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CHAPTER 1

A COMPLETE PROOF OF BEAL’S
CONJECTURE

Abstract. — In 1997, Andrew Beal announced the following conjecture: Let
A,B,C,m,n, and | be positive integers with m,n,l > 2. If A™ + B™ = C' then
A, B, and C have a common factor. We begin to construct the polynomial P(z) =
(z — A™)(z — B™)(z + C') = z® — pz + ¢ with p, q integers depending of A™, B™ and C'.
We resolve 2° — pz + ¢ = 0 and we obtain the three roots z1,x2, 3 as functions of p, ¢ and
a parameter 6. Since A™, B", —C' are the only roots of z® — px 4+ ¢ = 0, we discuss the
conditions that x1,x2,x3 are integers and have or not a common factor. Three numerical

examples are given.

Résumé. — En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient
A, B,C,m,n, etl des entiers positifs avec m,n,l > 2. Si A™ + B" = C" alors A, B, et C
ont un facteur commun.

Nous commencons par construire le polynéme P(z) = (z—A™)(z—B")(z+C") = 2® —pz+¢
avec p, ¢ des entiers qui dépendent de A™, B et C'. Nous résolvons z® — px + ¢ = 0 et nous
obtenons les trois racines x1,x2,rs comme fonctions de p,q et d’'un parametre . Comme
A™ B"™ —C" sont les seules racines de 2> — pz + ¢ = 0, nous discutons les conditions pourque

1, T2, s soient des entiers. Trois exemples numériques sont présentés.

1.1. Introduction

In 1997, Andrew Beal [4] announced the following conjecture :
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Conjecture 1.1. — Let A, B,C,m,n, and [ be positive integers with
m,n,l > 2. If:

(1.1) A™ 4 B" = C!

then A, B, and C have a common factor.

\. J

In this paper, we give a complete proof of the Beal Conjecture. Our idea is
to construct a polynomial P(x) of three order having as roots A", B™ and
—C" with the condition (1.1). The paper is organized as follows. In Section
1, we begin with the trivial case where A™ = B". In Section 2, we consider
the polynomial P(x) = (z — A™)(z — B")(z + C') = 2® — pr + q. We express
the three roots of P(z) = 3 — pr 4+ ¢ = 0 in function of two parameters p, 0
that depend of A™, B™ C!. The Sections 3,4 and 5 are the main parts of the

4 0
paper. We write that A?™ = §0052§. As A?™ is an integer, it follows that

0

0032§ must be written as % where a, b are two positive coprime integers. We

discuss the conditions of divisibility of p,a,b so that the expression of A?™ is
an integer. Depending of each individual case, we obtain that A, B, C' have or
not a common factor. We present three numerical examples in section 6 and
we give conclusions in the last section.

1.1.1. Trivial Case. — We consider the trivial case when A™ = B"™. The
equation (|1.1)) becomes:

(1.2) 2A™ = (!

then 2|C! = 2|C = Jc € N*/ C = 2¢, it follows 2A4™ = 2l = A™ =
271l As 1> 2, then 2|A™ = 2|A = 2|B"™ = 2|B. The conjecture ({3.1)
is verified.

We suppose in the following that A™ > B™.

1.2. Preliminaries

Let m,n,l € N* > 2 and A, B,C € N* such:

(1.3) A™ 4 B" = (!
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We call:

P(x) = (x — A™)(z — B")(x + C!) = 23 — 22(A™ + B" — (V)
(1.4) +z[AmB" — CY(A™ + B™)] 4+ C'A™B"
Using the equation (1.3)), P(z) can be written as:

(1.5) P(z) = a® + 2[A"B" — (A™ + B™)?| + AmMB"(A™ + B")

We introduce the notations:

(1.6) p=(A"+4 B")% - A™B"

(1.7) q=A"B"(A™ + B")

As A™ £ B", we have :

(1.8) p> (A" - B")?>0

Equation becomes:

(1.9) P(x) =2® —px +q

Using tlrlle equation , P(z) = 0 has three different real roots : A™, B"
and —C".

Now, let us resolve the equation:

(1.10) P(x)=a2%—pr+q=0
To resolve let:

(1.11) r=u+v

Then P(x) = 0 gives:

(1.12)

P(z) = P(utv) = (ut+v)*—p(utv)+q = 0 = v*+03+ (u+v) (Buv—p)+¢ =0
To determine « and v, we obtain the conditions:

(1.13) w4+ 0% = —¢

(1.14) uw =p/3>0

Then u? and v? are solutions of the second order equation:

(1.15) X2 4 gX +p*/27=0

Its discriminant A is written as :

27¢* — 4p®

1.1 A =g —4p3/27T =
(116) ¢ - ap/a1 = =

A
27
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Let:

A =27¢* — 4p® = 271(A™B"(A™ + B™))* — 4[(A™ + B")? — A™B"]?
(1.17) = 27TA*m B (A™ 4 B")? — 4[(A™ + B")? — A™B"}3
Noting :

(1.18) a=A"B" >0

(1.19) B=(A"+ B")?

we can write as:

(1.20) A =270%8 — 4(8 — a)®
As a # 0, we can also rewrite as :

(1.21) A=a® (27§ —4 (g - 1>3>
We call ¢t the parameter :

(1.22) t= g

A becomes :

(1.23) A =327t —4(t—-1)%)
Let us calling :

(1.24) y=y(t) =27t —4(t —1)3

Since a > 0, the sign of A is also the sign of y(t). Let us study the sign of y.
We obtain y/(t):

(1.25) y'(t) =1y =3(1+2t)(5—2t)

Yy =0= t; = —1/2 and t3 = 5/2, then the table of variations of y is given
below:

The table of the variations of the function y shows that y < 0 for ¢ > 4. In
our case, we are interested for ¢ > 0. For ¢ = 4 we obtain y(4) = 0 and for
t €]0,4[= y > 0. As we have t = g > 4 because as A™ # B":

(1.26) (A™ —B™?>0= = (A™+ B")? > 4a = 4A™B"

Then y < 0 = A < 0= A < 0. Then, the equation 1) does not have
real solutions u? and v3. Let us find the solutions u and v with z = u+ v is a
positive or a negative real and u.v = p/3.



1.2. PRELIMINARIES

t - -12 52 4 +oc
1+2t - m + ‘ +
52t + T + To

y®

- |T| + 0 :

FIGURE 1. The table of variations

1.2.1. Expressions of the roots. —

Proof. — The solutions of (1.15)) are:

(1.27) X, = % V-4
—  —g—iV=A
(1.28) Xy=X;, = 4 ;
We may resolve:
(1.29) B
' 2
(1.30) e Sl
2
Writing X1 in the form:
(1.31) X, = pe®
with:
(1.32) po V& A _pJp
2 3v/3
V—=A
(1.33) and sinf = >0
2p
q

1.34 0=——<0
(1.34) cos %

12
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Then 0 [27] €] + g, +m[, let:

T T 0 w 1 0 3
1.35 T <o =l o ¥
(1.35) 5 < < 4w 6<3<3 2<co:33<2
and:
1 6 3
1. Z 272 2
(1.36) 4<6083<4

hence the expression of Xs:

(1.37) Xy =pe ¥
Let:
(1.38) u=re¥
-1+ cor
(1.39) and j = —;z\/g s
dr 141 .
(1.40) =¥ = +2“/§ —7

13

j is a complex cubic root of the unity <= j3 = 1. Then, the solutions u and

v are:
(1.41) up = ret¥1 — \S/ﬁeig
(1.42) Uy = Tehpg _ Wjei% _ \3/561-0-%2«
(1.43) ug =re'’s = \%erig = \S/ﬁei%ﬂe“% = \?’/ﬁeﬁ?’r
and similarly:

(1.44) v = re= = ypei
(145) v =re ¥ = YpjPe ' = Ype'F el = Ypei T
(1.46) Vg = re~ s = {”/ﬁje*i% _ \3/561-27?9

We may now choose u; and v so that up + v, will be real. In this case, we

have necessary :

(1.47) v = UL
(1.48) vo = Up
(1.49) U3 = U3
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We obtain as real solutions of the equation (|1.12)):

0
(1.50) 1 =ul +v = 2\3/ﬁcos§ >0
(151)  @g =wug+ vy = 2¢pcos™2X = —/p (cos% + \/gsing) <0

(1.52)  z3=wug+v3= 2\3/50089‘*'% = p (—cosg + \/gsing) >0

We compare the expressions of x1 and x3, we obtain:

?
2\3/pﬁcos§/>\ Ip (—cos% + ﬁsin%)
?

(1.53) 3COS%?\/§S7JTL§

0 6 0
As - €]+ %, +E[, then sing and cosg are > 0. Taking the square of the two

members of the last equation, we get:

1 0
(1.54) 1< coszg

0
which is true since 3 el+ %, +g[ then 21 > x3. As A™, B" and —C' are the
only real solutions of ([1.10]), we consider, as A™ is supposed great than B",

the expressions:
(1.55)

0
A" =31 =uy +v1 = 2%@055

4

0 0 0
t)) =p (—0053 + \/gsin?’)

B" = x3 = u3z + v3 = 2/pcos

+ 27

0
—Cl' =29 =ug+1vy = 2/ pcos 3

=—p (Cosg + \/gszn§>
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1.3. Preamble of the Proof of the Main Theorem

Theorem 1.2. — Let A,B,C,m,n, and | be positive integers with
m,n,l > 2. If:

(1.56) A™ 4 B" = C!

then A, B, and C have a common factor.

0 0
Proof. — A™ = 2{5/ﬁcos§ is an integer = A?™ = 4/ p20052§ is also an inte-
ger. But :

: p
1.57 392 — £
(1.57) Pr=3
Then:

0 4 0
(1.58) =4{/p2cos*= = — 4P 0032§ =p3 6082§
om : : : . 20 .

As A“™ is an integer and p is an integer, then cos 3 must be written under
the form:

1
(1.59) cos2§ =3 o 6082§ = %

with b € N*; for the last condition a € N* and a, b coprime.

Notations: In the following of the paper, the scalars a,b,...,z, «, 3, ...,
A, B,C,... and A, ®, ... represent positive integers except the parameters 6, p,
or others cited in the text, are reals.

0 1
1.3.1. Case 0032§ = 7 We obtain:

4 0 4p
1.60 AP = p Z cosP- = ==
(1.60) P3% 3= 30

1 0 3 1 1 3

1.3.1.1. b=1. — b=1= 4 < 3 which is impossible.
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2.
:?p:>3|p:>p:3p'withp’7él

DN | =

4
1.3.1.2. b=2. — b=2= A" =p3

because 3 < p, we obtain:

2
A2 = (A™)2 = L 2.p = 2lp) = p' = 2%p?

3
with 2{p;, a+1=2p
(1.61) A™ = 26p,
, 6
(1.62) BrCl = {fp? (3 - 400323) — =297

From the equation (1.61)), it follows that 2|A™ = A = 2!A;, i > 1 and
2t A;. Then, we have f = i.m = im. The equation (1.62) implies that
2|(B"C") = 2|B"™ or 2|C".

