (3.1) is verified.

- If 2m − nj ≥ 1, using the same method, we have ω|C l =⇒ ω|C and
ω|(3b − 4a) and ω - a and ω 6= 3 and ω - b. Then, the conjecture (3.1) is
verified.

- If 2m− nj < 0 =⇒ ωn.j−2mBn
1 .C

l = 3b− 4a. As C l = Am +Bn =⇒ ω|C
then C = ωh.C1 =⇒ ωn.j−2m+h.lBn

1 .C
l
1 = 3b − 4a. If n.j − 2m + h.l <

0 =⇒ ω|Bn
1C

l
1, then the contradiction with ω - B1 or ω - C1. If



1.5. HYPOTHÈSE: {3|p and b|4p} 50

n.j − 2m + h.l > 0 =⇒ ω|(3b − 4a) with ω, a, b coprime, it implies that
the conjecture (3.1) is verified.

** I-1-2-1-1-2-1-2- We suppose that ω|C l, using the same method as for the
case ω|Bn, we obtain identical results.

** I-1-2-1-1-2-2- Now k′ = ω2m and ω not a prime, we write ω = ωf1 .Ω
with ω1 a prime - Ω and f ≥ 1 an integer, and ω1|A, then BnC l =
ω2f.m

1 Ω2m(3b− 4a) =⇒ ω1|(BnC l) =⇒ ω1|Bn or ω1|C l.

** I-1-2-1-1-2-2-1- If ω1|Bn =⇒ ω1|B =⇒ B = ωj1B1 with ω1 - B1, then
Bn

1 .C
l = ω2.fm−nj

1 Ω2m(3b− 4a).
- If 2f.m−n.j = 0, we obtain Bn

1 .C
l = Ω2m(3b−4a). As C l = Am+Bn =⇒

ω1|C l =⇒ ω1|C, and ω1|(3b − 4a). But ω1 6= 2 and ω1, a
′ are coprime, then

ω, a are coprime, then ω1 - (3b) =⇒ ω1 6= 3 and ω1 - b. Hence, the conjecture
(3.1) is verified.

- If 2f.m − n.j ≥ 1, we have ω1|C l =⇒ ω1|C and ω1|(3b − 4a) and ω1 - a
and ω1 6= 3 and ω1 - b, then the conjecture (3.1) is verified.

- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C
l = Ω2m(3b − 4a). As C l = Am +

Bn =⇒ ω1|C using , then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C

l
1 = Ω2m(3b−4a).

If n.j − 2m.f + h.l < 0 =⇒ ω1|Bn
1C

l
1, then the contradiction with ω1 - B1 and

ω1 - C1. Then if n.j − 2m.f + h.l > 0 and ω1|(3b− 4a) with ω1, a, b coprime,
then the conjecture (3.1) is verified.

** I-1-2-1-1-2-2-2- As in the case ω1|Bn, we obtain identical results if ω1|C l.

** I-1-2-1-2- If 2|p1: then 2|p1 =⇒ 2 - a′ =⇒ 2 - a, but k′ = p2
1.

** I-1-2-1-2-1- If p1 = 2, we obtain Am = 4a′ =⇒ 2|a′, then the contradiction
with 2 - a′. Case to reject.

** I-1-2-1-2-2- We suppose that p1 is not prime and 2|p1. As Am = 2a′p1,
p1 is written under the form p1 = 2m−1ωm =⇒ p2

1 = 22m−2ω2m. Then
BnC l = k′(3b− 4a) = 22m−2ω2m(3b− 4a) =⇒ 2|Bn or 2|C l.

** I-1-2-1-2-2-1- If 2|Bn =⇒ 2|B, as 2|A =⇒ 2|C. From BnC l =
22m−2ω2m(3b − 4a) it follows that if 2|(3b − 4a) =⇒ 2|b but as 2 - a,
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there is no contradiction with a, b coprime and the conjecture (3.1) is verified.

** I-1-2-1-2-2-2- We obtain identical results as above if 2|C l.

** I-1-2-2- We suppose that k′, a are not coprime: let ω be a prime integer so
that ω|a and ω|p2

1.

** I-1-2-2-1- We suppose that ω = 3. As A2m = 4ak′ =⇒ 3|A, but 3|p.
As p = A2m + B2n + AmBn =⇒ 3|B2n =⇒ 3|B, then 3|C l =⇒ 3|C. We
write A = 3iA1, B = 3jB1, C = 3hC1 with 3 coprime with A1, B1 and C1 and
p = 32imA2m

1 +32njB2n
1 +3im+jnAm1 B

n
1 = 3s.g with s = min(2im, 2jn, im+jn)

and 3 - g. We have also (ω = 3)|a and (ω = 3)|k′ that give a = 3αa1, 3 - a1
and k′ = 3µp2, 3 - p2 with A2m = 4ak′ = 32imA2m

1 = 4 × 3α+µ.a1.p2 =⇒
α+ µ = 2im. As p = 3p′ = 3b.k′ = 3b.3µp2 = 3µ+1.b.p2. The exponent of the
factor 3 of p is s, the exponent of the factor 3 of the left member of the last
equation is µ + 1 added of the exponent β of 3 of the factor b, with β ≥ 0,
let min(2im, 2jn, im + jn) = µ + 1 + β, we recall that α + µ = 2im. But
BnC l = k′(4b − 3a) that gives 3(nj+hl)Bn

1C
l
1 = 3µ+1p2(b − 4 × 3(α−1)a1) =

3µ+1p2(3βb1 − 4 × 3(α−1)a1), 3 - b1. We have also Am + Bn = C l that gives
3imAm1 + 3jnBn

1 = 3hlC l1. We call ε = min(im, jn), we obtain ε = hl =
min(im, jn). We have then the conditions:

s = min(2im, 2jn, im+ jn) = µ+ 1 + β(1.133)
α+ µ = 2im(1.134)

ε = hl = min(im, jn)(1.135)
3(nj+hl)Bn

1C
l
1 = 3µ+1p2(3βb1 − 4× 3(α−1)a1)(1.136)

** I-1-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 - a1, the equation (1.134) becomes:

1 + µ = 2im

and the first equation (1.133) is written as :

s = min(2im, 2jn, im+ jn) = 2im+ β

- If s = 2im =⇒ β = 0 =⇒ 3 - b. We obtain 2im ≤ 2jn =⇒ im ≤ jn, and
2im ≤ im + jn =⇒ im ≤ jn. The third equation (1.135) gives hl = im.
The last equation (1.136) gives nj + hl = µ + 1 = 2im =⇒ im = jn, then
im = jn = hl and Bn

1C
l
1 = p2(b − 4a1). As a, b are coprime, the conjecture

(3.1) is verified.
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- If s = 2jn or s = im + jn, we obtain β = 0, im = jn = hl and
Bn

1C
l
1 = p2(b − 4a1). Then as a, b are coprime, the conjecture (3.1) est is

verified.

** I-1-2-2-1-2- α > 1 =⇒ α ≥ 2.
- If s = 2im =⇒ 2im = µ + 1 + β, but µ = 2im − α it gives α = 1 + β ≥

2 =⇒ β 6= 0 =⇒ 3|b, but 3|a then the contradiction with a, b coprime and the
conjecture (3.1) is not verified.

- If s = 2jn = µ+1+β ≤ 2im =⇒ µ+1+β ≤ µ+α =⇒ 1+β ≤ α =⇒ β = 1.
If β = 1 =⇒ 3|b but 3|a, then the contradiction with a, b coprime and the
conjecture (3.1) is not verified.

- If s = im+ jn =⇒ im+ jn ≤ 2im =⇒ jn ≤ im, and im+ jn ≤ 2jn =⇒
im ≤ jn, then im = jn. As s = im+ jn = 2im = 1 + µ+ β and α+ µ = 2im
it gives α = 1 + β ≥ 2 =⇒ β ≥ 1 =⇒ 3|b, then the contradiction with a, b

coprime and the conjecture (3.1) is not verified.

** I-1-2-2-2- We suppose that ω 6= 3. We write a = ωαa1 with ω - a1 and
k′ = ωµp2 with ω - p2. As A2m = 4ak′ = 4ωα+µ.a1.p2 =⇒ ω|A =⇒ A = ωiA1,
ω - A1. But BnC l = k′(3b − 4a) = ωµp2(3b − 4a) =⇒ ω|BnC l =⇒ ω|Bn or
ω|C l.

** I-1-2-2-2-1- ω|Bn =⇒ ω|B =⇒ Bn = ωjB1 and ω - B1. From Am + Bn =
C l =⇒ ω|C l =⇒ ω|C. As p = bp′ = 3bk′ = 3ωµbp2 = ωs(ω2im−sA2m

1 +
ω2jn−sB2n

1 + ωim+jn−sAm1 B
n
1 ) with s = min(2im, 2jn, im+ jn). Then:

- If s = µ, then ω - b and the conjecture (3.1) is verified.
- If s > µ, then ω|b, but ω|a then the contradiction with a, b coprime and

the conjecture (3.1) is not verified.
- If s < µ, it follows from:

3ωµbp1 = ωs(ω2im−sA2m
1 + ω2jn−sB2n

1 + ωim+jn−sAm1 B
n
1 )

that ω|A1 or ω|B1 that is the contradiction with the hypothesis and the
conjecture (3.1) is not verified.

** I-1-2-2-2-2- If ω|C l =⇒ ω|C =⇒ C = ωhC1 with ω - C1. From
Am +Bn = C l =⇒ ω|(C l −Am) =⇒ ω|B. Then we obtain identical results as
the case above I-1-2-2-2-1-.
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** I-2- We suppose k′ = 1: then k′ = 1 =⇒ p = 3b, then we have A2m = 4a =
(2a′)2 =⇒ Am = 2a′, then a = a′2 is even and :

AmBn = 2 3
√
ρcos

θ

3 .
3
√
ρ

(√
3sinθ3 − cos

θ

3

)
= p
√

3
3 sin

2θ
3 − 2a

and we have also:

(1.137) A2m + 2AmBn = 2p
√

3
3 sin

2θ
3 = 2b

√
3sin2θ

3
The left member of the equation (1.137) is a naturel number and also b, then
2
√

3sin2θ
3 can be written under the form :

2
√

3sin2θ
3 = k1

k2

where k1, k2 are two natural numbers coprime and k2|b =⇒ b = k2.k3.

** I-2-1- k′ = 1 and k3 6= 1: then A2m + 2AmBn = k3.k1. Let µ be a
prime so that µ|k3. If µ = 2 ⇒ 2|b, but 2|a, it is a contradiction with a, b

coprime. We suppose that µ 6= 2 and µ|k3, then µ|Am(Am + 2Bn) =⇒ µ|Am
or µ|(Am + 2Bn).

** I-2-1-1- µ|Am: If µ|Am =⇒ µ|A2m =⇒ µ|4a =⇒ µ|a. As µ|k3 =⇒ µ|b, the
contradiction with a, b coprime.

** I-2-1-2- µ|(Am + 2Bn): If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn, then
µ 6= 2 and µ - Bn. µ|(Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am)

As p = 3b = 3k2.k3 and µ|k3 then µ|p =⇒ p = µ.µ′, then we obtain:

µ′.µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am)

and µ|Bn(Bn −Am) =⇒ µ|Bn or µ|(Bn −Am).

** I-2-1-2-1- µ|Bn: If µ|Bn =⇒ µ|B, that is the contradiction with I-2-1-2-
above.
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** I-2-1-2-2- µ|(Bn −Am): If µ|(Bn −Am) and using that µ|(Am + 2Bn), we
obtain :

µ|3Bn =⇒


µ|Bn =⇒ µ|B
or

µ = 3
** I-2-1-2-2-1- µ|Bn: If µ|Bn =⇒ µ|B, that is the contradiction with I-2-1-2-
above.

** I-2-1-2-2-2- µ = 3: If µ = 3 =⇒ 3|k3 =⇒ k3 = 3k′3, and we have b = k2k3 =
3k2k

′
3, it follows p = 3b = 9k2k

′
3, then 9|p, but p = (Am−Bn)2 +3AmBn then:

9k2k
′
3 − 3AmBn = (Am −Bn)2

that we write as:

(1.138) 3(3k2k
′
3 −AmBn) = (Am −Bn)2

then:
3|(3k2k

′
3 −AmBn) =⇒ 3|AmBn =⇒ 3|Am or 3|Bn

** I-2-1-2-2-2-1- 3|Am: If 3|Am =⇒ 3|A and we have also 3|A2m, but
A2m = 4a =⇒ 3|4a =⇒ 3|a. As b = 3k2k

′
3 then 3|b, but a, b are coprime, then

the contradiction and 3 - A.