1.3.1.2.1. Case 2|B™. — : If 2|B" = 2|B = B = 2/ B; with 2{ B;. The
expression of B"C! becomes:

B{LCZ _ 22im—1—jnp%
-If 2im — 1 —jn > 1, 2|C' = 2|C according to C! = 2™ AT 42" B and the
conjecture (3.1)) is verified.
- If 2im — 1 — jn < 0 = 21 C', then the contradiction with C! = 2m AP +
2in B,
1.3.1.2.2. Case 2|C'. — : If 2|C": with the same method used above, we

obtain the identical results.

41 4
18.1.3. b=3 — b=3= A" =p_. = gp
as 9 < p then A?™ = 4p/. If p/ is prime, it is impossible. We suppose that p’
is not a prime, as m > 3, it follows that 2|p/, then 2|A™. But B"C! = 5p’ and
2|(B™C"). Using the same method for the case b = 2, we obtain the identical

results.

= 9p=p=9p with p’ # 1,

0
1.3.2. Case a > 1, 00323 = %. — We have:
20 a om 4 5,0 4dpa

(1.63) cos”z =33 A" = p-g-cos’y = —4
where a, b verify one of the two conditions:
(1.64) ‘ {3la and bl4p} ‘ or ’ {3]p and bl4p} ‘

and using the equation (|1.36), we obtain a third condition:
(1.65) b < 4a < 3b
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p

0
For these conditions, A?™ = 43/ p20052§ = 47.00525 is an integer.

w

Let us study the conditions given by the equation ([1.64) in the following two
sections.

1.4. Hypothesis : {3la and bl4p}

We obtain :
(1.66) 3la = 3d' e N* / a = 3d
1.4.1. Case b= 2 and 3|a : — A*™ is written as:
4p 0 4pa 4pa 2pa
1. A = T8 22 = T 2 2
(1.67) 337 3% 32 3

Using the equation (1.66)), A>™ becomes :

(1.68) pzm 2P ;’a/ =2p.a

but 6082§ = % = 3;/ > 1 which is impossible, then b # 2.
1.4.2. Case b=4 and 3|a : — A*™ is written :

(1.69) A*™ = 4?pcosﬁg = 4?1)% = 4?]9% = % = p.ga’ =p.d
(1.70) and 6082§ = % = 3':/ < (?)2 = % —ad <1

which is impossible. Then the case b = 4 is impossible.

1.4.3. Case b=p and 3|a : — We have :
0 3d’
(1.71) cos2§ = % = ?a
and:
4 0 4 !
(1.72) AP = gp.0032§ = 3.35 =4a' = (A™)?
(1.73) Ja” / d = a”?

(1.74) and B"C'=p— A’ =b—4d = b— 4a”
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The calculation of A™B"™ gives :

20
AMB™ = p.\ggsin?) —2d’
20
(1.75) or A™B"+2d = p.\égsirL:3

260
The left member of (|1.75]) is an integer and p also, then 2?52'11? is written

under the form :

\/§ 20 k1
1. 2 ¥ inZ =1
(1.76) 3 S o

where kq, ko are two coprime integers and ko|p = p = b = ko.ks3, ks € N*.

** A-1- We suppose that k3 # 1, we obtain :

(1.77) AT (A™ + 2B") = ky.ks

Let p be a prime integer with u|ks, then p|b and p|A™(A™ + 2B™) = p|A™
or u|(A™ + 2B™).

#A-1-1- If p|A™ = p|A and p|A*™, but A*™ = 4’ = pldd = (u = 2,
but 2|a’) or (p|a’). Then ula it follows the contradiction with a,b coprime.

*A-1-2- If pf|(A™ 4+ 2B™) = pt A™ and p { 2B™ then p # 2 and p { B™.
We write p|(A™ + 2B") as:
(1.78) A" +2B" = p.t
It follows :

A™ 4+ B" = ut’ — B" = A?™ 4 B?" 4+ 2A™B" = ;*t”? — 2t/ uB" 4+ B*"
Using the expression of p:
(1.79) p=1t?u? —2'B"y + B"(B" — A™)
As p = b= ko.ks and plks then pu|b = I’ and b = pp’, so we can write:
(1.80) p'u = p(ut’® — 2/ B™) + B"(B" — A™)
From the last equation, we obtain u|B™(B™ — A™) = u|B" or p|(B™ — A™).

*% A-1-2-1- If p|B™ which is in contradiction with p{ B™.
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*KOA-1-2-2- If p|(B™ — A™) and using that p|(A™ + 2B™), we arrive to :

pulB"
(1.81) p|3B™ < or
p=3

ok A-1-2-2-1- If p|B™ = p|B, it is the contradiction with p { B cited above.

% A-1-2-2-2- If u = 3, then 3|b, but 3|a then the contradiction with a,b
coprime.

** A-2- We assume now k3 = 1, then :

(1.82) A?™M 4 2A™B" = |y
(1.83) b= ko
2v/3 . 20 Kk
(1.84) \3[82'713 = ?1
Taking the square of the last equation, we obtain:
4 520 kP
FRAEr
16 .0 .0 k%

3773773 12
16,0 3d K}
33Ty T W

Finally:

(1.85) 420/ (p — a) = k3

but @’ = a”?, then p — a is a square. Let:

(1.86) M=p-—a=b-a=b-3a"" = N +3a2=b

The equation becomes:

(1.87) 4267\ =k} = ky = 4a”\

taking the positive root, but ky = A™(A™ + 2B™) = 2a”(A™ + 2B"), then :
(1.88) A" +2B" =2\ = A=a"+ B"

A2-1- As A™ = 207 = 2|A™ = 2|A = A = 2'A;, with i > 1 and
21 Ay, then A™ = 2a” = 2MAT = o” = 2"~ L AT but im > 3 = 4]a”. As
p=b=A?" + AMB" 4 B = \ = 2m~1Am 4 B" Taking its square, then :

)\2 — 22im—2A%m + QZmAvlan + BZTL
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As im > 3, we can write A2 = 4\ + B = \? = an(modél) = A\ =
B?" = 0(mod 4) or A2 = B?" = 1(mod 4).

** A-2-1-1- We suppose that \2 = B?" = 0(mod4) = 4|)\? = 2|(b — a).
But 2|a because a = 3d’ = 3a”? = 3 x 22(m=1) A2™ and im > 3. Then 2|b, it
follows the contradiction with a,b coprime.

#* A-2-1-2- We suppose now that A2 = B?" = 1(mod 4). As A™ = 2m~1Ap
and im — 1 > 2, then A™ = O(mod4). As B?" = 1(mod4), then B"
verifies B" = 1(mod4) or B" = 3(mod4) which gives for the two cases
B"C' = 1(mod 4).

We have also p = b= A"+ A" B" + B*" = 4¢/ + B".C! = 40”"?+ B"C! =
B"C! = X2 — @2 = B".C!, then \,a” € N* are solutions of the Diophantine
equation :

(1.89) w2 —y* =N

with N = B"C! > 0. Let Q(N) be the number of the solutions of
and 7(NV) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the equation (see theorem
27.3 in [6]):

-If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

-If N =0(mod4), then Q(N) = [r(N/4)/2].

[x] is the integral part of = for which [z] < x < [z] + 1.

Let (u,v), u,v € N* be another pair, solution of the equation , then
u? —v? =22 —y? = N = B"C!, but A = z and a” = y verify the equation
given by z —y = B", it follows u, v verify also u — v = B™, that gives
u+v=C! then u =2 = X\ =a” + B" and v = a”. We have given a proof
of the uniqueness of the solutions of the equation with the condition
r—y=DB" As N = B"C! = 1(mod4) = Q(N) = [r(N)/2] > 1. But
Q(N) =1, then the contradiction.

Hence, the case k3 = 1 is impossible.
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Let us verify the condition (1.65) given by b < 4a < 3b. In our case, the
condition becomes :

(1.90) p < 3A® < 3p with p= A*™ 4 B*™ 4 AmB"

and 34%™ < 3p = A?™ < p that is verified. If :
?

p < 3AZM — 242m _ gmpBn _ g

Studying the sign of the polynomial Q(Y) = 2Y2 — B"Y — B?" and taking
Y = A™ > B", the condition 24%™ — A™B™ — B?" > () is verified, then the
condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b
implies to verify that A™ > B™ which is true.

1.4.4. Case blp= p=bp,p>1,b#2,b#4 and 3|a : —

4.b.p' 3.d/
3.b

4.
(1.91) A2 = —p.% = = 49d

We calculate B"C":
0 0 0
nl 03 -2 2 _ 3 2
(1.92) B"C" =/ p? <3sm 3 ~ cos 3> = y/p? (3—4005 3)

3.a/
b we obtain:

0
but {/p? = g, using 6032§ =
(1.93)

0 a 4.0/
B"C! = <’/p>2 (3 — 400323) = g (3 _43ba ) =Dp- (1 - ba ) =p/(b— 4a’)

As p=b.p/, and p’ > 1, so we have :

(1.94) B"C! = p/(b— 4d))
(1.95) and A¥ =4.9.d

** B-1- We suppose that p’ is prime, then A?*™ = 4ap’ = (A™)? = p'|a. But
B"C' = p/(b — 4d’) = p/|B" or p/|C".

¥ B-1-1- If p/|B" = p/|B = B = p'B; with By € N*. Hence :
p"IBPCl =b—4d. But n > 2= (n—1) > 1 and p'|a’, then p'|b = a and
b are not coprime, then the contradiction.
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#* B-1-2- If p/|C! = p/|C. The same method used above, we obtain the same
results.

** B-2- We consider that p’ is not a prime integer.

*% B-2-1- p/,a are supposed coprime: A’ = 4dap’ = A™ = 2d’.p; with
a=a? and p’ = p?, then o, p; are also coprime. As A™ = 2a’.p; then 2|a’ or
2|p1.

** B-2-1-1- 2|d/, then 2|a’ = 24 p;. But p' = p3.

** B-2-1-1-1- If py is prime, it is impossible with A™ = 2a/.p;.
** B-2-1-1-2- We suppose that p; is not prime, we can write it as
p1 = wm = p' = w?™ then: B"C! = w?™(b— 4d’).

#% B-2-1-1-2-1- If w is prime, it is different of 2, then w|(B"C!) = w|B™ or
w|C.

#* B-2-1-1-2-1-1- If w|B" = w|B = B = w/B; with w { Bj, then
B.C' = w?m=ni (b — 4a').

¥ B-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B}.C' = b — 4da’. As
Cl = Am + B" = w|C! = w|C, and w|(b — 4a’). But w # 2 and w is
coprime with a’ then coprime with a, then w { b. The conjecture (3.1)) is
verified.

** B-2-1-1-2-1-1-2- If 2m — nj > 1, in this case with the same method, we
obtain w|C! = w|C and w|(b—4a’) and w { @ and w 1 b. The conjecture (3.1)
is verified.