** I-2-1-2-2-2-2- 3|Bm: If 3|Bn =⇒ 3|B, but the equation (1.138) implies
3|(Am − Bn)2 =⇒ 3|(Am − Bn) =⇒ 3|Am =⇒ 3|A. The last case above has
given that 3 - A. Then case 3|Bm is to reject.

Finally the hypothesis k3 6= 1 is impossible.

** I-2-2- Now, we suppose that k3 = 1 =⇒ b = k2 and p = 3b = 3k2, then we
have:

(1.139) 2
√

3sin2θ
3 = k1

b

with k1, b coprime. We write (1.139) as :

4
√

3sinθ3cos
θ

3 = k1
b

Taking the square of the two members and replacing cos2 θ

3 by a

b
, we obtain:

3× 42.a(b− a) = k2
1 =⇒ k2

1 = 3× 42.a′2(b− a)
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it implies that :

b− a = 3α2 =⇒ b = a′2 + 3α2 =⇒ k1 = 12a′α

As:
k1 = 12a′α = Am(Am + 2Bn) =⇒ 3α = a′ +Bn

We consider now that 3|(b − a) with b = a′2 + 3α2. The case α = 1 gives
a′+Bn = 3 that is impossible. We suppose α > 1, the pair (a′, α) is a solution
of the Diophantine equation:

(1.140) X2 + 3Y 2 = b

with X = a′ and Y = α. But using a theorem on the solutions of the equation
given by (1.140), b is written as (see theorem in [6]):

b = 22s × 3t.pt11 · · · ptgg q
2s1
1 · · · q2sr

r

where pi are prime numbers verifying pi ≡ 1(mod 6), the qj are also prime
numbers so that qj ≡ 5(mod 6), then :

- If s ≥ 1 =⇒ 2|b, as 2|a, then the contradiction with a, b coprime.
- If t ≥ 1 =⇒ 3|b, but 3|(b − a) =⇒ 3|a, then the contradiction with a, b

coprime.

** I-2-2-1- We suppose that b is written as :

b = pt11 · · · p
tg
g q

2s1
1 · · · q2sr

r

with pi ≡ 1(mod6) and qj ≡ 5(mod6). Finally, we obtain that b ≡
1(mod 6). We will verify then this condition.

** I-2-2-1-1- We present the table giving the value of Am + Bn = C l modulo
6 in function of the value of Am, Bn(mod 6). We obtain the table below after
retiring the lines (respectively the colones) of Am ≡ 0(mod6) and Am ≡
3(mod 6) (respectively of Bn ≡ 0(mod 6) and Bn ≡ 3(mod 6)), they present
cases with contradictions:
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Am , Bn 1 2 4 5
1 2 3 5 0
2 3 4 0 1
4 5 0 2 3
5 0 1 3 4

Table 2. Table of Cl(mod 6)

** I-2-2-1-1-1- For the case C l ≡ 0(mod 6) and C l ≡ 3(mod 6), we deduce
that 3|C l =⇒ 3|C =⇒ C = 3hC1, with h ≥ 1 and 3 - C1. It follows that
p−BnC l = 3b− 3lhC l1Bn = A2m =⇒ 3|(A2m = 4a) =⇒ 3|a =⇒ 3|b, then the
contradiction with a, b coprime.

** I-2-2-1-1-2- For the case C l ≡ 0(mod6), C l ≡ 2(mod6) and C l ≡
4(mod 6), we deduce that 2|C l =⇒ 2|C =⇒ C = 2hC1, with h ≥ 1 and 2 - C1.
It follows that p = 3b = A2m + BnC l = 4a + 2lhC l1Bn =⇒ 2|3b =⇒ 2|b, then
the contradiction with a, b coprime.

** I-2-2-1-1-3- We consider the cases Am ≡ 1(mod6) and Bn ≡ 4(mod6)
(respectively Bn ≡ 2(mod 6)): then 2|Bn =⇒ 2|B =⇒ B = 2jB1 with j ≥ 1
and 2 - B1. It follows from 3b = A2m +BnC l = 4a+ 2jnBn

1C
l, then 2|b, then

the contradiction with a, b coprime.

** I-2-2-1-1-4- We consider the case Am ≡ 5(mod6) and Bn ≡ 2(mod6):
then 2|Bn =⇒ 2|B =⇒ B = 2jB1 with j ≥ 1 and 2 - B1. It follows that
3b = A2m + BnC l = 4a+ 2jnBn

1C
l, then 2|b, then the contradiction with a, b

coprime.

** I-2-2-1-1-5- We consider the case Am ≡ 2(mod 6) and Bn ≡ 5(mod 6): as
Am ≡ 2(mod 6) =⇒ Am ≡ 2(mod 3), then Am is not a square and also for
Bn. Hence, we can write Am and Bn as:

Am = a0.A
2

Bn = b0B
2

where a0 (respectively b0) regroups the product of the prime numbers of Am
with exponent 1 (respectively of Bn) with not necessary (a0,A ) = 1
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and (b0,B) = 1. We have also p = 3b = A2m + AmBn + B2n =
(Am − Bn)2 + 3AmBn =⇒ 3|(b − AmBn) =⇒ AmBn ≡ b(mod3) but
b = a + 3α2 =⇒ b ≡ a ≡ a′2(mod3), then AmBn ≡ a′2(mod3). But
Am ≡ 2(mod 6) =⇒ 2a′ ≡ 2(mod 6) =⇒ 4a′2 ≡ 4(mod 6) =⇒ a′2 ≡ 1(mod 3).
It follows that AmBn is a square, let AmBn = N 2 = A 2.B2.a0.b0. We call
N 2

1 = a0.b0. Let p1 be a prime number so that p1|a0 =⇒ a0 = p1.a1 with
p1 - a1. p1|N 2

1 =⇒ p1|N1 =⇒ N1 = pt1N
′

1 with t ≥ 1 and p1 - N ′
1 , then

p2t−1
1 N ′2

1 = a1.b0. As 2t ≥ 2 =⇒ 2t − 1 ≥ 1 =⇒ p1|a1.b0 but (p1, a1) = 1,
then p1|b0 =⇒ p1|Bn =⇒ p1|B. But p1|(Am = 2a′), and p1 6= 2 because p1|Bn

and Bn is odd, then the contradiction. Hence, p1|a′ =⇒ p1|a. If p1 = 3,
from 3|(b − a) =⇒ 3|b then the contradiction with a, b coprime. Then p1 > 3
a prime that divides Am and Bn, then p1|(p = 3b) =⇒ p1|b, it follows the
contradiction with a, b coprime, knowing that p = 3b ≡ 3(mod6) and we
choose the case b ≡ 1(mod 6) of our interest.

** I-2-2-1-1-6- We consider the last case of the table above Am ≡ 4(mod 6)
and Bn ≡ 1(mod 6). We return to the equation (1.140) that b verifies :

b = X2 + 3Y 2(1.141)
with X = a′; Y = α

and 3α = a′ +Bn

Suppose that it exists another solution of (1.141):

b = X2 + 3Y 3 = u2 + 3v2 =⇒ 2u 6= Am, 3v 6= a′ +Bn

But Bn = 6α−Am

2 = 3α−a′ and b verify also :3b = p = A2m+AmBn+B2n,
it is impossible that u, v verify:

6v = 2u+ 2Bn

3b = 4u2 + 2uBn +B2n

If we consider that : 6v − 2u = 6α − 2a′ =⇒ u = 3v − 3α + a′, then b =
u2 + 3v2 = (3v − 3α+ a′)2 + 3v2, it gives:

2v2 −Bnv + α2 − a′α = 0

2v2 −Bnv − (a′ +Bn)(Am −Bn)
9 = 0

The resolution of the last equation gives with taking the positive root (because
Am > Bn), v1 = α, then u = a′. It follows that b in (1.141) has an unique
representation under the form X2 + 3Y 2 with X, 3Y coprime. As b is odd,
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we applique one of Euler’s theorems on the convenient numbers "numerus
idoneus" as cited above (Case C-2-2-1-2). It follows that b is prime.

We have also p = 3b = A2m +AmBn +B2n = 4a′2 +Bn.C l =⇒ 9α2− a′2 =
Bn.C l, then 3α, a′ ∈ N∗ are solutions of the Diophantine equation:

(1.142) x2 − y2 = N

with N = BnC l > 0. Let Q(N) be the number of the solutions of (1.142)
and τ(N) the number of ways to write the factors of N , then we announce the
following result concerning the number of the solutions of (1.142) (see theorem
27.3 in [6]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].

We recall that Am ≡ 0(mod4). Concerning Bn, for Bn ≡ 0(mod4) or
Bn ≡ 2(mod 4), we find that 2|Bn =⇒ 2|α =⇒ 2|b, then the contradiction
with a, b coprime. For the last case Bn ≡ 3(mod 4) =⇒ C l ≡ 3(mod 4) =⇒
N = BnC l ≡ 1(mod 4) =⇒ Q(N) = [τ(N)/2] > 1. But Q(N) = 1, because
the unknowns of (1.142) are also the unknowns of (1.141) and we have an
unique solution of the two Diophantine equations, then the contradiction.

It follows that the condition 3|(b− a) is a contradiction.

The study of the case 1.5.8 is achieved.

1.5.9. Case 3|p and b|4p: — The following cases have been soon studied:
* 3|p, b = 2 =⇒ b|4p: case 1.5.1
* 3|p, b = 4 =⇒ b|4p: case 1.5.2
* 3|p =⇒ p = 3p′, b|p′ =⇒ p′ = bp”, p” 6= 1: case 1.5.3
* 3|p, b = 3 =⇒ b|4p: case 1.5.4
* 3|p =⇒ p = 3p′, b = p′ =⇒ b|4p: case 1.5.8

** J-1- Particular case: b = 12. In fact 3|p =⇒ p = 3p′ and 4p = 12p′. Taking
b = 12, we have b|4p. But b < 4a < 3b, that gives 12 < 4a < 36 =⇒ 3 < a < 9.
As 2|b and 3|b, the possible values of a are 5 and 7.
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** J-1-1- a = 5 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m = 4p
3 .
a

b
=

5bp′

3b = 5p′

3 =⇒ 3|p′ =⇒ p′ = 3p” with p” ∈ N∗, then p = 9p”, we obtain the
expressions:

A2m = 5p”(1.143)

BnC l = p

3

(
3− 4cos2 θ

3

)
= 4p”(1.144)

As n, l ≥ 3, we deduce from the equation (1.144) that 2|p” =⇒ p” = 2αp1
with α ≥ 1 and 2 - p1. Then (1.143) becomes: A2m = 5p” = 5 × 2αp1 =⇒
2|A =⇒ A = 2iA1, i ≥ 1 and 2 - A1. We have also BnC l = 2α+2p1 =⇒ 2|Bn

or 2|C l.

** J-1-1-1- We suppose that 2|Bn =⇒ B = 2jB1, j ≥ 1 and 2 - B1. We obtain
Bn

1C
l = 2α+2−jnp1:

- If α+ 2− jn > 0 =⇒ 2|C l, there is no contradiction with C l = 2imAm1 +
2jnBn

1 =⇒ 2|C l and the conjecture (3.1) is verified.
- If α+ 2− jn = 0 =⇒ Bn

1C
l = p1. From C=2imAm1 + 2jnBn

1 =⇒ 2|C l that
implies that 2|p1, then the contradiction with 2 - p1.

- If α + 2 − jn < 0 =⇒ 2jn−α−2Bn
1C

l = p1, it implies that 2|p1, then the
contradiction as above.
** J-1-1-2- We suppose that 2|C l, using the same method above, we obtain
the identical results.

** J-1-2- We suppose that a = 7 and b = 12 =⇒ 4p = 12p′ = bp′. But

A2m = 4p
3 .
a

b
= 12p′

3 .
7
12 = 7p′

3 =⇒ 3|p′ =⇒ p = 9p”, we obtain:

A2m = 7p”

BnC l = p

3

(
3− 4cos2 θ

3

)
= 2p”

The last equation implies that 2|BnC l. Using the same method as for the
case J-1-1- above, we obtain the identical results.

We study now the general case. As 3|p ⇒ p = 3p′ and b|4p ⇒ ∃k1 ∈ N∗ and
4p = 12p′ = k1b.
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** J-2- k1 = 1 : If k1 = 1 then b = 12p′, (p′ 6= 1, if not p = 3 �

A2m + B2n + AmBn). But A2m = 4p
3 .cos

2 θ

3 = 12p′

3
a

b
= 4p′.a

12p′ = a

3 ⇒ 3|a

because A2m is a natural number, then the contradiction with a, b coprime.