¥ B-2-1-1-2-1-1-3- If 2m —nj < 0 = W™~ 2"Br.CY = b —4d’. As w|C
using ! = A™ + B" then C = wh.C} = wnJi=2mthipn b = b — 4d/. If
n.j —2m+ h.l < 0 = w|B}C!, it follows the contradiction that w { By or
wt C1. Then if n.j —2m + h.l > 0 and w|(b — 4a") with w, a,b coprime and
the conjecture is verified.
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#* B-2-1-1-2-1-2- We obtain the same results if w|C’.

*%k B-2-1-1-2-2- Now, p’ = w?™ and w not prime, we write w = w{.Q with wq
prime{ Q and f > 1 an integer, and wi|A. Then B"C! = wff'mQ2m(b—4a’) =
wi|(B"CY) = w1|B" or w|CL.

** B-2-1-1-2-2-1- If w|B" = w1|B = B = w{Bl with w; t Bj, then
BP.Cl = 2™ mmiqg2m(p — 4q'):

¥ B-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C' = Q>™(b — 4a’). As
Cl = A™ + B" = w1|C! = w1|C = w1|(b— 4a’). But wy # 2 and wy is
coprime with a’, then coprime with a, we deduce w; 1 b. Then the conjecture

(3.1) is verified.

#¥ B-2-1-1-2-2-1-2- If 2f.m —n.j > 1, we have w;|C! = w1|C = w1 |(b—4d’)
and wi 1 a and wy 1 b. The conjecture (3.1)) is verified.

# B-2-1-1-2-2-1-3- If 2f.m — n.j < 0 = w72/ Br.cl = Q2m(h — 4a).
As w1|C using C! = A™ + B" then C = wh.C; = Wni—2mS+hipn ot —
Q¥ (b—4a’). I n.j—2m.f+hl <0 = w|B}C!, it follows the contradiction
with wy 1 By and wy 1 C1. Then if n.j —2m.f + h.l > 0 and wq|(b — 4a’) with
w1, a,b coprime and the conjecture is verified.

#¥ B-2-1-1-2-2-2- We obtain the same results if wi |C.
#* B-2-1-2- If 2|py, then 2|p; = 2{a’ = 2{a. But p’ = p?.

** B-2-1-2-1- If p; = 2, we obtain A™ = 4a’ = 2|d’, then the contradiction
with a, b coprime.

** B-2-1-2-2- We suppose that p; is not prime and 2|p;, as A™ = 2d'py,
p1 is written as p; = 2™l = p/ = 22722 It follows B"C! =
22m=20,2m (b — 4a') = 2|B" or 2|C".

#* B-2-1-2-2-1- If 2|B" == 2|B, as 2|A, then 2|C. From B"C' =
22m=2,2m(p — 4qa’), it follows if 2|(b — 4a’) == 2|b but as 2 { a, there is
no contradiction with a,b coprime and the conjecture ({3.1)) is verified.
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¥ B-2-1-2-2-2- If 2|C!, using the same method as above, we obtain the
identical results.

** B-2-2- p/,a are supposed not coprime. Let w be a prime integer so that
wla and wlp'.

#* B-2-2-1- We suppose firstly w = 3. As A?™ = dap’ = 3|4, but 3|p’ = 3|p,
as p = A?™ 4+ B? 4 AMB" — 3|B*" = 3|B, then 3|C! = 3|C. We write
A = 3'A;, B = 3B, C = 3"C; and 3 coprime with A;, B; and C; and
p = 32mAIm 4 320) p2n g gimtin AmpR — 3k g with k = min(2im, 2jn, im+jn)
and 31 g. We have also (w = 3)]a and (w = 3)|p that gives a = 3%a; = 3¢’ =
a = 3°lay, 3¢t a; and p' = 3Hpy, 3 1 p1 with A?™ = da'p’ = 32MmAI" =
4x3 M agpr = a+pu—1=2im. Asp = bp) = b.34p; = 3*.b.p.
The exponent of the term 3 of p is k, the exponent of the term 3 of the
left member of the last equation is p. If 3]b it is a contradiction with a,b
coprime. Then, we suppose that 3 {1 b, and the equality of the exponents:
min(2im, 2jn,im + jn) = pu, recall that o + u — 1 = 2im. But B"C! =
P (b — 4a’) that gives 30+ BrCt = 3kp; (b — 4 x 3(®Vga;). We have also
A™ 4 B = C! gives 3™M AT 4+ 3 BY = 3MCL. Let € = min(im, jn), we have
e = hl = min(im, jn). Then, we obtain the conditions:

(1.96) k = min(2im,2jn,im + jn) = u
(1.97) a+p—1=2m
(1.98) € = hl = min(im, jn)
(1.99) 3rith grot — 3iy (b — 4 x 3(@ V)

*¥*B-2-2-1-1-a =1 = a = 3a; = 3a’ and 3 1 a4, the equation becomes:
w=2im
and the first equation is written as:
k = min(2im, 2jn,im + jn) = 2im

- If kK = 2im, then 2im < 2jn = im < jn = hl = im, and gives
p = 2im = nj+hl =im+nj => im = jn = hl. Hence 3|A, 3|B and 3|C and
the conjecture is verified.
-If k = 2jn = 2jn = 2im = im = jn = hi. Hence 3|A, 3|B and 3|C and
the conjecture is verified.
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-If k=1im+ jn = 2im = im = jn = € = hl = im = jn case that is seen
above and we deduce that 3| A, 3| B and 3|C, and the conjecture (3.1)) is verified.

*k B-2-2-1-2-a > 1 = a > 2 and d’ = 3* la;.
-If k= 2im = 2¢m = pu, but p = 2ém + 1 — « that is impossible.
-Ifk=2jn=p = 2jn = 2im + 1 — a. We obtain 2jn < 2im = jn <
im = 2jn < im + jn, k = 2jn is just the minimum of (2im, 2jn,im + jn).
We obtain jn = hl < im and the equation becomes:

BPCL = pi(b—4x 3@ Vay)
The conjecture (3.1)) is verified.

-Ifk=im+jn < 2im = jn <im and k =im + jn < 2jn = im <
nm=—1im = jn=—==%k=1im+jn = 2tm = p but p = 2¢m + 1 — « that is
impossible.

-Ifk=im+ jn < 2im = jn < im and 2jn < im + jn = k that is a
contradiction with k& = min(2im,2jn,im + jn).

** B-2-2-2- We suppose that w # 3. We write a = w®ay with w { a; and
p = whpy with w{pr. As A?™ = dap’ = 4w H.a1.p) = w|A = A = WA,
w{ Ay But B"C! = p/(b—4d") = whp1(b—4a') = w|B"C! = w|B" or w|C".

¥ B-2-2-2-1- w|B" = w|B = B = w/B; and w { B;. From A™ + B" =
Cl = w|C! = w|C. As p = by = whbp; = k(WM kA 4 W2n—kp2n 4
wimHin=k Am By with k = min(2im, 2jn, im + jn). Then :

- If 4 = k, then w 1 b and the conjecture is verified.

- If & > p, then w|b, but w|a we deduce the contradiction with a, b coprime.

- If k < p, it follows from :

w,ubpl _ wk(w%mka%m + w2jn7kB%n + wierjnka?lnB?)

that w|A; or w|B; that is a contradiction with the hypothesis.

¥ B-2-2-2-2- If w|C! = w|C = C = w"C; with w { C1. From A™ 4 B" =
C! = w|(C! — A™) = w|B. Then, we obtain the same results as B-2-2-2-1-
above.

1.4.5. Case b= 2p and 3|a : — We have :

0 a 3d .
cos 370 2 3D 32 a = (A™)" =2l = 2|a
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Then 2|a and 2|b that is a contradiction with a,b coprime.

1.4.6. Case b =4p and 3|a : — We have :
0 a 3d 4p.a  4p 3d
2 2m l m\2 »2
—=—-=— =—=——=a=(A")"=
“CT3T 4p 3b 3 4p @ = (A7) “
with A" =a”

Let us calculate A™B™, we obtain:

W3 20 2 L0 pJ3 .20 d
—.S ST — = —51

AM"B" = - - = — - —
3 My T3 T 3 My T
Azm 2
A"B" + —— = p\/g.sin—e
2 3 3
Let:
2 26
(1.100) A2 9 Ampn — pfsmg
2v/3 260
The left member of (|1.100]) is an integer and p is an integer, then \?)[sin?)
will be written as :
2V3 .20 Ik
sin— = —
3 3 ko

where kq, ko are two integers coprime and ko|p = p = ko.ks.

** C-1- Firstly, we suppose that ks # 1. Then :

AP+ 2A™ B = kg ky
Let p be a prime integer and plks, then p|A™(A™ + 2B™) — u|A™ or
p|(A™ +2B™).

OC-1-1- I pl(A™ = a”) = p|(@”?® = d) = pl(3d = a). As
);

p|ks = ulp = u|(4p = b), then the contradiction with a,b coprime.

O C-1-2- If p|(A™ +2B™) = pt A™ and p f 2B", then:
(1.101) w#2 and piB"

p|(A™ +2B™), we write:
A™ 4+ 2B" = p.t’
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Then:
A™ 4+ B" =yt — B" = A*™ 4 B®" 4+ 2A™B" = 1*t"* — 2t/ uB™ 4+ B*"
— p=t?p? - 2¢'B"u+ B"(B" — A™)
As b = 4p = 4ko.k3 and plks then plb = 3’ so that b = p.u/, we obtain:
i = p(4ut™ — 8t'B™) + 4B"(B" — A™)
The last equation implies p|4B™(B™ — A™), but u # 2 then u|B™ or
ul(Br — Am),
#* C-1-1-1- If p|B™ = then the contradiction with (L.101]).

K C-1-1-2- If p|(B™ — A™) and using p|(A™ + 2B™), we have :

pu|B"
w|3B" = ¢ or
p=3

** (C-1-1-2-1- If p|B™ then the contradiction with (1.101)).

** (C-1-1-2-2- If p = 3, then 3|b, but 3|a then the contradiction with a,b
coprime.

** (C-2- We assume now that k3 = 1, then:

(1.102) A*™ 4 2AM B = |y
p =k
23 20 Ky
—sin— = —
3 3 P
We take the square of the last equation, we obtain :
4 2
fsin2% = ﬁ
3 3 p?
16 . 50 0 K}

2
Finally:
(1.103) d (4p — 3d') = k2
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but @’ = a”?, then 4p — 3d’ is a square. Let :
N=4p—-3d =4p—-a=b—a
The equation becomes :
(1.104) a”?N =k =k = a’\
taking the positive root. Using , we have:
ki =AM(A™ +2B") =a”(A™ +2B")
Then :
A"+ 2B" =)\

Now, we consider that b —a = \> = A2 4 3a”2 = b, then the couple (\,a”)
is a solution of the Diophantine equation:

(1.105) X?24+3Y% =0

with X = XA and Y = a”. But using one theorem on the solutions of the
equation given by ((1.105)), b is written under the form (see theorem 37.4 in

[1):

2 r
b= 2% x 3Lplt - plagPt ... g

where p; are prime integers so that p; = 1(mod6), the ¢; are also prime
integers so that ¢; = 5(mod 6). Then, as b = 4p :
- If t > 1 = 3|b, but 3|a, then the contradiction with a,b coprime.

** (C-2-2-1- Hence, we suppose that p is written under the form:

2s1 28y

p:pilptggql qr

with p; = 1(mod6) and ¢; = 5(mod6). Finally, we obtain that p =
1(mod 6). We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A*™ + A™B"™ + B?" in
function of the values of A™, B"(mod 6). We obtain the table below:
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A".B" 0 1 2 3 4 5
0 1 4 3 41
1 1 3 1131
2 41 01 4 3
3 3113 11
4 4 3 41 01
5 113113

TABLE 1. Table of p (mod 6)

¥ (-2-2-1-1- Case A™ = 0(mod6) = 2|(A™ = a”) = 2|(d/ = a"?) =
2|a, but 2|b, then the contradiction with a,b coprime. All the cases of the
first line of the table [I] are to reject.

** (C-2-2-1-2- Case A™ = 1(mod 6) and B"™ = 0(mod 6), then 2|B" = B" =
2B’ and p is written as p = (A™ + B')?2 4 3B’ with (p,3) = 1, if not 3|p,
then 3|b, but 3|a, then the contradiction with a,b coprime. Hence, the pair
(A™ + B’, B’) is solution of the Diophantine equation:

(1.106) 2?4+ 3y% =p

The solution z = A™ + B’,y = B’ is unique because x — y verify z —y = A™.
If (u,v) another pair solution of ([1.106[), with u,v € N* then we obtain:

w30t =p

u—v=A"

Then u = v+ A™ and we obtain the equation of second degree 4v% + 20A™ —
2B'(A™+2B') = 0 that gives as positive root v1 = B’ = y, thenu = A"+ B’ =
x. It follows that p in has an unique representation under the form
X2 43Y? with X, 3Y coprime. As p is an odd integer number, we applique one
of Euler’s theorems on convenient numbers "numerus idoneus" (see [2],[3]) :
Let m be an odd number relatively prime to n which is properly represented by
22 +ny?. If the equation m = x> +ny? has only one solution with x,y > 0, then
m is a prime number. Then p is prime and 4p has an unique representation
(we put U = 2u, V = 2v, with U2+ 3V? = 4p and U — V = 2A™). But
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b=4dp = A2+ 3a"? = (2(A™ + B'))? + 3(2B’)?, the representation of 4p is
unique gives:

A=2(A"+B')=2a"+ B"=2a" + B"
and o’ =2B =B" =A™

But A™ > B™, then the contradiction.

*k (C-2-2-1-3- Case A™ = 1(mod 6) and B"™ = 2(mod 6), then B" is even, see
C-2-2-1-2-.

** (C-2-2-1-4- Case A™ = 1(mod 6) and B"™ = 3(mod 6), then 3|B" = B" =
3B’. We can write b = 4p = (24™ +3B’)2 4+ 3(3B')? = A\? + 3a”2. The unique
representation of b as 22 + 3y? = A2 + 34”2 = a” = A™ = 3B’ = B", then
the contradiction with A™ > B".

#*(C-2-2-1-5- Case A™ = 1(mod6) and B" = 5(mod6), then C! =
0(mod 6) = 2|C!, see C-2-2-1-2-.

*k(C-2-2-1-6- Case A™ = 2(mod6) = 2|a” = 2|a, but 2|b, then the
contradiction with a,b coprime.

¥ (-2-2-1-7- Case A™ = 3(mod6) and B" = 1(mod6), then C!' =
4(mod 6) = 2|C! = C! = 2C", we can write that p = (C" — B")? + 30",
see C-2-2-1-2-.

** (C-2-2-1-8- Case A™ = 3(mod 6) and B" = 2(mod 6), then B" is even, see
C-2-2-1-2-.

** (C-2-2-1-9- Case A™ = 3(mod 6) and B" = 4(mod 6), then B" is even, see
C-2-2-1-2-.

#%(-2-2-1-10- Case A™ = 3(mod6) and B" = 5(mod6), then C! =
2(mod 6) = 2|C!, see C-2-2-1-2-.

**(C-2-2-1-11- Case A™ = 4(mod6) = 2|a” = 2|a, but 2|b, then the
contradiction with a,b coprime.
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*k(C-2-2-1-12- Case A™ = 5(mod6) and B"™ = 0(mod6), then B™ is even,
see C-2-2-1-2-.

**(0-2-2-1-13- Case A™ = 5(@mod6) and B" = 1(mod6), then C!
0(mod 6) = 2|C!, see C-2-2-1-2-.

** (0-2-2-1-14- Case A™ = 5(mod6) and B" = 3(mod6), then C!' =
2(mod 6) = 2|C' = C! = 2C", p is written as p = (C" — B™)? + 3C"?, sce
C-2-2-1-2-.

*k(C-2-2-1-15- Case A™ = 5(mod6) and B" = 4(mod6), then B" is even,
see C-2-2-1-2-.

We have achieved the study all the cases of the table[l|giving contradictions.
Then the case k3 = 1 is impossible.

1.4.7. Case 3la and b= 2p' b # 2 with p'|p : — 3la = a = 3d/, b = 2p/
with p = k.p/, then:
 Akp 3.d

=" =2kd

gq2m _ AP a
b 6p’

We calculate B"C":

0 0 v
B"C! = f/} <3$in23 - 00523> = %/E (3 - 400523>

6 3.d
but /p? = g, then using 6082§ = Ta:

9 .a’ .a’
= 7 1= ) 5 (-1%8) . (15 -

As p=b.p/, and p’ > 1, then we have:

(1.107) B"C' = k(p' —2d)
(1.108) and  AY = 2k.d

** D-1- We suppose that k is prime.

** D-1-1- If k = 2, then we have p = 2p' = b = 2|b, but A*™ = 4d’ =
(A™)2 = A™ = 24" with a’ = a”?, then 2|a” = 2|(a = 3a™?), it follows the
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contradiction with a,b coprime.

**¥ D-1-2- We suppose k # 2. From A?" = 2k.d’ = (A™)? = k|d’ and
2la’ = d = 2.k.a"* = A™ = 2.k.a”. Then k|A™ = k|A = A = k'. A,
with @ > 1 and k  A;. K™AT = 2ka” = 2a” = k" 1A7. From
B"C! = k(p' — 2d') = k|(B"C") = k|B" or k|C".

** D-1-2-1- We suppose that k|B" = k|B = B = k/.B; with j > 1 and
k1 Bj. It follows k™~ 1BRC! = p' —2a' = p' —4ka™. Asn >3 = nj—1> 2,
then k|p’ but k # 2 = k|(2p' = b), but kld’ = k|(3d' = a). It follows the
contradiction with a,b coprime.

#* D-1-2-2- If k|C! we obtain the identical results.

** D-2- We suppose that k is not prime. Let w be an integer prime so that

k = w®.ky1, with s > 1, w1t k1. The equations (1.107H1.108)) become:

B"C! = w ki (p) — 2d))

and  A*™ = 2w°.ky.d'
** D-2-1- We suppose that w = 2, then we have the equations:

(1.109) A% = 25T |y !
(1.110) B"C' = 25k, (p — 2d))

¥ D-2-1-1- Case: 2|a’ = 2|a, but 2|b, then the contradiction with a,b
coprime.

¥ D-2-1-2- Case: 21a’. As 21k, the equation (1.109) gives 2|A?™ = A =
20 Ay, with 4 > 1 and 21 Ay. It follows that 2im = s + 1.

** D-2-1-2-1- We suppose that 2 {1 (p' — 2d’) = 2 1 p/. From the equation
(1.110), we obtain that 2|B"C! = 2|B™ or 2|C".

#* D-2-1-2-1-1- We suppose that 2| B" = 2|B = B = 2/ By with 2 By and
§ > 1, then BPC! = 257"k (p/ — 2d/):

-If s—jn > 1, then 2|C' = 2|C, and no contradiction with C! = 2im A7 +
2/n B and the conjecture is verified.
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- If s — jn < 0, from BPC! = 257"k (p' — 2d/) = 2 { C', then the
contradiction with C! = 2 AT + 2/m B — 2|C".

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the
identical results if 2|C".

** D-2-1-2-2- We suppose now that 2|(p' —2d’) = p/ — 24’ = 21.Q, with p > 1
and 2 1 Q. We recall that 21 a’. The equation (1.110) is written as:
B"Ch =27 g .Q

This last equation implies that 2|(B"C!) = 2|B" or 2|C".
#% PD-2-1-2-2-1- We suppose that 2|B" = 2|B = B = 2/ By with j > 1 and
21 By. Then BRC! = 25+#=0n |y Q)

-If s+ p—jn > 1, then 2|C' = 2|C, no contradiction with C! = 2m AT +
2/n B and the conjecture (3.1)) is verified.

-If s+ p—jn <0, from BPC! = 25407k () = 24 C', then contradiction
with C! = 2m AT 4 2in BP — 2|C!.

#% D-2-1-2-2-2- We obtain the identical results if 2|C".

** D-2-2- We suppose that w # 2. We have then the equations:

(1.111) AP = 20% ky.d/

(1.112) B"C! = Wi ky.(p) — 2d))

As w # 2, from the equation (1.111]), we have 2|(ki.a’). If 2|’ = 2|a, but

2|b, then the contradiction with a,b coprime.

¥k D-2-2-1- Case: 21 a’ and 2|ky = k1 = 2#.Q with ¢ > 1 and 2 1 Q. From
the equation (1.111)), we have 2|A%*™ = 2|4 = A = 2'A; with i > 1 and
21 Ay, then 2im = 1+ p. The equation (1.112)) becomes:

(1.113) B"C!' = w24 Q.(p) — 2d)
From the equation ([1.113)), we obtain 2|(B"C') = 2|B" or 2|C".

#% D-2-2-1-1- We suppose that 2|B" = 2|B = B = 2/ By, with j € N* and
24 By.
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#* D-2-2-1-1-1- We suppose that 2 { (p/ — 2d/), then we have BPC! =
WSRO (p! — 24a’):

-If p—jn > 1 = 2|C' = 2|C, no contradiction with C! = 2™ A7 4.2/ B
and the conjecture (3.1)) is verified.

-If 41— jn < 0 = 21 C! then the contradiction with C! = 2™ AT 427" BY.

** D-2-2-1-1-2- We suppose that 2|(p — 2d') = p' — 2d’ = 2%.P, with a € N*
and 21 P. Tt follows that B}C! = ws2#te=inQ p:

-If p+a —jn > 1= 2|C' = 2|C, no contradiction with C! = 2/m AT +
2/n B and the conjecture is verified.