** J-3- k1 = 3 : If k1 = 3, then b = 4p′ and A2m = 4p
3 .cos

2 θ

3 = k1.a

3 = a =

(Am)2 = a′2 =⇒ Am = a′. The term AmBn gives AmBn = p
√

3
3 sin

2θ
3 −

a

2 ,
then:

(1.145) A2m + 2AmBn = 2p
√

3
3 sin

2θ
3 = 2p′

√
3sin2θ

3

The left member of (1.145) is a natural number and also p′, then 2
√

3sin2θ
3

can be written under the form:

2
√

3sin2θ
3 = k2

k3

where k2, k3 are two natural numbers and are coprime and k3|p′ =⇒ p′ = k3.k4.

** J-3-1- k4 6= 1 : We suppose that k4 6= 1, then:

(1.146) A2m + 2AmBn = k2.k4

Let µ be a prime natural number so that µ|k4, then µ|Am(Am+2Bn) =⇒ µ|Am
or µ|(Am + 2Bn).

** J-3-1-1- µ|Am : If µ|Am =⇒ µ|A2m =⇒ µ|a. As µ|k4 =⇒ µ|p′ ⇒ µ|(4p′ =
b). But a, b are coprime, then the contradiction.

** J-3-1-2- µ|(Am + 2Bn) : If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn, then
µ 6= 2 and µ - Bn. µ|(Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain p = t′2µ2 − 2t′Bnµ+ Bn(Bn − Am). As
p = 3p′ and µ|p′ ⇒ µ|(3p′) ⇒ µ|p, we can write : ∃µ′ and p = µµ′, then we
arrive to:

µ′.µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am)
and µ|Bn(Bn −Am) =⇒ µ|Bn or µ|(Bn −Am).

** J-3-1-2-1- µ|Bn : If µ|Bn =⇒ µ|B, it is in contradiction with J-3-1-2-.
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** J-3-1-2-2- µ|(Bn−Am) : If µ|(Bn−Am) and using µ|(Am+2Bn), we obtain
:

µ|3Bn =⇒


µ|Bn

or

µ = 3
** J-3-1-2-2-1- µ|Bn : If µ|Bn =⇒ µ|B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2-2- µ = 3 : If µ = 3 =⇒ 3|k4 =⇒ k4 = 3k′4, and we have p′ =
k3k4 = 3k3k

′
4, it follows that p = 3p′ = 9k3k

′
4, then 9|p, but p = (Am−Bn)2 +

3AmBn, then we obtain:

9k3k
′
4 − 3AmBn = (Am −Bn)2

that we write : 3(3k3k
′
4−AmBn) = (Am−Bn)2, then : 3|(3k3k

′
4−AmBn) =⇒

3|AmBn =⇒ 3|Am or 3|Bn.

** J-3-1-2-2-2-1- 3|Am : If 3|Am =⇒ 3|A2m ⇒ 3|a, but 3|p′ ⇒ 3|(4p′) ⇒ 3|b,
then the contradiction with a, b coprime and 3 - A.

** J-3-1-2-2-2-2- 3|Bn : If 3|Bn but Am = µt′ − 2Bn = 3t′ − 2Bn =⇒ 3|Am,
it is in contradiction with 3 - A.

Then the hypothesis k4 6= 1 is impossible.

** J-3-2- k4 = 1: We suppose now that k4 = 1 =⇒ p′ = k3k4 = k3. Then we
have:

(1.147) 2
√

3sin2θ
3 = k2

p′

with k2, p
′ coprime, we write (1.147) as :

4
√

3sinθ3cos
θ

3 = k2
p′

Taking the square of the two members and replacing cos2 θ

3 by a

b
and b = 4p′,

we obtain:
3.a(b− a) = k2

2

As A2m = a = a′2, it implies that :

3|(b− a), and b− a = b− a′2 = 3α2
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As k2 = Am(Am + 2Bn) following the equation (1.146) and that 3|k2 =⇒
3|Am(Am + 2Bn) =⇒ 3|Am or 3|(Am + 2Bn).

** J-3-2-1- 3|Am: If 3|Am =⇒ 3|A2m =⇒ 3|a, but 3|(b − a) =⇒ 3|b, then the
contradiction with a, b coprime.

** J-3-2-2- 3|(Am + 2Bn) =⇒ 3 - Am and 3 - Bn. As k2
2 = 9aα2 = 9a′2α2 =⇒

k2 = 3a′α = Am(Am + 2Bn), then :

(1.148) 3α = Am + 2Bn

As b can be written under the form b = a′2 + 3α2, then the pair (a′, α) is a
solution of the Diophantine equation:

(1.149) x2 + 3y2 = b

As b = 4p′, then :

** J-3-2-2-1- If x, y are even, then 2|a′ =⇒ 2|a, it is a contradiction with a, b
coprime.

** J-3-2-2-2- If x, y are odd, then a′, α are odd, it implies Am = a′ ≡ 1( mod 4)
or Am ≡ 3(mod 4). If u, v verify (1.149), then b = u2 + 3v2, with u 6= a′

and v 6= α, then u, v do not verify (1.148): 3v 6= u + 2Bn, if not,
u = 3v − 2Bn =⇒ b = (3v − 2Bn)2 + 3v2 = a′2 + 3α, the resolution of
the obtained equation of second degree in v gives the positive root v1 = α,
then u = 3α− 2Bn = a′, then the uniqueness of the representation of b by the
equation (1.149).

** J-3-2-2-2-1- We suppose that Am ≡ 1(mod 4) and Bn ≡ 0(mod 4), then
Bn is even and Bn = 2B′. The expression of p becomes:

p = a′2 + 2a′B′ + 4B′2 = (a′ +B′)2 + 3B′2 = 3p′ =⇒ 3|(a′ +B′) =⇒ a′ +B′ = 3B”
p′ = B′2 + 3B”2 =⇒ b = 4p′ = (2B′)2 + 3(2B”)2 = a′2 + 3α2

that gives 2B′ = Bn = a′ = Am, then the contradiction with Am > Bn.
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** J-3-2-2-2-2- We suppose that Am ≡ 1(mod 4) and Bn ≡ 1(mod 4), then
C l is even and C l = 2C ′. The expression of p becomes:

p = C2l − C lBn +B2n = 4C ′2 − 2C ′Bn +B2n = (C ′ −Bn)2 + 3C ′2 = 3p′

=⇒ 3|(C ′ −Bn) =⇒ C ′ −Bn = 3C”
p′ = C ′2 + 3C”2 =⇒ b = 4p′ = (2C ′)2 + 3(2C”)2 = a′2 + 3α2

We obtain 2C ′ = C l = a′ = Am, then the contradiction.

** J-3-2-2-2-3- We suppose that Am ≡ 1(mod 4) and Bn ≡ 2(mod 4), then
Bn is even, see J-3-2-2-2-1-.

** J-3-2-2-2-4- We suppose that Am ≡ 1(mod 4) and Bn ≡ 3(mod 4), then
C l is even, see J-3-2-2-2-2-.

** J-3-2-2-2-5- We suppose that Am ≡ 3(mod 4) and Bn ≡ 0(mod 4), then
Bn is even, see J-3-2-2-2-1-.

** J-3-2-2-2-6- We suppose that Am ≡ 3(mod 4) and Bn ≡ 1(mod 4), then
C l is even, see J-3-2-2-2-2-.

** J-3-2-2-2-7- We suppose that Am ≡ 3(mod 4) and Bn ≡ 2(mod 4), then
Bn is even, see J-3-2-2-2-1-.

** J-3-2-2-2-8- We suppose that Am ≡ 3(mod 4) and Bn ≡ 3(mod 4), then
C l is even, see J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- given contradictions.

** J-4- We suppose that k1 6= 3 and 3|k1 =⇒ k1 = 3k′1 with k′1 6= 1,
then 4p = 12p′ = k1b = 3k′1b ⇒ 4p′ = k′1b. A2m can be written as

A2m = 4p
3 cos

2 θ

3 = 3k′1b
3

a

b
= k′1a and BnC l = p

3

(
3− 4cos2 θ

3

)
= k′1

4 (3b− 4a).

As BnC l is a natural number, we must have 4|(3b − 4a) or 4|k′1 or
[2|k′1 and 2|(3b− 4a)].

** J-4-1- We suppose that 4|(3b− 4a).
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** J-4-1-1- We suppose that 3b− 4a = 4 =⇒ 4|b =⇒ 2|b. Then, we have:

A2m = k′1a

BnC l = k′1

** J-4-1-1-1- If k′1 is prime, from BnC l = k′1, it is impossible.

** J-4-1-1-2- We suppose that k′1 > 1 is not prime. Let ω be a prime natural
number so that ω|k′1.

** J-4-1-1-2-1- We suppose that k′1 = ωs, with s ≥ 6. Then we have :

A2m = ωs.a(1.150)
BnC l = ωs(1.151)

** J-4-1-1-2-1-1- We suppose that ω = 2. If a, k′1 are not coprime , then 2|a,
as 2|b, it is the contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose ω = 2 and a, k′1 are coprime, then 2 - a. From
(1.151), we deduce that B = C = 2 and n + l = s, and A2m = 2s.a, but
Am = 2l−2n =⇒ A2m = (2l−2n)2 = 22l+22n−2(2l+n) = 22l+22n−2×2s =
2s.a =⇒ 22l + 22n = 2s(a + 2). If l = n, we obtain a = 0 then the
contradiction. If l 6= n, as Am = 2l − 2n > 0 =⇒ n < l =⇒ 2n < s, then
22n(1+22l−2n−2s+1−2n) = 2n2l.a. We call l = n+n1 =⇒ 1+22l−2n−2s+1−2n =
2n1 .a, but the left term is odd and the right member is even, then the contra-
diction. Then the case ω = 2 is impossible.

** J-4-1-1-2-1-3- We suppose that k′1 = ωs with ω 6= 2:

** J-4-1-1-2-1-3-1- Suppose that a, k′1 are not coprime, then ω|a =⇒ a = ωt.a1
and t - a1. Then, we have:

A2m = ωs+t.a1(1.152)
BnC l = ωs(1.153)

From (1.153), we deduce that Bn = ωn, Cn = ωl, s = n+l and Am = ωl−ωn >
0 =⇒ l > n. We have also A2m = ωs+t.a1 = (ωl − ωn)2 = ω2l + ω2n − 2× ωs.
As ω 6= 2 =⇒ ω is odd, then A2m = ωs+t.a1 = (ωl − ωn)2 is even, then
2|a1 =⇒ 2|a, it is in contradiction with a, b coprime, then this case is impos-
sible.
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** J-4-1-1-2-1-3-2- Suppose that a, k′1 are coprime, with :

A2m = ωs.a(1.154)
BnC l = ωs(1.155)

From (1.155), we deduce that Bn = ωn, C l = ωl and s = n + l. As
ω 6= 2 =⇒ ω is odd and A2m = ωs.a = (ωl − ωn)2 is even, then 2|a. It follows
the contradiction with a, b coprime and this case is impossible.

** J-4-1-1-2-2- We suppose that k′1 = ωs.k2, with s ≥ 6, ω - k2. We have :

A2m = ωs.k2.a

BnC l = ωs.k2

** J-4-1-1-2-2-1- If k2 is prime, from the last equation above, ω = k2, it is in
contradiction with ω - k2. Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that k′1 = ωs.k2, with s ≥ 6, ω - k2 and k2 not a
prime. Then, we have:

A2m = ωs.k2.a

BnC l = ωs.k2(1.156)

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then ω - a. As
A2m = ωs.k2.a =⇒ ω|A =⇒ A = ωiA1 with i ≥ 1 and ω - A1, then s = 2im.
From (1.156), we have ω|(BnC l) =⇒ ω|Bn or ω|C l.

** J-4-1-1-2-2-2-1-1- We suppose that ω|Bn =⇒ ω|B =⇒ B = ωjB1 with
j ≥ 1 and ω - B1. then :

Bn
1C

l = ω2im−jnk2

- If 2im− jn > 0, ω|C l =⇒ ω|C, no contradiction with C l = ωimAm1 + ωjnBn
1

and the conjecture (3.1) is verified.
- If 2im−jn = 0 =⇒ Bn

1C
l = k2, as ω - k2 =⇒ ω - C l, then the contradiction

with ω|(C l = Am +Bn).
- If 2im − jn < 0 =⇒ ωjn−2imBn

1C
l = k2 =⇒ ω|k2, then the contradiction

with ω - k2.

** J-4-1-1-2-2-2-1-2- We suppose that ω|C l. Using the same method used
above, we obtain identical results.
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** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then ω|a =⇒ a =
ωt.a1 and ω - a1. So we have :

A2m = ωs+t.k2.a1(1.157)
BnC l = ωs.k2(1.158)

As A2m = ωs+t.k2.a1 =⇒ ω|A =⇒ A = ωiA1 with i ≥ 1 and ω - A1, then
s+ t = 2im. From (1.158), we have ω|(BnC l) =⇒ ω|Bn or ω|C l.