-If p+a—jn <0 = 21 C! then the contradiction with C' =
2im AT 4 2in BN,

** D-2-2-1-2- We suppose now that 2|C™ = 2|C. Using the same method
described above, we obtain the identical results.

1.4.8. Case 3la and b=4p' b # 2 with p'|p : — 3la = a = 3d/, b = 4’
with p = k.p/, k # 1 if not b = 4p this case has been studied (see paragraph
1.4.6|), then we have :

We calculate B™C:
0 0 ¢
B"C! = {’/E <3sin23 — 00523> = {/p* (3 - 400523>
0
but {/p? = g, then using 0082§ = —

a 4.d/
B”Cl:{’/;<3—40052§> :§<3—43ba>=p- <1— ba):k(p’—a’)

As p=1b.p/, and p’ > 1, we have :

(1.114) B"C!' = k(p' — d')

(1.115) and A = k.d/

** E-1- We suppose that k is prime. From A?™ = k.’ = (A™)? = kl|d’
and @ = k.a"™ = A™ = k.a”. Then k|A™ = k|A = A = k.A
with i > 1 and k t A;. E™AP = ka” = a” = K™ 'A7. From
B"C!' = k(p' — a') = k|(B"C') = k|B"™ or k|C".
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** E-1-1- We suppose that k|B" = k|B = B = k/.B; with j > 1 and
k { By. Then k"i7'BIC! = p/ —d'. Asn.j—12>2 = k|(p/ —d'). But
kla' = kla, then k|p’ = k|(4p’ = b) and we arrive to the contradiction that
a,b are coprime.

** B-1-2- We suppose that k|C!, using the same method with the above
hypothesis k|B", we obtain the identical results.

** E-2- We suppose that k is not prime.
** E-2-1- We take k =4 = p = 4p’ = b, it is the case studied above.

** E-2-2- We suppose that & > 6 not prime. Let w be a prime so that

k = w®.ky, with s > 1, w1t k1. The equations (1.114H1.115)) become:

(1.116) B"C' = w ki (p) — d)
(1.117) and A = W ky.d

** B-2-2-1- We suppose that w = 2.

** E-2-2-1-1- If 2|a’ = 2[(3d’ = a), but 2|(4p’ = b), then the contradiction
with a, b coprime.

** E-2-2-1-2- We consider that 2  @’. From the equation (1.117)), it follows
that 2|A?™ = 2|4 = A = 2!A; with 21 A; and:

Bncl — 251{71(])/ o CL’)

** E-2-2-1-2-1- We suppose that 2 1 (p’ — @), from the above expression, we
have 2|(B"C') = 2|B"™ or 2|C".

¥ [(-2-2-1-2-1-1- If 2|B" = 2|B = B = 2/ B; with 2 { B;. Then B}C! =
22im—jnk,1(p/ _ a/):

- If 2im — jn > 1 = 2|C' = 2|C, no contradiction with C! = 2/m AT +
2/n B and the conjecture is verified.

- If 2im — jn < 0 = 2 { O then the contradiction with C! =
2im AT 4 2in BN — 2|C,
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¥ [-2-2-1-2-1-2- If 2|C! = 2|C, using the same method described above, we
obtain the identical results.

K B-2-2-1-2-2- We suppose that 2|(p/ —a). As2td = 219/, 2|(p/ —d) =
/' —a' =2%P with > 1 and 24 P. The equation (1.116) is written as :
p q

(1.118) B"Cl = 25t . p = 2%mteg, p
then 2|(B"C') = 2|B" or 2|C".

¥ [E-2-2-1-2-2-1- We suppose that 2|B" = 2|B = B = 2/ By, with 2 { B.
The equation becomes ByC! = 2%im+a=jng, p

- If 2im + a — jn > 1 = 2|C" = 2|C, no contradiction with C! =
2im AT 4+ 2Jn BT and the conjecture is verified.

- If 2im +a —jn < 0 = 2 { C!, then the contradiction with
Cl = 2m AP 4 2inBr — 2|C".

¥ [-2-2-1-2-2-2- We suppose that 2|C! = 2|C. Using the same method
described above, we obtain the identical results.

** E-2-2-2- We suppose that w # 2. We recall the equations:

(1.119) AP = % k.
(1.120) B"C' = W ki (p) — d)

** E-2-2-2-1- We suppose that w,a’ are coprime, then w { a’. From the
equation (1.119), we have w|A?™ = w|A = A = w'A; with w { A; and

s = 2im.

** E-2-2-2-1-1- We suppose that w 1 (p’ — @’). From the equation ([1.120)
above, we have w|(B"C!) = w|B" or w|C".

¥ [-2-2-2-1-1-1- If w|B" = w|B = B = w/B; with w{ B;. Then BPC! =
22im—jnk,1(p/ _ a/):

- If 2im — jn > 1 = w|C! = w|C, no contradiction with C! = w™ AT +
wi™ B} and the conjecture is verified.

- If 2im — jn < 0 = w { C! then the contradiction with C! =
WM AT 4 WIN B = w|C.
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¥ F-2-2-2-1-1-2- If w|C! = w|C, using the same method described above,
we obtain the identical results.

* E-2-2-2-1-2- We suppose that w|(p/ —a') = w 1 p' if not w|d’, w|(p/—d') =
p —ad =w*P with @« > 1 and w{ P. The equation (1.120]) becomes :

(1.121) B"C! = sty P = WHmOR, P

then w|(B"C!) = w|B"™ or w|C".

¥ F-2-2-2-1-2-1- We suppose that w|B" = w|B = B = w’ By, with w{ B.
The equation ([1.121)) is written as B{‘C’l = Q2imta—jnp, p.

- If 2im 4+ a — jn > 1 = w|C! = w|C, no contradiction with C! =
WMAT + WM BT and the conjecture (3.1)) is verified.

-If 2im +a —jn < 0 = w t C' then the contradiction with
Cl = WM AT + W B = w|C".

** F-2-2-2-1-2-2- We suppose that w|C! = w|C, using the same method
described above, we obtain the identical results.

*k E-2-2-2-2- We suppose that w,a’ are not coprime, then o' = w?.a” with

w1t a”. The equation (1.119) becomes:
AP = ¥kid = WPk .a”

We have w|A?™ = w|A = A = w'A; with w{ A; and s + 3 = 2im.

o E-2-2-2-2-1- We suppose that w { (p —d) = w1 p = w { (b = 4p').
From the equation ([1.120]), we obtain w|(B"C') = w|B" or w|C".

¥ [F-2-2-2-2-1-1- If w|B" = w|B = B = w/B; with w{ B;. Then BPC! =
25~k (p' — a'):

-If s —jn > 1 = w|C' = w|C, no contradiction with C! = wmAP +
wi™ B} and the conjecture is verified.

-If s —jn < 0 = w { C', then the contradiction with C! =
WMmAT + W B = w|CL.

*E [-2-2-2-2-1-2- If w|C! = w|C, using the same method described above,
we obtain the identical results.
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¥ [-2-2-2-2-2- We suppose that w|(p' —a’ = p' —wP.a”) = wlp = w|(4p’ =
b), but wja’ = wla. Then the contradiction with a,b coprime.

The study of the cases of is achieved.

4 0
1.4.9. Case 3|a and bl4p :. — a = 3a’ and 4p = k1b. As A?™ = ?pcoﬁg =
4p 3a’
- = kid and B"C:

. 0 0 0 ! k
B"C! = 6/;2 (3sin23 — 00323> = g (3 — 4c0323> g (3 — 43;;) = Zl(b—élal)

As B"C! is an integer, we must obtain 4|k, or 4|(b — 4a’) or (2|k; and 2|(b —
4a’)).
F-1-1f ky =1 = b=4p: it is the case|1.4.6

¥R F-2-1fky =4=p=0>:it is the case|1.4.3

#* PF-3- If ky = 2 and 2|(b— 4ad/): in this case, we have A?™ = 2¢/ = 2|d/ =
2]a. 2|(b— 4a’) = 2|b then the contradiction with a,b coprime.

K F-4- 1f 2|ky and 2|(b—4d): 2|(b—4d') = b—4ad' =2°\, acand A e N* > 1
with 21 \; 2|/ky = ky = 2k} with t > 1 € N* with 21 k] and we have:
(1.122) AP = 2tk d

(1.123) B"C! = 2172k )\

From the equation , we have 2|A?™ = 2|A = A =2'A;, i > 1 and
zj Iﬁl‘—lél'—l— We suppose that t = o = 1, then the equations become

(1.124) A% = 2khd
(1.125) B"C! = K\ )

From the equation (1.124) it follows that 2|a’ = 2|(a = 3ad’). But
b =4a' + 2\ = 2|b, then the contradiction with a,b coprime.

** F-4-2- We suppose that t + a — 2 > 1 and we have the expressions:
(1.126) A% = 2k d
(1.127) B"C! = 2tTa72k] )



1.4. HYPOTHESIS : {3|a and b|4p} 39

¥ F-4-2-1- We suppose that 2|a’ = 2|a, but b = 2*\ 4+ 4a’ = 2|b, then the
contradiction with a,b coprime.

#¥ F-4-2-2- We suppose that 21 a’. From ([1.126]), we have 2|A?" — 2|4 —
A =2'A; and B"C! = 2122k A = 2|B"C! = 2|B" or 2|C".

#* F-4-2-2-1- We suppose that 2|B". We have 2|B = B = 2/By, j > 1 and
21 B;. The equation (1.127) becomes BfC! = 2tFa—2=inj! X

-Ift+a—2—jn >0 = 2|C! = 2|C, no contradiction with C! =
2im AT 4 20" B7 and the conjecture is verified.

-Ift+a—2—jn < 0= 2|ki\ but 21k} and 2+ \. Then this case is
impossible.

-Ift+a—2—jn=0= BIC' = k{\ = 21 C! then it is a contradiction
with C! = 2m A 4 2n By,

** F-4-2-2-2- We suppose that 2|C!. We use the same method described
above, we obtain the identical results.

** F-5- We suppose that 4|ky with ky > 4 = k1 = 4k}, we have :

(1.128) A?™ = 4kha
(1.129) B"C' = k(b — 4d)

** F-5-1- We suppose that k) is prime, from (1.128]), we have kj|a’. From
(1.129), k5| (B"C") = k| B™ or kj|C".

** F-5-1-1- We suppose that k5|B" — k4|B — B = k;ﬁ.Bl with 8 > 1

and k)  By. Tt follows that we have k7’ ' BrC! = b — 4a’ = K}|b then the
contradiction with a,b coprime.

#* F_5-1-2- We obtain identical results if we suppose that kj|C".
*k F-5-2- We suppose that kb is not prime.
#* F-5-2-1- We suppose that k5 and o’ are coprime. From (1.128), k5 can

be written under the form k) = qu.q% and q1 1 g2 and ¢ prime. We have
A2 — 407 2a) = q1|A and B"C' = ¢ .3 (b — 4a') = ¢1|B" or ¢1|C".
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** F-5-2-1-1- We suppose that ¢1|B" = ¢1|B = B = q{.Bl with ¢ 1 By.
We obtain BPC! = q?jff"q%(b —4d'):

-If 25 — fn > 1 = q1|C' = ¢1|C but C' = A™ + B" gives also ¢;|C and
the conjecture is verified.