** J-4-1-1-2-2-2-2-1- We suppose that ω|Bn =⇒ ω|B =⇒ B = ωjB1 with
j ≥ 1 and ω - B1. then:

Bn
1C

l = ω2im−t−jnk2

- If 2im−t−jn > 0, ω|C l =⇒ ω|C, no contradiction with C l = ωimAm1 +ωjnBn
1

and the conjecture (3.1) is verified.
- If 2im − t − jn = 0 =⇒ Bn

1C
l = k2, As ω - k2 =⇒ ω - C l, then the

contradiction with ω|(C l = Am +Bn).
- If 2im − t − jn < 0 =⇒ ωjn+t−2imBn

1C
l = k2 =⇒ ω|k2, then the contra-

diction with ω - k2.

** J-4-1-1-2-2-2-2-2- We suppose that ω|C l. Using the same method used
above, we obtain identical results.

** J-4-1-2- 3b − 4a 6= 4 and 4|(3b − 4a) =⇒ 3b − 4a = 4sΩ with s ≥ 1 and
4 - Ω. We obtain:

A2m = k′1a(1.159)
BnC l = 4s−1k′1Ω(1.160)

** J-4-1-2-1- We suppose that k′1 = 2. From (1.159), we deduce that 2|a. As
4|(3b − 4a) =⇒ 2|b, then the contradiction with a, b coprime and this case is
impossible.

** J-4-1-2-2- We suppose that k′1 = 3. From (1.159) we deduce that 33|A2m.
From (1.160), it follows that 33|Bn or 33|C l. In the last two cases, we obtain
33|p. But 4p = 3k′1b = 9b =⇒ 3|b, then the contradiction with a, b coprime.
Then this case is impossible.

** J-4-1-2-3- We suppose that k′1 is prime ≥ 5:
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** J-4-1-2-3-1- Suppose that k′1 and a are coprime. The equation (1.159)
gives (Am)2 = k′1.a, that is impossible with k′1 - a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k′1 and a are not coprime. Let k′1|a =⇒ a = k′α1 a1
with α ≥ 1 and k′1 - a1. The equation (1.159) is written as :

A2m = k′1a = k′α+1
1 a1

The last equation gives k′1|A2m =⇒ k′1|A =⇒ A = k′i1 .A1, with k′1 - A1. If
2i.m 6= (α+ 1), it is impossible. We suppose that 2i.m = α+ 1, then k′1|Am.
We return to the equation (1.160). If k′1 and Ω are coprime, it is impossible.
We suppose that k′1 and Ω are not coprime, then k′1|Ω and the exponent
of k′1 in Ω is so the equation (1.160) is satisfying. We deduce easily that
k′1|Bn. Then k′21 |(p = A2m + B2n + AmBn), but 4p = 3k′1b =⇒ k′1|b, then the
contradiction with a, b coprime.

** J-4-1-2-4- We suppose that k′1 ≥ 4 is not a prime.

** J-4-1-2-4-1- Supposons que k′1 = 4, we have then A2m = 4a and
BnC l = 3b − 4a = 3p′ − 4a. This case was studied in the paragraph
1.5.8, case ** I-2-.

** J-4-1-2-4-2- We suppose that k′1 > 4 is not a prime.

** J-4-1-2-4-2-1- We suppose that a, k′1 are coprime. From the expression
A2m = k′1.a, we deduce that a = a2

1 and k′1 = k”2
1. It gives :

Am = a1.k”1

BnC l = 4s−1k”2
1.Ω

Let ω be a prime so that ω|k”1 and k”1 = ωt.k”2 with ω - k”2. The last two
equations become :

Am = a1.ω
t.k”2(1.161)

BnC l = 4s−1ω2t.k”2
2.Ω(1.162)

From (1.161), ω|Am =⇒ ω|A =⇒ A = ωi.A1 with ω - A1 and im = t. From
(1.162), we obtain ω|BnC l =⇒ ω|Bn or ω|C l.
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** J-4-1-2-4-2-1-1- If ω|Bn =⇒ ω|B =⇒ B = ωj .B1 with ω - B1. From
(1.161), we have Bn

1C
l = ω2t−j.n4s−1.k”2

2.Ω.

** J-4-1-2-4-2-1-1-1- If ω = 2 and 2 - Ω, we have Bn
1C

l = 22t+2s−j.n−2k”2
2.Ω:

- If 2t + 2s − jn − 2 ≤ 0 then 2 - C l, then the contradiction with C l =
ωimAm1 + ωjnBn

1 .
- If 2t+2s−jn−2 ≥ 1 =⇒ 2|C l =⇒ 2|C and the conjecture (3.1) is verified.

** J-4-1-2-4-2-1-1-2- If ω = 2 and if 2|Ω =⇒ Ω = 2.Ω1 because 4 - Ω, we have
Bn

1C
l = 22t+2s+1−j.n−2k”2

2Ω1:
- If 2t + 2s − jn − 3 ≤ 0 then 2 - C l, then the contradiction with C l =

ωimAm1 + ωjnBn
1 .

- If 2t+2s−jn−3 ≥ 1 =⇒ 2|C l =⇒ 2|C and the conjecture (3.1) is verified.

** J-4-1-2-4-2-1-1-3- If ω 6= 2, we have Bn
1C

l = ω2t−j.n4s−1.k”2
2.Ω:

-If 2t− jn ≤ 0 =⇒ ω - C l it is in contradiction with C l = ωimAm1 + ωjnBn
1 .

-If 2t− jn ≥ 1 =⇒ ω|C l =⇒ ω|C and the conjecture (3.1) is verified.

** J-4-1-2-4-2-1-2- If ω|C l =⇒ ω|C =⇒ C = ωh.C1, with ω - C1. Using the
same method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k′1 are not coprime. Let ω be a prime so
that ω|a and ω|k′1. We write:

a = ωα.a1

k′1 = ωµ.k”1

with a1, k”1 coprime. The expression of A2m becomes A2m = ωα+µ.a1.k”1.
The term BnC l becomes:

(1.163) BnC l = 4s−1.ωµ.k”1.Ω

** J-4-1-2-4-2-2-1- If ω = 2 =⇒ 2|a, but 2|b, then the contradiction with a, b
coprime, this case is impossible.

** J-4-1-2-4-2-2-2- If ω ≥ 3, we have ω|a. If ω|b then the contradiction with
a, b coprime. We suppose that ω - b. From the expression of A2m, we obtain
ω|A2m =⇒ ω|A =⇒ A = ωi.A1 with ω - A1, i ≥ 1 and 2i.m = α + µ. From
(1.163), we deduce that ω|Bn or ω|C l.
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** J-4-1-2-4-2-2-2-1- We suppose that ω|Bn =⇒ ω|B =⇒ B = ωjB1 with
ω - B1 and j ≥ 1. Then, Bn

1C
l = 4s−1ωµ−jn.k”1.Ω :

* ω - Ω :
- If µ − jn ≥ 1, we have ω|C l =⇒ ω|C, there is no contradiction with

C l = ωimAm1 + ωjnBn
1 and the conjecture (3.1) is verified.

- If µ − jn ≤ 0, then ω - C l and it is a contradiction with C l =
ωimAm1 + ωjnBn

1 . Then this case is impossible.

* ω|Ω : we write Ω = ωβ.Ω1 with β ≥ 1 and ω - Ω1. As 3b − 4a = 4s.Ω =
4s.ωβ.Ω1 =⇒ 3b = 4a+ 4s.ωβ.Ω1 = 4ωα.a1 + 4s.ωβ.Ω1 =⇒ 3b = 4ω(ωα−1.a1 +
4s−1.ωβ−1.Ω1). If ω = 3 and β = 1, we obtain b = 4(3α−1a1 + 4s−1Ω1) and
Bn

1C
l = 4s−13µ+1−jn.k”1Ω1.

- If µ− jn+ 1 ≥ 1, then 3|C l and the conjecture (3.1) is verified.
- If µ − jn + 1 ≤ 0, then 3 - C l and it is the contradiction with

C l = 3imAm1 + 3jnBn
1 .

Now, if β ≥ 2 and α = im ≥ 3, we obtain 3b = 4ω2(ωα−2a1 + 4s−1ωβ−2Ω1).
If ω = 3 or not, then ω|b, but ω|a, then the contradiction with a, b coprime.

** J-4-1-2-4-2-2-2-2- We suppose that ω|C l =⇒ ω|C =⇒ C = ωhC1 with
ω - C1 and h ≥ 1. then, BnC l1 = 4s−1ωµ−hl.k”1.Ω. Using the same method as
above, we obtain identical results.

** J-4-2- We suppose that 4|k′1.

** J-4-2-1- k′1 = 4 =⇒ 4p = 3k′1b = 12b =⇒ p = 3b = 3p′, this case has been
studied (see case I-2- paragraph 1.5.8).

** J-4-2-2- k′1 > 4 with 4|k′1 =⇒ k′1 = 4sk”1 and s ≥ 1, 4 - k”1. Then, we
obtain:

A2m = 4sk”1a = 22sk”1a

BnC l = 4s−1k”1(3b− 4a) = 22s−2k”1(3b− 4a)

** J-4-2-2-1- We suppose that s = 1 and k′1 = 4k”1 with k”1 > 1, so p = 3p′
and p′ = k”1b, this is the case 1.5.3 already studied.
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** J-4-2-2-2- We suppose that s > 1, then k′1 = 4sk”1 =⇒ 4p = 3×4sk”1b and
we obtain:

A2m = 4sk”1a(1.164)
BnC l = 4s−1k”1(3b− 4a)(1.165)

** J-4-2-2-2-1- We suppose that 2 - (k”1.a) =⇒ 2 - k”1 and 2 - a. As
(Am)2 = (2s)2.(k”1.a), we call d2 = k”1.a, then Am = 2s.d =⇒ 2|Am =⇒
2|A =⇒ A = 2iA1 with 2 - A1 and i ≥ 1, then: 2imAm1 = 2s.d =⇒ s = im.
From the equation (1.165), we have 2|(BnC l) =⇒ 2|Bn or 2|C l.

** J-4-2-2-2-1-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2j .B1, with j ≥ 1
and 2 - B1. The equation (1.165) becomes:

Bn
1C

l = 22s−jn−2k”1(3b− 4a) = 22im−jn−2k”1(3b− 4a)

* We suppose that 2 - (3b− 4a):
- If 2im − jn − 2 ≥ 1, then 2|C l, there is no contradiction with C l =

2imAm1 + 2jnBn
1 and the conjecture (3.1) is verified.

- If 2im − jn − 2 ≤ 0, then 2 - C l, then the contradiction with
C l = 2imAm1 + 2jnBn

1 .

* We suppose that 2µ|(3b− 4a), µ ≥ 1:
- If 2im+ µ− jn− 2 ≥ 1, then 2|C l, no contradiction with C l = 2imAm1 +

2jnBn
1 and the conjecture (3.1) is verified.

- If 2im + µ − jn − 2 ≤ 0, then 2 - C l, then the contradiction with
C l = 2imAm1 + 2jnBn

1 .

** J-4-2-2-2-1-2- We suppose that 2|C l =⇒ 2|C =⇒ C = 2h.C1, with h ≥ 1
and 2 - C1. With the same method used above, we obtain identical results.

** J-4-2-2-2-2- We suppose that 2|(k”1.a):

** J-4-2-2-2-2-1- We suppose that k”1 and a are coprime:

** J-4-2-2-2-2-1-1- We suppose that 2 - a and 2|k”1 =⇒ k”1 = 22µ.k”2
2 and

a = a2
1, then the equations (1.164-1.165) become:

A2m = 4s.22µk”2
2a

2
1 =⇒ Am = 2s+µ.k”2.a1(1.166)

BnC l = 4s−122µk”2
2(3b− 4a) = 22s+2µ−2k”2

2(3b− 4a)(1.167)
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The equation (1.166) gives 2|Am =⇒ 2|A =⇒ A = 2i.A1 with 2 - A1, i ≥ 1
and im = s + µ. From the equation (1.167), we have 2|(BnC l) =⇒ 2|Bn or
2|C l.

** J-4-2-2-2-2-1-1-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2j .B1, 2 - B1
and j ≥ 1, then Bn

1C
l = 22s+2µ−jn−2k”2

2(3b− 4a):

* We suppose that 2 - (3b− 4a):
- If 2im + 2µ − jn − 2 ≥ 1 ⇒ 2|C l, then there is no contradiction with

C l = 2imAm1 + 2jnBn
1 and the conjecture (3.1) is verified.

- If 2im + 2µ − jn − 2 ≤ 0 ⇒ 2 - C l, then the contradiction with
C l = 2imAm1 + 2jnBn

1 .

* We suppose that 2α|(3b− 4a), α ≥ 1 so that a, b remain coprime:
- If 2im + 2µ + α − jn − 2 ≥ 1 ⇒ 2|C l, then no contradiction with C l =

2imAm1 + 2jnBn
1 and the conjecture (3.1) is verified.

- If 2im + 2µ + α − jn − 2 ≤ 0 ⇒ 2 - C l, then the contradiction with
C l = 2imAm1 + 2jnBn

1 .

** J-4-2-2-2-2-1-1-2- We suppose that 2|C l =⇒ 2|C =⇒ C = 2h.C1, with
h ≥ 1 and 2 - C1. With the same method used above, we obtain identical
results.

** J-4-2-2-2-2-1-2- We suppose that 2 - k”1 and 2|a =⇒ a = 22µ.a2
1 and

k”1 = k”2
2, then the equations (1.164-1.165) become:

A2m = 4s.22µa2
1k”2

2 =⇒ Am = 2s+µ.a1.k”2.(1.168)
BnC l = 4s−1k”2

2(3b− 4a) = 22s−2k”2
2(3b− 4a)(1.169)

The equation (1.168) gives 2|Am =⇒ 2|A =⇒ A = 2i.A1 with 2 - A1, i ≥ 1
and im = s + µ. From the equation (1.169), we have 2|(BnC l) =⇒ 2|Bn or
2|C l.

** J-4-2-2-2-2-1-2-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2j .B1, 2 - B1
and j ≥ 1. Then we obtain Bn

1C
l = 22s−jn−2k”2

2(3b− 4a):

* We suppose that 2 - (3b− 4a) =⇒ 2 - b:
- If 2im−jn−2 ≥ 1⇒ 2|C l, then no contradiction with C l = 2imAm1 +2jnBn

1
and the conjecture (3.1) is verified.
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- If 2im − jn − 2 ≤ 0 ⇒ 2 - C l, then the contradiction with C l =
2imAm1 + 2jnBn

1 .

* We suppose that 2α|(3b − 4a), α ≥ 1, in this case a, b are not coprime,
then the contradiction.

** J-4-2-2-2-2-1-2-2- We suppose that 2|C l =⇒ 2|C =⇒ C = 2h.C1, with
h ≥ 1 and 2 - C1. With the same method used above, we obtain identical
results.

** J-4-2-2-2-2-2- We suppose that k”1 and a are not coprime 2|a and 2|k”1.
Let a = 2t.a1 and k”1 = 2µk”2 and 2 - a1 and 2 - k”2. From (1.164), we have
µ+ t = 2λ and a1.k”2 = ω2. The equations (1.164-1.165) become:

A2m = 4sk”1a = 22s.2µk”2.2t.a1 = 22s+2λ.ω2 =⇒ Am = 2s+λ.ω(1.170)
BnC l = 4s−12µk”2(3b− 4a) = 22s+µ−2k”2(3b− 4a)(1.171)

From (1.170) we have 2|Am =⇒ 2|A =⇒ A = 2iA1,i ≥ 1 and 2 - A1.
From(1.171), 2s+ µ− 2 ≥ 1, we deduce that 2|(BnC l) =⇒ 2|Bn or 2|C l.

** J-4-2-2-2-2-2-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2j .B1, 2 - B1 and
j ≥ 1. Then we obtain Bn

1C
l = 22s+µ−jn−2k”2(3b− 4a):

* We suppose that 2 - (3b− 4a):

- If 2s+ µ− jn− 2 ≥ 1⇒ 2|C l, then no contradiction with C l = 2imAm1 +
2jnBn

1 and the conjecture (3.1) is verified.
- If 2s + µ − jn − 2 ≤ 0 ⇒ 2 - C l, then the contradiction with

C l = 2imAm1 + 2jnBn
1 .

* We suppose that 2α|(3b − 4a), for one value α ≥ 1. As 2|a, then
2α|(3b − 4a) =⇒ 2|(3b − 4a) =⇒ 2|(3b) =⇒ 2|b, then the contradiction with
a, b coprime.

** J-4-2-2-2-2-2-2- We suppose that 2|C l =⇒ 2|C =⇒ C = 2h.C1, with h ≥ 1
and 2 - C1. With the same method used above, we obtain identical results.

** J-4-3- 2|k′1 and 2|(3b− 4a): then we obtain 2|k′1 =⇒ k′1 = 2t.k”1 with t ≥ 1
and 2 - k”1, 2|(3b− 4a) =⇒ 3b− 4a = 2µ.d with µ ≥ 1 and 2 - d. We have also
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2|b. If 2|a, it is a contradition with a, b coprime.

We suppose, in the following, that 2 - a. The equations (1.164-1.165) be-
come:

A2m = 2t.k”1.a = (Am)2(1.172)
BnC l = 2t−1k”1.2µ−1d = 2t+µ−2k”1.d(1.173)

From (1.172), we deduce that the exponent t is even, let t = 2λ. Then we call
ω2 = k”1.a, it gives Am = 2λ.ω =⇒ 2|Am =⇒ 2|A =⇒ A = 2i.A1 with i ≥ 1
and 2 - A1. From (1.173), we have 2λ+ µ− 2 ≥ 1, then 2|(BnC l) =⇒ 2|Bn or
2|C l:

** J-4-3-1- We suppose that 2|Bn =⇒ 2|B =⇒ B = 2jB1, with j ≥ 1 and
2 - B1. Then we obtain Bn

1C
l = 22λ+µ−jn−2.k”1.d.

- If 2λ + µ − jn − 2 ≥ 1 ⇒ 2|C l =⇒ 2|C, there is no contradiction with
C l = 2imAm1 + 2jnBn

1 and the conjecture (3.1) is verified.
- If 2s + t + µ − jn − 2 ≤ 0 ⇒ 2 - C, then the contradiction with

C l = 2imAm1 + 2jnBn
1 .

** J-4-3-2- We suppose that 2|C l =⇒ 2|C. With the same method used above,
we obtain identical results.

The Main Theorem is proved.

1.6. Numerical Examples

1.6.1. Example 1: — We consider the example : 63 + 33 = 35 with Am =
63, Bn = 33 and C l = 35. With the notations used in the paper, we obtain:

p = 36 × 73, q = 8× 311, ∆̄ = 4× 318(37 × 42 − 733) < 0

ρ = 38 × 73
√

73√
3

, cosθ = −4× 33 ×
√

3
73
√

73
(1.174)

As A2m = 4p
3 .cos

2 θ

3 =⇒ cos2 θ

3 = 3A2m

4p = 3× 24

73 = a

b
=⇒ a = 3×24, b = 73;

then we obtain:

(1.175) cos
θ

3 = 4
√

3√
73
, p = 36.b
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We verify easily the equation (1.174) to calculate cosθ using (1.175). For this
example, we can use the two conditions from (1.64) as 3|a ,b|4p and 3|p. The
cases 1.4.4 and 1.5.3 are respectively used. For the case 1.4.4, it is the case
B-2-2-1- that was used and the conjecture (3.1) is verified. Concerning the
case 1.5.3, it is the case G-2-2-1- that was used and the conjecture (3.1) is
verified.

1.6.2. Example 2: — The second example is: 74 + 73 = 143. We take
Am = 74 , Bn = 73 and C l = 143. We obtain p = 57× 76 = 3× 19× 76 , q =
8×710 , ∆ = 27q2−4p3 = 27×4×718(16×49−193) = −27×4×718×6075 <
0 , ρ = 19× 79×

√
19 , cosθ = − 4× 7

19
√

19
. As A2m = 4p

3 .cos
2 θ

3 =⇒ cos2 θ

3 =

3A2m

4p = 72

4× 19 = a

b
=⇒ a = 72, b = 4× 19, then cosθ3 = 7

2
√

19
and we have

the two principal conditions 3|p and b|(4p). The calculation of cosθ from the
expression of cosθ3 is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3 θ

3 − 3cosθ3 = 4
( 7

2
√

19

)3
− 3 7

2
√

19
= − 4× 7

19
√

19

Then, we obtain 3|p⇒ p = 3p′, b|(4p) with b 6= 2, 4 then 12p′ = k1b = 3× 76b.
It concerns the paragraph 1.5.9 of the second hypothesis. As k1 = 3×76 = 3k′1
with k′1 = 76 6= 1. It is the case J-4-1-2-4-2-2- with the condition 4|(3b− 4a).
So we verify :

3b− 4a = 3× 4× 19− 4× 72 = 32 =⇒ 4|(3b− 4a)

with A2m = 78 = 76 × 72 = k′1.a and k′1 not a prime, with a and k′1 not
coprime with ω = 7 - Ω(= 2). We find that the conjecture (3.1) is verified
with a common factor equal to 7 (prime and divisor of k′1 = 76).

1.6.3. Example 3: — The third example is: 194 + 383 = 573 with
Am = 194, Bn = 383 and C l = 573. We obtain p = 196 × 577 , q =
8× 27× 1910 , ∆ = 27q2 − 4p3 = 4× 1918(273 × 16× 192 − 5773) < 0 , ρ =
199 × 577

√
577

3
√

3
, cosθ = −4× 34 × 19

√
3

577
√

577
. As A2m = 4p

3 .cos
2 θ

3 =⇒

cos2 θ

3 = 3A2m

4p = 3× 192

4× 577 = a

b
=⇒ a = 3 × 192, b = 4 × 577, then

cos
θ

3 = 19
√

3
2
√

577
and we have the first hypothesis 3|a and b|(4p). Here again,
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the calculation of cosθ from the expression of cosθ3 is confirmed by the value
below:

cosθ = cos3(θ/3) = 4cos3 θ

3−3cosθ3 = 4
(

19
√

3
2
√

577

)3

−3 19
√

3
2
√

577
= −4× 34 × 19

√
3

577
√

577

Then, we obtain 3|a ⇒ a = 3a′ = 3 × 192, b|(4p) with b 6= 2, 4 and b = 4p′
with p = kp′ soit p′ = 577 and k = 196. This concerns the paragraph 1.4.8 of
the first hypothesis. It is the case E-2-2-2-2-1- with ω = 19, a′, ω not coprime
and ω = 19 - (p′ − a′) = (577− 192) with s− jn = 6− 1× 3 = 3 ≥ 1, and the
conjecture (3.1) is verified.

1.7. Conclusion

The method used to give the proof of the conjecture of Beal has discussed
many possibles cases, using elementary number theory and the results of some
theorems about Diophantine equations. We have confirmed the method by
three numerical examples. In conclusion, we can announce the theorem:

Theorem 1.3. — Let A,B,C,m, n, and l be positive natural numbers
with m,n, l > 2. If :

(1.176) Am +Bn = C l

then A,B, and C have a common factor.

Acknowledgements. My acknowledgements to Professor Thong Nguyen
Quang Do for indicating me the book of D.A. Cox cited below in References.
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CHAPTER 2

TOWARDS A SOLUTION OF THE RIEMANN
HYPOTHESIS

Abstract. — In 1859, Georg Friedrich Bernhard Riemann had announced the following
conjecture, called Riemann Hypothesis : The nontrivial roots (zeros) s = σ + it of the zeta
function, defined by:

ζ(s) =
+∞∑
n=1

1
ns
, for <(s) > 1

have real part σ = 1
2 .

We give a proof that σ = 1
2 using an equivalent statement of the Riemann Hypothesis

concerning the Dirichlet η function.

Résumé. — En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture
suivante, dite Hypothèse de Riemann: Les zéros non triviaux s = σ + it de la fonction zeta
définie par:

ζ(s) =
+∞∑
n=1

1
ns
, pour <(s) > 1

ont comme parties réelles σ = 1
2 .

On donne une démonstration que σ = 1
2 en utilisant une proposition équivalente de

l’Hypothèse de Riemann.

2.1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
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Conjecture 2.1. — . Let ζ(s) be the complex function of the complex
variable s = σ+ it defined by the analytic continuation of the function:

ζ1(s) =
+∞∑
n=1

1
ns
, for <(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the
nontrivial zeros of ζ(s) = 0 are written as :

s = 1
2 + it

In this paper, our idea is to start from an equivalent statement of the
Riemann Hypothesis, namely the one concerning the Dirichlet η function. The
latter is related to Riemann’s ζ function where we do not need to manipulate
any expression of ζ(s) in the critical band 0 < <(s) < 1. In our calculations,
we will use the definition of the limit of real sequences. We arrive to give a
proof that σ = 1

2 except at most for a finite number of zeros.

2.1.1. The function ζ. — We denote s = σ+ it the complex variable of C.
For <(s) = σ > 1, let ζ1 be the function defined by :

ζ1(s) =
+∞∑
n=1

1
ns
, for <(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical
function of s. Denote by ζ(s) the function obtained by the analytic contin-
uation of ζ1(s) to the whole complex plane, minus the point s = 1, then we
recall the following theorem [2]:

Theorem 2.2. — . The function ζ(s) satisfies the following :
1. ζ(s) has no zero for <(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ <(s) ≤ 1 (called the
critical strip) and are symmetric about both the vertical line <(s) = 1

2
and the real axis =(s) = 0.