-If 2§ — f.n =0, we have BJC! = ¢3(b — 4a’), but C! = A™ 4 B" gives q1|C,
then ¢1|(b — 4a’). As ¢1 and o’ are coprime, then ¢; 1 b, and the conjecture
(3.1)) is verified.

-1 25 — fon < 0= q1|(b — 4a’) = q1 1 b because a’ is coprime with ¢, and
C! = A™ 4 B" gives q1|C, and the conjecture (3.1)) is verified.

#* F-5-2-1-2- We obtain identical results if we suppose that g;|C".

** F-5-2-2- We suppose that kb, a’ are not coprime. Let ¢; be a prime so
that ¢1|k} and qi|a’. We write k) under the form ¢f.qo with i>Latae.
From A?™ = 4kha' = q1|A*™ = q1|A. Then from B"C' = ¢]q(b — 4d’), it
follows that ¢;|(B"C') = ¢1|B" or ¢;|C".

** F-5-2-2-1- We suppose that ¢1|B" = q1|B =— B = qf.Bl with 8 > 1 and
¢1 1 B1. Then, we have q?ﬁB?Cl = q{qg(b—4a’) = BrC! = q{_"ﬂqg(b—éla’).
-If j —nB > 1, then ¢1|C! = ¢1|C, but C! = A™ + B" gives ¢1|C, then the
conjecture is verified.

- If j —nB = 0, we obtain BPC! = q2(b — 4a’), but C! = A™ + B" gives q1|C,
then ¢1|(b — 4a’) = q1|b because ¢i|a’ = ¢1|a, then the contradiction with
a, b coprime.

-Ifj—nB <0 = q|(b—4d') = q|b, because ¢i|a’ = qi|a, then the
contradiction with a,b coprime.

¥ F-5-2-2-2- We obtain identical results if we suppose that g;|C".
*¥*F-6-1f 41 (b—4a’) and 4 1 ky it is impossible. We suppose that 4|(b—4a) =
41b, and b — 4a’ = 41.g , t > 1 with 41 g, then we have :
A2m — kla'
B"Cl =k .47l g

*% F-6-1- We suppose that k; is prime. From A?™ = kia’ we deduce easily
that kila’. From B"C! = k;.4"~1.g we obtain that k;|(B"C') = k;|B" or
kq|CL.
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** F-6-1-1- We suppose that k;|B" = k1|B = B = k{.Bl with j > 0 and
ki1 By, then k1 BpCl = k.4t~ g — K77 'BrCl = 4171.g. But n > 3 and
j > 1, then n.j —1 > 2. We deduce as k1 # 2 that ki|g = k1|(b — 4d’), but
kila’ = k1|b, then the contradiction with a,b coprime.

** F-6-1-2- We obtain identical results if we suppose that k;|C’.

** F-6-2- We suppose that k; is not prime # 4, (k; = 4 see case F-2, above)
with 4 )[ kq.

** F-6-2-1- If k1 = 2k’ with k¥’ odd > 1. Then A?™ = 2k'a’ = 2|d’ = 2|a,
as 4/b it follows the contradiction with a,b coprime.

** F-6-2-2- We suppose that kj is odd with k; and a’ coprime. We
write k1 under the form k; = ¢].g2 with ¢1 { ¢2, ¢1 prime and j > 1.
B"C! = ¢] .q24""tg = q1|B" or q1|C".

** F-6-2-2-1- We suppose that ¢;|B" = ¢:1|B = B = q{.Bl with ¢1 1 By.
We obtain B}C! = q{_f'nq24t_1g.

SIfj— fn>1 = ¢|C' = ¢1|C, but C' = A™ + B™ gives also ¢q;|C and
the conjecture is verified.

-If j — f.n = 0, we have BPC! = g4'1g, but C! = A™ + B gives ¢1|C, then
q1|(b — 4a’). As ¢ and a’ are coprime then ¢; t b and the conjecture is
verified.

-Ifj—fn < 0 = q|(b—4d) = ¢ 1 b because ¢q1,d’ are primes.
C! = A™ 4 B™ gives ¢1|C and the conjecture is verified.

** F-6-2-2-2- We obtain identical results if we suppose that g;|C".

** F-6-2-3- We suppose that ki and o/ are not coprime. Let ¢; be a prime
so that ¢1|k; and ¢1]a’. We write k1 under the form q{.qg with g1 1 g2. From
AP = kd = q1|A*™ = q1|A. From B"C! = q{qg(b —4d’), it follows that
q1|(B"CY) = q1|B" or ¢|C".

% F_6-2-3-1- We suppose that q1|B" = ¢|B = B = ¢/ .B, with 8 > 1 and
¢1 1 B1. Then we have q?BB{LCl = ¢go(b—4d) = B}C = q{_nﬁqQ(b — 4a):

-If j —nB > 1, then ¢;|C! = ¢1|C, but C! = A™ + B" gives q1|C, and the
conjecture is verified.
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- If j —nB = 0, we obtain BPC! = go(b — 4d’), but ¢1|A and qi|B then
¢1/C and we obtain ¢i|(b — 4a’) = q1|b because qila’ = qi|a, then the
contradiction with a, b coprime.

-Ifj—nB < 0= q|(b— 4d") = q1]b, then the contradiction with a,b
coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that q;|C".

1.5. Hypothése: {3|]p and b|dp}

1.5.1. Case b =2 and 3|p : — 3|p = p = 3p’ with p’ # 1 because 3 < p,
and b = 2, we obtain:

dp.a  4.3p'.a  4.p.a
A% — = = =29
3b 30 2 p-a
As:
1 0 3 0 1
Z<cos2§:%:g<1:>1<2a<3:>a=12>0082§:§

but this case was studied (see case|1.3.1.2)).

1.5.2. Case b = 4 and 3|p : — we have 3|p = p = 3p/ with p/ € N*, it
follows : .
dp.a  4.3p".a
AQm — _ ——
35 3x4 P°
and: .
1 3
Z<cos2§:%=%<zz>l<a<3:>a:2
as a, b are coprime, then the case b = 4 and 3|p is impossible.
1.5.3. Case: b#2,b#4,b+# 3, blp and 3|p : — As 3|p, then p = 3p’ and :
4p 0 4pa 4x3pa 4pa
A2m = — 27 = —— = — =
33730 3 b b

We consider the case: blp’ = p’ = bp” and p” # 1 (If p” = 1, then p = 3b,
see paragraph Case k' = 1). Finally, we obtain:

4b ”
= Z; - 4ap”; B"C'=p”.(3b— 4a)
** (G-1- We suppose that p” est prime, then A?™ = 4ap” = (A™)? = p”|a.
But B"C!' = p”(3b — 4a) = p”|B" or p”|C".

AQm
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© (1-1- If p?|B" = p’|B = B = p°B; with B; € N*. Then
p"IBCY = 3b —4a. As n > 2, then (n — 1) > 1 and p”|a, then
p”|3b = p” =3 or p”|b.

** G-1-1-1- If p? = 3 = 3|a, with a that we write as a = 3a?, but
A™ = 6a' = 3|A™ = 3|A = A = 3A4, then 3" AT = 2d' = 3|’ =
a' =3a”. As p""1BPC! = 3" 1BRC! = 3b — 4a = 3" 2BPC! = b — 3602
Asn>2=n—22>1, then 3|b and the contradiction with a,b coprime.

** (G-1-1-2- We suppose that p”|b, as p”|a, then the contradiction with a,b
coprime.

** (G-1-2- If we suppose p”|C!, we obtain identical results (contradictions).

** 3-2- We consider now that p” is not prime.

2

*% G-2-1- p”,a coprime: A?™ = dap” = A™ = 2d'.p; with a = a/> and

p” = p?, then d/,p; are also coprime. As A™ = 2a’.p1, then 2|a’ or 2|p;.
** (3-2-1-1- We suppose that 2|a’; then 2|a’ = 2 { p;, but p” = p?.
** G-2-1-1-1- If py est prime, it is impossible with A™ = 2d’.p;.

** (G-2-1-1-2- We suppose that p; is not prime so we can write p; = W™ =
p” = w?™. Then B"C' = w?™(3b — 4a).

% (G-2-1-1-2-1- If w est prime, w # 2, then w|(B"C') = w|B" or w|C".

. G-2-1-1-2-1-1- If w|B" = w|B = B = w/B; with w { By, then
B}.C! = w1 (3b — 4a).

¥ (G-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B}.C' = 3b — 4a. As
Cl = A™ + B" = w|C! = w|C, and w|(3b — 4a). But w # 2 and w,a’ are
coprime, then w,a are coprime, it follows w t (3b), then w # 3 and w t b, the
conjecture is verified.

**G-2-1-1-2-1-1-2- If 2m — nj > 1, using the method as above, we obtain
w|C! = w|C and w|(3b — 4a) and w { a and w # 3 and w { b, then the
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conjecture (3.1)) is verified.

¥ G-2-1-1-2-1-1-3- If 2m —nj < 0 = W™ 2mBr.C! = 3b — 4a. From
A+ B" = C! = w|C!' = w|C, then C = w".Cy, with w { C1, we obtain
wndmmthlpn ot — 3b — 4a. If n.j — 2m + hd < 0 = w|BPC! then the
contradiction with w 1 By or w t C1. It follows n.j — 2m + h.l > 0 and
w|(3b — 4a) with w, a, b coprime and the conjecture is verified.

** (3-2-1-1-2-1-2- Using the same method above, we obtain identical results if

w|CL.

*k (3-2-1-1-2-2- We suppose that p” = w?™ and w is not prime. We
write w = w{.Q with w; prime { Q, f > 1, and wi|A. Then B"C! =
wff'mQ2m(3b —4a) = w1|(B"C") = w1|B" or w;|C".

# (3-2-1-1-2-2-1- If wy|B" = wi|B = B = w!Bj with w; { Bi, then
Bp.Cl = 2™ 02 (3h — da):

*E (G-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C' = Q?™(3b — 4a). As
Cl = A™ + B" = w;|C" = w1|C, and w1|(3b — 4a). But w; # 2 and wy, d’
are coprime, then w, a are coprime, it follows wj 1 (3b), then w; # 3 and wy 1 b,
and the conjecture is verified.

¥ (G-2-1-1-2-2-1-2- If 2f.m—n.j > 1, we have w1 |C! = w;|C and w1 |(3b—4a)
and w; { @ and wy # 3 and wy 1 b, it follows that the conjecture (3.1)) is verified.

B (3-2-1-1-2-2-1-3- If 2fm — nj < 0 = W7 2™/ B Ol = 02m(3b — 4a).
As w1|C using C! = A™ + B" then C = wh.C; = Wni=2m-/+hipn Ot —
Q*(3b — 4a). If n.j — 2m.f + h.l < 0 = w1|BPCY, then the contradiction
with wy 1 By and wy 1 C1. Then if n.j — 2m.f + h.l > 0 and w1|(3b — 4a) with
w1, a,b coprime and the conjecture is verified.