The vertical line <(s) = 1
2 is called the critical line. We have also the

theorem (see page 16, [3]):
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Theorem 2.3. — . For all t ∈ R, ζ(1 + it) 6= 0.

It is also known that the zeros of ζ(s) inside the critical strip are all
complex numbers 6= 0 (see page 30 in [3]). Then, we take the critical strip as
the region defined as 0 < <(s) < 1.

The Riemann Hypothesis is formulated as:

Conjecture 2.4. — . (The Riemann Hypothesis,[2]) All nontrivial
zeros of ζ(s) lie on the critical line <(s) = 1

2 .

In addition to the properties cited by the theorem 2.2 above, the function
ζ(s) satisfies the functional relation [2] called also the reflection functional
equation for s ∈ C\{0, 1} :

(2.1) ζ(1− s) = 21−sπ−scos
sπ

2 Γ(s)ζ(s)

where Γ(s) is the gamma function defined only for <(s) > 0, given by the
formula :

Γ(s) =
∫ ∞

0
e−tts−1dt,

So, instead of using the functional given by (2.1), we will use the one presented
by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s)

The function eta is convergent for all s ∈ C with <(s) > 0 [2].

2.1.2. A Equivalent statement to the Riemann Hypothesis. —
Among the equivalent statements to the Riemann Hypothesis is that of the
Dirichlet function eta which is stated as follows [2]:
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Equivalence 2.5. — . The Riemann Hypothesis is equivalent to the
statement that all zeros of the Dirichlet eta function :

(2.2) η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), σ > 1

that fall in the critical strip 0 < <(s) < 1 lie on the critical line <(s) =
1
2.

The series (2.2) is convergent, and represents (1−21−s)ζ(s) for <(s) = σ > 0
([3], pages 20-21). We can rewrite:

(2.3) η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), <(s) = σ > 0

η(s) is a complex number, it can be written as :

(2.4) η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s)

and η(s) = 0⇐⇒ ρ = 0.

2.2. Proof that the zeros of η(s) are on the critical line <(s) = 1
2

Proof. — . We denote s = σ + it with 0 < σ < 1. We consider one zero of
the function η(s) that falls in critical strip and we write it as s = σ + it, then
we obtain 0 < σ < 1 and η(s) = 0 =⇒ (1 − 21−s)ζ(s) = 0. Let us denote
ζ(s) = A+ iB, and θ = tLog2, then :

(1−21−s)ζ(s) =
[
A(1− 21−σcosθ)− 21−σBsinθ

]
+i
[
B(1− 21−σcosθ) + 21−σAsinθ

]
(1− 21−s)ζ(s) = 0 gives the system:

A(1− 21−σcosθ)− 21−σBsinθ = 0
B(1− 21−σcosθ) + 21−σAsinθ = 0

As the functions sin and cos are not equal to 0 simultaneously, we sup-
pose for example that sinθ 6= 0, the first equation of the system gives B =
A(1− 21−σcosθ)

21−σsinθ
, the second equation is written as :

A(1− 21−σcosθ)
21−σsinθ

(1− 21−σcosθ) + 21−σAsinθ = 0 =⇒ A = 0
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Then, B = 0 =⇒ ζ(s) = 0, it follows that:
(2.5)
s is one zero of η(s) that falls in the critical strip, is also one zero of ζ(s)

Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = A+ iB = 0 =⇒
η(s) = (1− 21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip.
We can write:
(2.6)
s is one zero of ζ(s) that falls in the critical strip, is also one zero of η(s)

Let us write the function η:

η(s) =
+∞∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1e−sLogn =
+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=
+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=
+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn)− isin(tLogn))

The function η is convergent for all s ∈ C with <(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

+∞∑
n=1

(−1)n−1

ns
= 0

or:

∀ε′ > 0 ∃n0, ∀N > n0,

∣∣∣∣ N∑
n=1

(−1)n−1

ns

∣∣∣∣ < ε′

We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =
n∑
k=1

(−1)k−1

ks
=

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

− i
n∑
k=1

(−1)k−1 sin(tLogk)
kσ

with s = σ + it and t 6= 0.

Let s be one zero of η that lies in the critical strip, then η(s) = 0, with
0 < σ < 1. It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We
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obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(tLogk)
kσ

= 0

Using the definition of the limit of a sequence, we can write:

∀ε1 > 0 ∃nr,∀N > nr |<(η(s)N )| < ε1 =⇒ |<(η(s)N )|2 < ε21(2.7)
∀ε2 > 0 ∃ni, ∀N > ni |=(η(s)N )| < ε2 =⇒ |=(η(s)N )|2 < ε22(2.8)

Then:

0 <
N∑
k=1

cos2(tLogk)
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′cos(tLogk).cos(tLogk′)
kσk′σ

< ε21

0 <
N∑
k=1

sin2(tLogk)
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′sin(tLogk).sin(tLogk′)
kσk′σ

< ε22

Taking ε = ε1 = ε2 and N > max(nr, ni), we get by making the sum member
to member of the last two inequalities:

(2.9) 0 <
N∑
k=1

1
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

< 2ε2

We can write the above equation as :

(2.10) 0 < ρ2
N < 2ε2

or ρ(s) = 0.

2.2.1. Case σ = 1
2 =⇒ 2σ = 1. — We suppose that σ = 1

2 =⇒ 2σ = 1.
Let’s start by recalling Hardy’s theorem (1914) ([2], page 24):

Theorem 2.6. — . There are infinitely many zeros of ζ(s) on the
critical line.

From the propositions (2.5-2.6), it follows the proposition :

Proposition 2.7. — . There are infinitely many zeros of η(s) on the
critical line.
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Let sj = 1
2 + itj one of the zeros of the function η(s) on the critical line, so

η(sj) = 0. The equation (2.9) is written for sj :

0 <
N∑
k=1

1
k

+ 2
N∑

k,k′=1;k<k′
(−1)k+k′ cos(tjLog(k/k′))√

k
√
k′

< 2ε2

or:
N∑
k=1

1
k
< 2ε2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√
k′

If N −→ +∞, the series
N∑
k=1

1
k
is divergent and becomes infinite. then:

+∞∑
k=1

1
k
≤ 2ε2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√
k′

Hence, we obtain the following result:

(2.11) limN−→+∞

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√
k′

= −∞

if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1
ksj

= 0⇐⇒ η(s) is convergent for sj = 1
2 + itj

As tj > 0, and that there is an infinity of zeros on the critical line, then the
result of the formula given by (2.11) is independent of tj . We return now to
s = σ+it one zero of η(s) on the critical, let η(s) = 0. We take σ = 1

2. Starting
from the definition of the limit of sequences, applied above, we obtain:

+∞∑
k=1

1
k
≤ 2ε2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))√
k
√
k′

with any contradiction. From the proposition (2.5), it follows that ζ(s) =
ζ(1

2 + it) = 0. There are therefore zeros of ζ(s) on the critical line <(s) = 1
2.

2.2.2. Case 0 < <(s) < 1
2 . —
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2.2.2.1. Case there is no zeros of η(s) with s = σ + it and 0 < σ <
1
2. —

Using, for this case, point 4 of theorem (2.2), we deduce that the function η(s)
has no zeros with s = σ+ it and 1

2 < σ < 1. Then, from the proposition (2.5),
it follows that the function ζ(s) has all its nontrivial zeros only on the critical
line <(s) = σ = 1

2 and the Riemann Hypothesis is true.

2.2.2.2. Case where there are zeros of η(s) with s = σ+ it and 0 < σ <
1
2. —

Suppose that there exists s = σ+ it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0
with 0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation
(2.9):

0 <
N∑
k=1

1
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

< 2ε2

or:
N∑
k=1

1
k2σ < 2ε2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1
k2σ −→ +∞ and then, we obtain :

(2.12)
+∞∑

k,k′=1;k<k′
(−1)k+k′ cos(tLog(k/k′))

kσk′σ
= −∞

Again, the above result is independent of t.

2.2.3. Case 1
2 < <(s) < 1. — Let s = σ + it be the zero of η(s) in 0 <

<(s) < 1
2 , object of the previous paragraph. According to point 4 of theorem

2.2, the complex number s′ = 1− σ + it = σ′ + it′ with σ′ = 1− σ, t′ = t and
1
2 < σ′ < 1, is also a zero of the function η(s) in the band 1

2 < <(s) < 1, that
is η(s′) = 0 =⇒ ρ(s′) = 0. By applying (2.9), we get:

(2.13) 0 <
N∑
k=1

1
k2σ′ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′

< 2ε2

As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1 − σ) > 1, then the series

∑N
k=1

1
k2σ′ is

convergent to a positive constant not null C(σ′). As 1/k2 < 1/k2σ′ , then :

0 < π2

6 =
+∞∑
k=1

1
k2 ≤

+∞∑
k=1

1
k2σ′ = C(σ′)
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From the equation (2.13), it follows that :

(2.14)
+∞∑

k,k′=1;k<k′
(−1)k+k′ cos(t′Log(k/k′))

kσ′k′σ′
= −C(σ′)

2 > −∞

Then, we have the 2 following cases:

1)- There exists an infinity of complex numbers sl = σl+itl with σl ∈]0, 1/2[
such that η(sl) = 0. For each s′l, the left member of the equation (2.14) above
is finite and depends of σ′l and t′l, but the right member is a function only of
σ′l. Hence the contradiction, therefore, the function η(s) has all its zeros on
the critical line σ = 1

2. It follows that the Riemann hypothesis is verified.

2)- There is at most a single zero s0 = σ0+it0 of η(s) with σ0 ∈]0, 1/2[, t0 > 0
such that η(s0) = 0. Let us call this zero isolated zero that we denote by (IZ).
Therefore, the interval ]1/2, 1[ contains a single zero s′0 = 1 − σ0 + it0. Since
the critical line contains an infinity of zeros of ζ(s) = 0, it follows that all
the nontrivial zeros of ζ(s) are on the critical line σ = 1

2, except the 4 zeros
relative to (IZ). Here too, we deduce that the Riemann Hypothesis holds
except at most for the (IZ) in the critical band.

2.3. Conclusion

In summary: for our proofs, we made use of Dirichlet’s η(s) function:

η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), s = σ + it

on the critical band 0 < <(s) < 1, in obtaining:
- η(s) vanishes for 0 < σ = <(s) = 1

2;

- η(s) does not vanish for 0 < σ = <(s) < 1
2 and 1

2 < σ = <(s) < 1 except
at most for the (IZ) (with its symmetrical) inside the critical band.

Consequently, all the zeros of η(s) inside the critical band 0 < <(s) < 1
vanish on the critical line <(s) = 1

2 except at most at (IZ) (with its symmet-
rical). Applying the equivalent proposition to the Riemann Hypothesis 3.1,
all the nontrivial zeros of the function ζ(s) lie on the critical line <(s) = 1

2
except at most at (IZ) (with its symmetrical) inside the critical band. The
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proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 2.8. — . All nontrivial zeros of the function ζ(s) with s =
σ+ it lie on the vertical line <(s) = 1

2 , except for at most four zeros of
respective affixes (σ0, t0), (1 − σ0, t0), (σ0,−t0), (1 − σ0,−t0), belonging
to the critical band.
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CHAPTER 3

IS THE abc CONJECTURE TRUE?

Abstract. — In this paper, we consider the abc conjecture. In the first part, we give the
proof of the conjecture c < rad1.63(abc) that constitutes the key to resolve the abc conjecture.
The proof of the abc conjecture is given in the second part of the paper, supposing that the
abc conjecture is false, we arrive in a contradiction.

Résumé. — Dans cet article, nous considérons la conjecture abc. Dans la première
partie, nous donnons la preuve de la conjecture c < rad1.63(abc) qui constitue la clé pour
résoudre la conjecture abc. Dans la deuxième partie de l’article, la preuve de la conjecture
abc est donnée en supposant qu’elle est fausse, nous arrivons à une contradiction.

3.1. Introduction and notations

Let a be a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive

integers. We call radical of a the integer
∏
i ai noted by rad(a). Then a is

written as:

(3.1) a =
∏
i

aαii = rad(a).
∏
i

aαi−1
i

We denote:

(3.2) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph Œsterlé of Pierre et Marie Curie University
(Paris 6) [8]. It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:
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Conjecture 3.1. — (abc Conjecture): For each ε > 0, there exists
K(ε) such that if a, b, c positive integers relatively prime with c = a+ b,
then :

(3.3) c < K(ε).rad1+ε(abc)

where K is a constant depending only of ε.

We know that numerically, Logc

Log(rad(abc)) ≤ 1.629912 [5]. It concerned the

best example given by E. Reyssat [5]:

(3.4) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4]
proposed the following conjecture:

Conjecture 3.2. — Let a, b, c be positive integers relatively prime with
c = a+ b, then:

c < rad1.63(abc)(3.5)
abc < rad4.42(abc)(3.6)

Firstly, we will give the proof of the conjecture given by (3.5) that consti-
tutes the key to obtain the proof of the abc conjecture. Secondly, we present
in section three of the paper the proof that the abc conjecture is true.

3.2. A Proof of the conjecture c < rad1.63(abc), case c = a+ b

Let a, b, c be positive integers, relatively prime, with c = a + b, b < a and
R = rad(abc), c =

∏
j′∈J ′ c

βj′
j′ , βj′ ≥ 1.

In a previous paper [1], we have given, for the case c = a + 1, the proof that
c < rad1.63(ac). In the following, we will give the proof for the case c = a+ b.

Proof. — If c < rad(abc), then we obtain:

c < rad(abc) < rad1.63(abc) =⇒ c < R1.63

and the condition (3.5) is satisfied.
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If c = rad(abc), then a, b, c are not coprime, case to reject. In the following,
we suppose that c > rad(abc) and a, b and c are not prime numbers.

(3.7) c = a+ b = µarad(a) + µbrad(b)
?
< rad1.63(abc)

3.2.1. µa ≤ rad0.63(a). — We obtain :

c = a+b < 2a ≤ 2rad1.63(a) < rad1.63(abc) =⇒ c < rad1.63(abc) =⇒ c < R1.63

Then (3.7) is satisfied.

3.2.2. µc ≤ rad0.63(c). — We obtain :

c = µcrad(c) ≤ rad1.63(c) < rad1.63(abc) =⇒ c < R1.63

and the condition (3.7) is satisfied.

3.2.3. µa > rad0.63(a) and µc > rad0.63(c). —

3.2.3.1. Case: rad0.63(c) < µc ≤ rad1.63(c) and rad0.63(a) < µa ≤ rad1.63(a): —
We can write:
µc ≤ rad1.63(c) =⇒ c ≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a ≤ rad2.63(a)

 =⇒ ac ≤ rad2.63(ac) =⇒ a2 < ac ≤ rad2.63(ac)

=⇒ a < rad1.315(ac) =⇒ c < 2a < 2rad1.315(ac) < rad1.63(abc)

=⇒ c = a+ b < R1.63

3.2.3.2. Case: µc > rad1.63(c) or µa > rad1.63(a) . — I- We suppose that
µc > rad1.63(c) and µa ≤ rad2(a):

I-1- Case rad(a) < rad(c): In this case a = µa.rad(a) ≤ rad3(a) ≤
rad1.63(a)rad1.37(a) <
rad1.63(a).rad1.37(c) =⇒ c < 2a < 2rad1.63(a).rad1.37(c) < rad1.63(abc) =⇒

c < R1.63 .

I-2- Case rad(c) < rad(a) < rad
1.63
1.37 (c): As a ≤ rad1.63(a).rad1.37(a) <

rad1.63(a).rad1.63(c) =⇒ c < 2a < 2rad1.63(a).rad1.63(c) < R1.63 =⇒
c < R1.63 .

I-3- Case rad
1.63
1.37 (c) < rad(a):
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I-3-1- We suppose c ≤ rad3.26(c), we obtain:

c ≤ rad3.26(c) =⇒ c ≤ rad1.63(c).rad1.63(c) =⇒

c < rad1.63(c).rad(a)1.37 < rad1.63(c).rad(a)1.63.rad1.63(b) = R1.63 =⇒ c < R1.63

I-3-2- We suppose c > rad3.26(c) =⇒ µc > rad2.26(c). We consider the case
µa = rad2(a) =⇒ a = rad3(a). Then, we obtain that X = rad(a) is a solution
in positive integers of the equation:

(3.8) X3 + 1 = c− b+ 1 = c′

But it is the case c′ = 1 + a. If c′ = radn(c′) with n ≥ 4, we obtain the
equation:

(3.9) radn(c′)− rad3(a) = 1

But the solutions of the equation (3.9) are [2] :(rad(c′) = 3, n = 2, rad(a) =
+2), it follows the contradiction with n ≥ 4 and the case c′ = radn(c′), n ≥ 4
is to reject.

In the following, we will study the cases µ′c = A.radn(c′) with rad(c′) - A,n ≥
0. The above equation (3.8) can be written as :

(3.10) (X + 1)(X2 −X + 1) = c′

Let δ any divisor of c′, then:

X + 1 = δ(3.11)

X2 −X + 1 = c′

δ
= c′′ = δ2 − 3X(3.12)

We recall that rad(a) > rad
1.63
1.37 (c).

I-3-2-1- We suppose δ = l.rad(c′). We have δ = l.rad(c′) < c′ = µ′c.rad(c′) =⇒
l < µ′c. As δ is a divisor of c′, then l is a divisor of µ′c, we write µ′c = l.m.
From µ′c = l(δ2 − 3X), we obtain:

m = l2rad2(c′)− 3rad(a) =⇒ 3rad(a) = l2rad2(c′)−m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µ′c = ml = 3m′l =⇒ 3|rad(c′) and
(rad(c′),m′) not coprime. We obtain:

rad(a) = l2rad(c′). rad(c′)
3 −m′
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It follows that a,c’ are not coprime, then the contradiction.

B - Case m = 3 =⇒ µ′c = 3l =⇒ c′ = 3lrad(c′) = 3δ = δ(δ2 − 3X) =⇒ δ2 =
3(1 +X) = 3δ =⇒ δ = lrad(c′) = 3, then the contradiction.

I-3-2-2- We suppose δ = l.rad2(c′), l ≥ 2. If n = 0⇒ c′′ = A
lrad(c′) ⇒ rad(c′)|A,

then the contradiction with the hypothesis above rad(c′) - A. In the following,
we suppose that n > 0. If lrad(c′) - µc′ then the case is to reject. We suppose

lrad(c′)|µc′ =⇒ µc′ = m.lrad(c′), then c′

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c′/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) =
rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c′), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c′).
Then the contradiction.

E - Case m 6= 1, 3, we obtain: 3rad(a) = l2rad4(c′) − m =⇒ rad(a) and
rad(c′) are not coprime. Then the contradiction.

I-3-2-3- We suppose δ = l.radn(c′), l ≥ 2 with n ≥ 3. From c′ = µ′c.rad(c′) =
lradn(c′)(δ2 − 3rad(a)), we denote m = δ2 − 3rad(a) = δ2 − 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G - Case m 6= 1, 3. Let q be a prime that divides m, it follows q|µ′c =⇒ q =
c′j′0

=⇒ c′j′0
|δ2 =⇒ c′j′0

|3rad(a). Then rad(a) and rad(c′) are not coprime. It
follows the contradiction.

I-3-2-4- We suppose δ =
∏
j∈J1 c

′βj
j , βj ≥ 1 with at least one j0 ∈ J1 with

βj0 ≥ 2, rad(c′) - δ. We can write:

(3.13) δ = µδ.rad(δ), rad(c′) = m.rad(δ), m > 1, (m,µδ) = 1

Then, we obtain:

c′ = µ′c.rad(c′) = µ′c.m.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
m.µ′c = µδ(δ2 − 3X)(3.14)
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- If µ′c = µδ =⇒ m = δ2 − 3X = (µ′c.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒ m >

δ =⇒ rad(c′) > m > µ′c.rad(δ) > rad3(c′) because µ′c > rad2.26(c′), it follows
rad(c′) > rad2(c′). Then the contradiction.

- We suppose µ′c < µδ. As rad(a) = µδrad(δ)− 1, we obtain:

rad(a) > µ′c.rad(δ)− 1 > 0 =⇒ rad(ac′) > c′.rad(δ)− rad(c′) > 0 =⇒

c′ > rad(ac′) > c′.rad(δ)− rad(c′) > 0 =⇒ 1 > rad(δ)− rad(c′)
c′

> 0, rad(δ) ≥ 2

=⇒ The contradiction(3.15)

- We suppose µδ < µ′c. In this case, from the equation (3.14) and as (m,µδ) =
1, it follows we can write:

µ′c = µ1.µ2, µ1, µ2 > 1(3.16)
c′ = µ′crad(c′) = µ1.µ2.rad(δ).m = δ.(δ2 − 3X)(3.17)

so that m.µ1 = δ2 − 3X, µ2 = µδ =⇒ δ = µ2.rad(δ)(3.18)

** We suppose (µ1, µ2) 6= 1, then ∃ c′j0 so that c′j0 |µ1 and c′j0 |µ2. But µδ =
µ2 ⇒ c′2j0 |δ. From 3X = δ2 −mµ1 =⇒ c′j0 |3X =⇒ c′j0 |X or c′j0 = 3.

- If c′j0 |X, it follows the contradiction with (c′, a) = 1.
- If c′j0 = 3. We havemµ1 = δ2−3X = δ2−3(δ−1) =⇒ δ2−3δ+3−m.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3kµ′1, 3 - µ′1, k ≥ 1, we obtain:

(3.19) δ2 − 3δ + 3(1− 3k−1mµ′1) = 0

- We consider the case k > 1 =⇒ 3 - (1−3k−1mµ′1). Let us recall the Eisenstein
criterion [7]:

Theorem 3.3. — (Eisenstein Criterion) Let f = a0 + · · ·+ anX
n

be a polynomial ∈ Z[X]. We suppose that ∃ p a prime number so that
p - an, p|ai, (0 ≤ i ≤ n− 1), and p2 - a0, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(3.20) R(Z) = Z2 − 3Z + 3(1− 3k−1mµ′1)

then:
- 3 - 1, - 3|(−3),- 3|3(1− 3k−1mµ′1), and - 32 - 3(1− 3k−1mµ′1).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction
with R(δ) = 0.
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- We consider the case k = 1, then µ1 = 3µ′1 and (µ′1, 3) = 1, we obtain:

(3.21) δ2 − 3δ + 3(1−mµ′1) = 0

* If 3 - (1 −m.µ′1), we apply the same Eisenstein criterion to the polynomial
R′(Z) given by:

R′(Z) = Z2 − 3Z + 3(1−mµ′1)
and we find a contradiction with R′(δ) = 0.

* We consider that 3|(1−m.µ′1) =⇒ mµ′1 − 1 = 3i.h, i ≥ 1, 3 - h, h ∈ N∗. δ is
an integer root of the polynomial R′(Z):
(3.22)
R′(Z) = Z2−3Z+3(1−mµ′1) = 0⇒ the discriminant of R′(Z) is :∆ = 32+3i+1×4.h

As the root δ is an integer, it follows that ∆ = l2 > 0 with l a positive integer.
We obtain:

∆ = 32(1 + 3i−1 × 4h) = l2(3.23)
=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(3.24)

We can write the equation (3.21) as :

δ(δ − 3) = 3i+1.h =⇒ 33µ′1
rad(δ)

3 .
(
µ′1rad(δ)− 1

)
= 3i+1.h =⇒(3.25)

µ′1
rad(δ)

3 .
(
µ′1rad(δ)− 1

)
= h(3.26)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′1rad(δ)(µ′1rad(δ) − 1). Then, q
satisfies :

q2 − 1 = 12h⇒ (q−1)
2 . (q+1)

2 = 3h = (µ′1rad(δ)− 1).µ′1rad(δ)⇒(3.27)
q − 1 = 2µ′1rad(δ)− 2(3.28)
q + 1 = 2µ′1rad(δ)(3.29)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(3.30) x2 − y2 = N

with N = 12h > 0. Let Q(N) be the number of the solutions of (3.30)
and τ(N) is the number of suitable factorization of N , then we announce the
following result concerning the solutions of the Diophantine equation (3.30)
(see theorem 27.3 in [6]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
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- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

Let (α′,m′), α′,m′ ∈ N∗ be another pair, solution of the equation (3.30), then
α′2−m′2 = x2−y2 = N = 12h, but q = x and 1 = y satisfy the equation (3.29)
given by x+ y = 2µ′1rad(δ), it follows α′,m′ verify also α′ +m′ = 2µ′1rad(δ),
that gives α′ − m′ = 2(µ′1rad(δ) − 1), then α′ = x = q = 2µ′1rad(δ) and
m′ = y = 1. So, we have given the proof of the uniqueness of the so-
lutions of the equation (3.30) with the condition x + y = 2µ′1rad(δ). As
N = 12h ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2] = [τ(3h)/2], the expression of
3h = µ′1.rad(δ).