** (3-2-1-1-2-2-2- Using the same method above, we obtain identical results if
wi|CL.

** (3-2-1-2- We suppose that 2|p;: then 2|p; = 2t d’ = 21 a, but p” = p?.
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** (3-2-1-2-1- We suppose that p; = 2, we obtain A™ = 4a’ = 2|d/, then the
contradiction with a,b coprime.

** (3-2-1-2-2- We suppose that p; is not prime and 2|p;. As A™ = 2d/py,
p1 can written as p; = 2™ W™ = p” = 22" 2™ Then B"C! =
22m=2y2m(3h — 4a) = 2|B" or 2|C".

** (G-2-1-2-2-1- We suppose that 2|B" = 2|B. As 2|4, then 2|C. From
B"C! = 22m=2,2m(3ph — 4a) it follows that if 2|(3b — 4a) = 2|b but as 2 { a
there is no contradiction with a, b coprime and the conjecture (3.1)) is verified.

#% (G-2-1-2-2-2- We suppose that 2|C!, using the same method above, we
obtain identical results.

** G-2-2- We suppose that p”,a are not coprime: let w be an integer prime
so that w|a and w|p”.

#* (3-2-2-1- We suppose that w = 3. As A?™ = dap” = 3|A, or 3|p, As
p = A’ 4+ B?" 4 A"B" — 3|B?*" — 3|B, then 3|C! = 3|C. We write
A = 3'A;, B = 3By, C = 3"C, with 3 coprime with A;, B; and C; and
p = 32mAIm 4 32n) p2n g gimtin AmpR — 3k g with k = min(2im, 2jn, im+jn)
and 31 g. We have also (w = 3)]a and (w = 3)|p” that gives a = 3%a1, 31 a;
and p” = 3Hpy, 3 1 p1 with A?™ = dap” = 32MAIM™ = 4 x 3 a1.p] =
a+p=2im. As p=3p' = 3b.p” = 3b.3*p; = 3*T1.b.p1, the exponent of the
factor 3 of p is k, the exponent of the factor 3 of the left member of the last
equation is u 4+ 1 added of the exponent 8 of 3 of the term b, with 5 > 0, let
min(2im,2jn,im + jn) = w4+ 1 + [ and we recall that o + p = 2im. But
B"C! = p”(3b — 4a), we obtain 3(WTP)BPCL = 301y (b — 4 x 3(e"Vgy) =
34101 (3%b) — 4 x 3(e=Day), 31 by. We have also A™ 4 B" = C! = 3™ A +
3mBr = 3MCL We call € = min(im, jn), we have € = hl = min(im, jn). We
obtain the conditions:

(1.130) k = min(2im,2jn,im + jn) = u+ 1+
(1.131) a+p=2im
€ = hl = min(im, jn)

3t prCt = 3 py (3% — 4 x 3 Vay)
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** G-2-2-1-1- « = 1 = a = 3a; and 3t aj, the equation becomes:
14+ p=2tm
and the first equation is written as:
k = min(2im, 2jn,im + jn) = 2im +

-If k = 2im = 8 = 0 then 3 1 b. We obtain 2im < 2jn = im < jn, and
2im < im 4+ jn = im < jn. The third equation gives hl = im and the last
equation gives nj + hl = p+ 1 = 2¢m = m = nj, then ¢m = nj = hl and
B}C! = pi(b— 4ay). As a,b are coprime, the conjecture is verified.
-If kK = 2jn or k = im + jn, we obtain f = 0,im = jn = hl and
BPC! = p1(b— 4a1). As a,b are coprime, the conjecture is verified.

** G-2-2-1-2-a> 1= a > 2.

-Ifk=2im = 2im =pu+ 1+ 5, but p = 2im — « that givesa =1+ >
2 = 8 # 0 = 3|b, but 3|a then the contradiction with a,b coprime.

Itk =2jn = p+1+8 < 2im = pt+1+p < pta= 1+ <a= B> 1.
If 5 > 1= 3|b but 3|a, then the contradiction with a, b coprime.

-Ifk=im+ jn = im + jn < 2im = jn < im, and im + jn < 2jn =
im < jn, then im = jn. Ask=im+jn=2im =1+p+F and a4+ p = 2im,
we obtain « =1+ > 2 = > 1 = 3|b, then the contradiction with a,b
coprime.

** (G-2-2-2- We suppose that w # 3. We write a = w%a; with w t a; and
p” = whpy with w { p1. As A?™ = dap” = 4w H.a1.p1 = w|A = A = W'A,
wt A, But B"C! = p”(3b — 4a) = whp;1(3b — 4a) = w|B"C' = w|B" or
w|Ct.

¥ (3-2-2-2-1- We suppose that w|B" = w|B = B = w/B; and w { B.
From A™ 4+ B" = C! = w|C!' = w|C. As p = bp/ = 3bp” = 3whbp; =
wh(wm=k A2m 4 y2in=kp2n 4 yimbin—k Am By with k = min(2im, 2jn, im +
jn). Then:

- If k = u, then w { b and the conjecture is verified.

- If k > p, then w|b, but w|a then the contradiction with a,b coprime.

- If k < u, it follows from:

3w,ubp1 — wk(w%mka%m + w2jnka%n + wim+jn7kA1lnB{L)

that w|A; or w|Bjy then the contradiction with w{ A; or w1 By.
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*H (§-2-2-2-2- If w|C! = w|C = C = w"Cy with w{ C;. From A™ + B" =
C! = w|(C' — A™) = w|B. Then, using the same method as for the case
(G-2-2-2-1-, we obtain identical results.

1.5.4. Case b=3 and 3|p : — As 3|p = p = 3p/, We write :

Azm:@wszﬁ_@g:4><3p’g:4p’a
3 3 30 3 3 3

0
As A?™ is an integer and a, b are coprime and cos?~ < 1 (see equation (|1.35))),

then we have necessary 3|p’ = p’ = 3p” with p” # 1, if not p = 3p’ =
3x3p” =9, but 9 < (p = A*" 4+ B> 4 A™B"), the hypothesis p” = 1 is
impossible, then p” > 1, and we obtain:

_4pla 4 x3pTa

A2m 3 — 3 — 4p”a; Bncl Zp”.(9 . 40,)

1 950 a a 3
Asz<cos§:g:§<Z:>3<4a<9:>asa>1,a:2andwe
obtain:

3p”(9 — 4
(1.132) A = 4pa = 8p7; B”C’l:p(?)a): P’

The two last equations above imply that p” is not a prime. We can write p”
as ip” = [[;c; p;* where p; are distinct primes, o; elements of N and i € I a
finite set of indices. We can write also p” = p{*.q1 with p; t ¢;. From ,
we have pi|A and p;|B"C' = p;|B"™ or p1|C".

** H-1- We suppose that p;|B" =— B = pfl.Bl with p; 1 By and 51 > 1.
Then, we obtain BPC! = p‘f‘l_nB '.q1 with the following cases:

-If a; —npy > 1 = p1|C! = p1|C, in accord with py|(C! = A™ 4+ B"), it
follows that the conjecture is verified.

-If a; —npB1 = 0 = BPC! = ¢ = p1 { C', it is a contradiction with
p1|(A™ — B") = p;|C". Then this case is impossible.

- If oy — nB; < 0, we obtain p?ﬁl_o‘lB{LCZ = q1 = p1|q1, it is a contradic-
tion with p; 1 ¢1. Then this case is impossible.

** H-2- We suppose that p1|C!, using the same method as for the case p;|B",
we obtain identical results.
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0
1.5.5. Case 3|p and b = p: — We have c052§ =2 _%

AP = 4—pcos2g = 4—.9 =
3 3 3 p
As A?™ is an integer, it implies that 3|a, but 3|p = 3|b. As a and b are
coprime, then the contradiction and the case 3|p and b = p is impossible.

w|E =is

1.5.6. Case 3|p and b = 4p : — 3|p = p = 3p/, p’ # 1 because 3 < p,
then b = 4p = 12p’.
4p 0 4pa a
393730 3 la
as A?™ is an integer. But 3|p = 3|[(4p) = b], then the contradiction with
a,b coprime and the case b = 4p is impossible.

1.5.7. Case 3|p and b = 2p : — 3|p = p = 3p/, p’ # 1 because 3 < p,
then b = 2p = 6p/.
4p 0 4dpa 2a
AP = oo = —— =" =13
33730 3 la
as A?™ is an integer. But 3|p = 3|(2p) = 3|b, then the contradiction with
a,b coprime and the case b = 2p is impossible.

1.5.8. Case 3|p and b # 3 a divisor of p : — We have b = p’ # 3, and p
is written as p = kp’ with 3|k = k = 3k’ and :

4 0 4
arm = Lop2? 7P

a
373 3%

0
B"C! = g (3 - 400323> =K' (3p' — 4a) = K'(3b — 4a)

= 4ak’

- K £ 1

** 1-1-1- We suppose that k' est prime, then A?™ = 4ak’ = (A™)? = K/|a.
But B"C! = ¥'(3b — 4a) = K¥'|B™ or k'|C".

# 11.11- If K/|B" — K|B — B = k'B; with B; € N*. Then
Em=1BrCY = 3b — 4a. As n > 2, then (n — 1) > 1 and k'|a, then
K'|3b = k' = 3 or ¥'|b.
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1-1-1-1-1- If ¥ = 3 = 3|a, with a that we can write it under the
foom a = 3a”?. But A" = 6d = 3|A™ = 3|4 = A = 34
with 47 € N*. Then 3™ A7 = 2d = 3|d = d = 3a”. But
Em=iprCt = 3niBPCl = 3b — 40 = 3"72BPC!' = b — 36a”%. As
n >3 =-n—22>1, then 3|b. Hence the contradiction with a,b coprime.

** 1-1-1-1-2- We suppose that k'|b, but £’|a, then the contradiction with a,b
coprime.

#% [-1-1-2- We suppose that &’|C!, using the same method as for the case
K'|B™, we obtain identical results.

** 1-1-2- We consider that &’ is not a prime.

*k [-1-2-1- We suppose that k', a coprime: A?™ = 4ak’! = A™ = 2d/.p; with
a = a? and k' = p?, then a’, p1 are also coprime. As A™ = 2a’.p; then 2|a’ or
2|p1.

#¥ [-1-2-1-1- We suppose that 2|a’, then 2|a’ = 2 { p1, but k' = p?.
** 1-1-2-1-1-1- If py is prime, it is impossible with A™ = 2a’.p;.

** 1-1-2-1-1-2- We suppose that p; is not prime and it can be written as
p1 = w" = k' = w?. Then B"C! = w?™(3b — 4a).

¥ 1-1-2-1-1-2-1- If w is prime # 2, then w|(B"C") = w|B" or w|C".

% 1.1-2-1-1-2-1-1- If w|B® = w|B = B = w/ By with w { By, then B}.C! =
wW?m=(3b — 4a).