(
µ′1rad(δ)− 1

)
, then Q(N) = [τ(3h)/2] > 1. But Q(N) = 1,

then the contradiction and the case 3|(1−m.µ′1) is to reject.

** We suppose that (µ1, µ2) = 1.

From the equation mµ1 = δ2 − 3X = δ2 − 3(δ − 1), we obtain that δ is a root
of the following polynomial :

(3.31) R(Z) = Z2 − 3Z + 3−m.µ1 = 0

The discriminant of R(Z) is:

(3.32) ∆ = 9− 4(3−m.µ1) = 4m.µ1 − 3 = q2 with q ∈ N∗ as δ ∈ N∗

- We suppose that 2|mµ1 =⇒ c′ is even. Then q2 ≡ 5(mod8), it gives a
contradiction because a square is ≡ 0, 1 or 4(mod 8).

- We suppose c′ an odd integer, then a is even. It follows a = rad3(a) ≡
0(mod8) =⇒ c′ ≡ 1(mod8). As c′ = δ2 − 3X.δ, we obtain δ2 − 3X.δ ≡
1(mod 8). If δ2 ≡ 1(mod 8) =⇒ −3X.δ ≡ 0(mod 8) =⇒ 8|X.δ =⇒ 4|δ =⇒ c′

is even. Then, the contradiction. If δ2 ≡ 4(mod8) =⇒ δ ≡ 2(mod8) or
δ ≡ 6(mod 8). In the two cases, we obtain 2|δ. Then, the contradiction with
c′ an odd integer.

It follows that the case c > rad3.26(c) and a = rad3(a) is impossible.

I-3-3- We suppose c > rad3.26(c) and large, then c = rad3(c) + h, h > rad3(c),
h a positive integer and µa < rad2(a) =⇒ a + l = rad3(a), l > 0. Then we
obtain :

(3.33) rad3(c) + h = rad3(a)− l + b =⇒ rad3(a)− rad3(c) = h+ l − b > 0
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as rad(a) > rad
1.63
1.37 (c). We obtain the equation:

(3.34) rad3(a)− rad3(c) = h+ l − b = m > 0

Let X = rad(a) − rad(c), then X is an integer root of the polynomial H(X)
defined as:

(3.35) H(X) = X3 + 3rad(ac)X −m = 0

To resolve the above equation, we denote X = u+ v, It follows that u3, v3 are
the roots of the polynomial G(t) given by:

(3.36) G(t) = t2 −mt− rad3(ac) = 0

The discriminant of G(t) is ∆ = m2 + 4rad3(ac) = α2, α > 0. The two real
roots of (3.36) are:

(3.37) t1 = u3 = m+ α

2 , t2 = v3 = m− α
2

As m = rad3(a) − rad3(c) > 0, we obtain that α = rad3(a) + rad3(c) > 0,
then from the expression of the discriminant ∆, it follows that (α = x,m = y)
is a solution of the Diophantine equation:

(3.38) x2 − y2 = N

with N = 4rad3(ac) > 0. From the expression of ∆ above, we remark that α
and m verify the following equations:

x+ y = 2u3 = 2rad3(a)(3.39)
x− y = −2v3 = 2rad3(c)(3.40)

then x2 − y2 = N = 4rad3(a).rad3(c)(3.41)

Let Q(N) be the number of the solutions of (3.38) and τ(N) is the number of
suitable factorization of N , and using the same method as in the paragraph
I-3-2-4- (case 3|(1−m.µ′1)), we obtain a contradiction.

It follows that the cases µa ≤ rad2(a) and c > rad3.26(c) are impossible.

II- We suppose that rad1.63(c) < µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒
c < rad1.63(c).rad1.37(a) < rad1.63(ac) < rad1.63(abc) =⇒ c < R1.63 .

II-2- Case rad(a) < rad(c) < rad
1.63
1.37 (a) : As c ≤ rad3(c) ≤ rad1.63(c).rad1.37(c) =⇒
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c < rad1.63(c).rad1.63(a) < rad1.63(abc) =⇒ c < R1.63 .

II-3- Case rad
1.63
1.37 (a) < rad(c):

II-3-1- We suppose rad2.63(a) < a ≤ rad3.26(a) =⇒ a ≤ rad1.63(a).rad1.63(a) =⇒
a < rad1.63(a).rad1.37(c) =⇒ c = a + b < 2a < 2rad1.63(a).rad1.63(c) <

rad1.63(abc) =⇒ c < R1.63 =⇒ c < R1.63 .

II-3-2- We suppose a > rad3.26(a) and µc ≤ rad2(c). Using the same method
as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a, c), we arrive
at a contradiction. It follows that the case µc ≤ rad2(c) and a > rad3.26(a) is
impossible.

Finally, we have finished the study of the case rad1.63(c) < µc ≤ rad2(c) and
µa > rad1.63(a).

3.2.3.3. Case µc > rad1.63(c) and µa > rad1.63(a). — Taking into account
the cases studied above, it remains to see the following two cases:

- µc > rad2(c) and µa > rad1.63(a),
- µa > rad2(a) and µc > rad1.63(c).

III-1- We suppose µc > rad2(c) and µa > rad1.63(a) =⇒ c > rad3(c) and
a > rad2.63(a). We can write c = rad3(c) + h and a = rad3(a) + l with h a
positive integer and l ∈ Z.

III-1-1- We suppose rad(c) < rad(a). We obtain the equation:

(3.42) rad3(a)− rad3(c) = h− l − b = m > 0

Let X = rad(a) − rad(c), from the above equation, X is a real root of the
polynomial:

(3.43) H(X) = X3 + 3rad(ac)X −m = 0

As above, to resolve (3.43), we denote X = u+v, It follows that u3, v3 are the
roots of the polynomial G(t) given by :

(3.44) G(t) = t2 −mt− rad3(ac) = 0

The discriminant of G(t) is:

(3.45) ∆ = m2 + 4rad3(ac) = α2, α > 0



3.2. A PROOF OF THE CONJECTURE c < rad1.63(abc), CASE c = a+ b 98

The two real roots of (3.44) are:

(3.46) t1 = u3 = m+ α

2 , t2 = v3 = m− α
2

As m = rad3(a) − rad3(c) > 0, we obtain that α = rad3(a) + rad3(c) > 0,
then from the equation (3.45), it follows that (α = x,m = y) is a solution of
the Diophantine equation:

(3.47) x2 − y2 = N

with N = 4rad3(ac) > 0. From the equations (3.46), we remark that α and
m verify the following equations:

x+ y = 2u3 = 2rad3(a)(3.48)
x− y = −2v3 = 2rad3(c)(3.49)

then x2 − y2 = N = 4rad3(a).rad3(c)(3.50)

Let Q(N) be the number of the solutions of (3.47) and τ(N) is the number of
suitable factorization of N , and using the same method as in the paragraph
I-3-2-4- (case 3|(1−m.µ′1)), we obtain a contradiction.

III-1-2- We suppose rad(a) < rad(c). We obtain the equation:

(3.51) rad3(c)− rad3(a) = b+ l − h = m > 0

Using the same calculations as in III-1-1-, we find a contradiction.

It follows that the case µc > rad2(c) and µa > rad1.63(a) is impossible.

III-2- We suppose µa > rad2(a) and µc > rad1.63(c) =⇒ a > rad3(a) and
c > rad2.63(c). We can write a = rad3(a) + h and c = rad3(c) + l with h a
positive integer and l ∈ Z.

The calculations are similar to those in case III-1-. We obtain the same results
namely the cases of III-2- to be rejected.

It follows that the case µc > rad1.63(c) and µa > rad2(a) is impossible.

We can state the following important theorem:

Theorem 3.4. — Let a, b, c positive integers relatively prime with c =
a+ b, then c < rad1.63(abc).
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3.3. The Proof of the abc conjecture

We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case
c = a+ 1. We recall the following proposition [4]:

Proposition 3.5. — Let ε −→ K(ε) the application verifying the abc
conjecture, then:

(3.52) limε→0K(ε) = +∞

3.3.1. Case : ε ≥ 0.63. — As c < R1.63 is true, we have ∀ε ≥ 0.63:

(3.53) c < R1.63 ≤ R1+ε < K(ε).R1+ε, with K(ε) = e

1
0.632 , ε ≥ 0.63

Then the abc conjecture is true.

3.3.2. Case: ε < 0.63. —

3.3.2.1. Case: c > R. — From the statement of the abc conjecture 3.1,
we want to give a proof that c < K(ε)R1+ε ⇐⇒ Logc < LogK(ε) + (1 +
ε)LogR⇐⇒ LogK(ε)+(1+ ε)LogR−Logc > 0. For our proof, we proceed by
contradiction of the abc conjecture, so we assume that the conjecture is false:
(3.54)
∃ ε0 ∈]0, 0.63[,∀K(ε) > 0, ∃ c0 = a0+b0 so that c0 > K(ε0)R1+ε0

0 =⇒ c0 not a prime

We choose the constant K(ε) as K(ε) = e

1
ε2 . Let Yc0(ε) = 1

ε2 + (1 +
ε)LogR0 − Logc0, ε ∈]0, 0.63[. From the above explications, if we will obtain
∀ε ∈ ]0, 0.63[, Yc0(ε) > 0 =⇒ Yc0(ε0) > 0, then the contradiction with (3.54).

About the function Yc0 , we have limε−→0.63Yc0(ε) = 1/0.632 +Log(R1.63
0 /c0) >

0 and limε−→0Yc0(ε) = +∞. The function Yc0(ε) has a derivative for ∀ε ∈
]0, 0.63[, we obtain with R0 > 2977:
(3.55)

Y ′c0(ε) = − 2
ε3

+LogR0 = ε3LogR0 − 2
ε3

⇒ Y ′c0(ε) = 0⇒ ε = ε′ = 3

√
2

LogR0
∈ ]0, 0.63[

Discussion:
- If Yc0(ε′) ≥ 0, it follows that ∀ε ∈ ]0, 0.63[, Yc0(ε) ≥ 0, then the contradiction
with Yc0(ε0) < 0 =⇒ c0 > K(ε0)R1+ε0

0 . Hence the abc conjecture is true for
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ε ∈ ]0, 0.63[.

- If Yc0(ε′) < 0 =⇒ ∃ ε1, ε2 satisfying 0 < ε1 < ε′ < ε2 < 0.63, so that
Yc0(ε1) = Yc0(ε2) = 0. Then we obtain c0 = K(ε1)R1+ε1

0 = K(ε2)R1+ε2
0 . We

recall the following definition:

Definition 3.6. — The number ξ is called algebraic number if there
is at least one polynomial:

(3.56) l(x) = l0 + l1x+ · · ·+ amx
m, am 6= 0

with integral coefficients such that l(ξ) = 0, and it is called transcen-
dental if no such polynomial exists.

We consider the equality c0 = K(ε1)R1+ε1
0 =⇒ c0

R
= µc
rad(ab) = e

1
ε21Rε10 .

i) - We suppose that ε1 = β1 is an algebraic number then β0 = 1/ε21 and
R0 = α1 are also algebraic numbers. We obtain:

(3.57) µc
rad(ab) = e

1
ε21Rε10 = eβ0 .αβ1

1

From the theorem (see theorem 3, page 196 in [9]):

Theorem 3.7. — eβ0αβ1
1 . . . αβnn is transcendental for any nonzero al-

gebraic numbers α1, . . . , αn, β0, . . . , βn.

we deduce that the right member eβ0 .αβ1
1 of (3.57) is transcendental, but the

term µc
rad(ab) is an algebraic number, then the contradiction and the abc

conjecture is true.

ii) - We suppose that ε1 is transcendental, in this case there is also a contra-
diction, and the abc conjecture is true.

Remark 3.8. — - We obtain also that K(ε) > 1 if ε ∈]0, 0.63[. If not,
we consider the example 9 = 8 + 1 with 9 > 2 × 3, we take ε = 0.2,
then c < K(0.2)R1+.02 < 1.R1.2. But c = 9 > 61.2 ≈ 8.58, then the
contradiction and K(ε) > 1, ∀ε ∈]0, 0.63[ .
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3.3.2.2. Case: c < R. — In this case, we can write :

(3.58) c < R < R1+ε < K(ε).R1+ε, with K(ε) > 1, 0 < ε < 0.63

The constant K(ε) is taken as for the case c > R above, and the abc conjecture
is true.

Then the proof of the abc conjecture is finished for all ε > 0.

3.4. Conclusion

We have given an elementary proof of the abc conjecture. We can announce
the important theorem:

Theorem 3.9. — For each ε > 0, there exists K(ε) > 0 such that if
a, b, c positive integers relatively prime with c = a+ b, then :

(3.59) c < K(ε).rad1+ε(abc)

where K is a constant depending of ε.

Acknowledgments. The author is very grateful to Professors Mihăilescu
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