-If2m—n.j = 0, we obtain B}.C' = 3b—4a, as C' = A"+ B" — w|C! =
w|C, and w|(3b—4a). But w # 2 and w, a’ are coprime, then w { (3b) = w # 3
and w t b. Hence, the conjecture (3.1)) is verified.

- If 2m — nj > 1, using the same method, we have w|C! = w|C and
w|(3b — 4a) and w t a and w # 3 and w 1 b. Then, the conjecture is
verified.

-If2m —nj < 0 = w2 BI.Cl = 3b — 4a. As C' = A™ + B" = w|C
then C = w0y = wW™I=2mthipn ot = 3b — 4a. If n.j — 2m + hl <
0 = w|BPC!, then the contradiction with w t By or w t Cp. If
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n.j —2m+ hl > 0 = w|(3b — 4a) with w,a,b coprime, it implies that
the conjecture (3.1)) is verified.

¥ 1-1-2-1-1-2-1-2- We suppose that w|C!, using the same method as for the
case w|B", we obtain identical results.

kk 1.1-2-1-1-2-2- Now k' = w?™ and w not a prime, we write w = Q
with w; a prime t © and f > 1 an integer, and wi|A, then B"C’l =
me2m(3b 4a) = w1 |(B"C") = wi|B"™ or w|C".

#k 1.1-2-1-1-2-2-1- If w)|B" = wi|B = B = w!Bj with w; { By, then
Br.Cl = wHImTmig2m(3p — 4a).

-If 2f.m—n.j = 0, we obtain B}.C' = Q?*™(3b—4a). As C! = A"+ B" =
w1|C! = w1|C, and w1 |(3b — 4a). But wy # 2 and wy,a’ are coprime, then
w,a are coprime, then wi 1 (3b) = wy # 3 and wy 1 b. Hence, the conjecture
is verified.

-If 2f.m —n.j > 1, we have w|C! = w1|C and wq|(3b — 4a) and wy 1 a
and w; # 3 and wj 1 b, then the conjecture (3.1) is verified.

SIf2fm —nj < 0 = WM B ol = QQm(?)b 4a). As C' = A™ +
B" = w1 |C using , then C = wh.C} = w2 H0IBe O = O™ (3b— 4a).
If n.j —2m.f + h.l < 0 = wi|B}CY, then the contradiction with wy { By and
w11 C1. Then if n.j — 2m.f + h.l > 0 and wq|(3b — 4a) with wq, a,b coprime,
then the conjecture is verified.

¥ 1-1-2-1-1-2-2-2- As in the case wi|B", we obtain identical results if wy|C".
#¥ [-1-2-1-2- If 2|p;: then 2|p; = 2{a’ = 21t a, but k' = p?.

K 1-1-2-1-2-1- If p; = 2, we obtain A™ = 4a’ = 2|d/, then the contradiction
with 24 a’. Case to reject.

** 1-1-2-1-2-2- We suppose that p; is not prime and 2|p;. As A™ = 2d'p;,
p1 is written under the form p; = 2™ lw™ = p? = 22m2w?™  Then
B"C! = K'(3b — 4a) = 222%™ (3b — 4a) = 2|B" or 2|C".

¥ 1.1-2-1-2-2-1- If 2|B" = 2|B, as 2/A = 2|C. From B"C! =
22m=20,2m(3h — 4a) it follows that if 2|(3b — 4a) == 2|b but as 2 { aq,
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there is no contradiction with a, b coprime and the conjecture (3.1)) is verified.
% 1-1-2-1-2-2-2- We obtain identical results as above if 2|C%.

** 1-1-2-2- We suppose that k', a are not coprime: let w be a prime integer so
that w|a and w|p?.

#* 1-1-2-2-1- We suppose that w = 3. As A?™ = 4ak’ = 3|A, but 3|p.
As p = A?™ 4 B2 4 AmMB" = 3|B?*" = 3|B, then 3|C' = 3|C. We
write A = 3'A,, B =3By, C = 3"C} with 3 coprime with A, B; and C; and
p = 3%mAIm 4 32nj B2n y 3imEin AM BN — 35 g with s = min(2im, 2jn, im+jn)
and 3t g. We have also (w = 3)|a and (w = 3)|k’ that give a = 3%, 31 a1
and k' = 3Hpy, 3 1 pa with A?™ = 4ak’ = 3%MmAIM = 4 x 39HH q1.py =
a+ p=2im. As p = 3p' = 3b.k' = 3b.3*py = 3*T1.b.ps. The exponent of the
factor 3 of p is s, the exponent of the factor 3 of the left member of the last
equation is p + 1 added of the exponent 5 of 3 of the factor b, with g > 0,
let min(2im,2jn,im + jn) = p+ 1 + B, we recall that « + p = 2im. But
B"C! = k'(4b — 3a) that gives 3(WHh) BrCl = 3utlp, (b — 4 x 3@ D)) =
31y (3% — 4 x 3(0‘_1)611), 31 b;. We have also A™ + B" = C! that gives
3imAM 4+ 3B = 3MCt. We call € = min(im,jn), we obtain € = hi =
min(im, jn). We have then the conditions:

(1.133) s = min(2im,2jn,im+jn) =p+ 1+
(1.134) o+ = 2im
(1.135) € = hl = min(im, jn)
(1.136) 3mi+hh) gnot — 3041y, (38h) — 4 x 3@ Vg,)

*% 1-1-2-2-1-1- « = 1 = a = 3a; and 3 1 a;, the equation becomes:
14 p=2im
and the first equation is written as :
s = min(2im, 2jn,im + jn) = 2im +

-If s =2im = B =0 = 31+b. We obtain 2im < 2jn = im < jn, and
2im < im + jn = im < jn. The third equation gives hl = im.
The last equation gives nj + hl = p+ 1 = 2im = im = jn, then
im = jn = hl and BPC! = pa(b — 4a;). As a,b are coprime, the conjecture

(3.1) is verified.
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-If s = 2jn or s = im + jn, we obtain § = 0,im = jn = hl and
BPC! = py(b — 4ay). Then as a,b are coprime, the conjecture (3.1)) est is
verified.

H11-2-2-1-2-a> 1 = a > 2.

-Ifs=2im=2im=p+1+5, but u=2im—aitgivesa=1+4+8>
2 = 8 # 0 = 3|b, but 3|a then the contradiction with a,b coprime and the
conjecture is not verified.

Ifs=2jn = pu+1+ < 2im = p+1+8 < pta= 1+ <a= B =1.
If 3 =1 = 3|b but 3|a, then the contradiction with a,b coprime and the
conjecture is not verified.

-If s=im+ jn = im + jn < 2im = jn < im, and im + jn < 2jn =
im < jn, then im = jn. Ass=im+jn=2im=1+pu+ [ and a+ pu = 2im
it givesa =1+ > 2 = f > 1 = 3|b, then the contradiction with a,b
coprime and the conjecture is not verified.

** 1-1-2-2-2- We suppose that w # 3. We write a« = w®ay with w { a; and
k' = whps with w{ pa. As A?™ = dak’ = 4w .a1.p2 = w|A = A = W'A;,
w1t A;. But B"C! = k/(3b — 4a) = w”ps(3b — 4a) = w|B"C! = w|B" or
w|Ct.

#¥ [-1-2-2-2-1- w|B" = w|B = B" = w/Bj and w { By. From A™ + B" =
C! = w|C!' = w|C. As p = bp/ = 3bk' = 3whbpy = W’ (WM A2 4
wAn=s BIn 4 yimHin=s Am B with s = min(2im, 2jn, im + jn). Then:

- If s = pu, then w1 b and the conjecture is verified.

- If s > p, then w|b, but w|a then the contradiction with a,b coprime and
the conjecture is not verified.

- If s < p, it follows from:

3w,ubp1 — wS(w2im—sA%m + w2jn—sB%n + wim+jn—sA7171B711)

that w|A; or w|B; that is the contradiction with the hypothesis and the
conjecture ([3.1]) is not verified.

R [1-2-2-2-2- If w|C! = w|C = C = whC; with w { C;. From
A™ 4 B" = C!' = w|(C! — A™) = w|B. Then we obtain identical results as
the case above 1-1-2-2-2-1-.
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*k 1-2- We suppose k' = 1: then k' = 1 = p = 3b, then we have A>™ = 4a =
(2a/)2 = A™ = 24/, then a = a'? is even and :

AMB" = 2\/5608* f( sznf — cos 0) M — —2a
3 3 3
and we have also:
2
(1.137) A?™ 4 2AM BT = p*[ = = 2bV/3sin—

3
The left member of the equation 1) is a naturel number and also b, then

20
2\/§sm§ can be written under the form :

2\/>8Z 29 kl
" ko

where ki, k2 are two natural numbers coprime and ky|b = b = ko k3.

#% 1.2-1- k' = 1 and k3 # 1: then A?™ 4+ 2A™B" = ks.k;. Let u be a
prime so that plks. If p = 2 = 2|b, but 2|a, it is a contradiction with a,b
coprime. We suppose that p # 2 and p|ks, then u|A™(A™ 4+ 2B") = u|A™
or u|(A™ +2B"™).

R 12-1-1- p|A™: If p|A™ = p|A*™ = plda = pla. As plks = ulb, the
contradiction with a,b coprime.

K 1-2-1-2- pl(A™ 4+ 2B™): If p|(A™ 4+ 2B") = p t A™ and p { 2B™, then
p#2and pt B™. p|(A™+ 2B"™), we can write A™ + 2B" = p.t’. Tt follows:
Am+Bn — ,U,t/ _B" —_— A2m+B2n +2AmBn — M2t/2 _2t/’uBn+BQn

Using the expression of p, we obtain:
— tl2ﬂ2 2t’B",u + Bn(Bn _ Am)
As p = 3b = 3ko.k3 and ,u\kg then plp = p = p.i/, then we obtain:
p o= p(pt”? — 2t'B") + B"(B" — A™)
and pu|B"(B" — A™) = u|B" or p|(B™ — A™).

*k 1-2-1-2-1- p|B™: If p|B™ = u|B, that is the contradiction with I-2-1-2-
above.
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K 1-2-1-2-2- p|(B™ — A™): If p|(B™ — A™) and using that p|(A™ 4 2B"™), we
obtain :

p|B" = u|B
w|3B" = ¢ or
p=3

* 1-2-1-2-2-1- p|B™: If u|B™ = p|B, that is the contradiction with I-2-1-2-
above.

K 1-2-1-2-2-2- = 3: If p = 3 = 3|ks = k3 = 3kj, and we have b = koks =
3kok}, it follows p = 3b = 9kok}, then 9|p, but p = (A™ — B")2 +3A™B" then:
Okokl — 3A™B™ = (A™ — B")?

that we write as:
(1.138) 3(3kokh — A™B™) = (A™ — B")?
then:
3|(3kekly — AMB™) = 3|A™B"™ = 3|A™ or 3|B"

R [-2-1-2-2-2-1- 3|A™: If 3|A™ = 3|A and we have also 3|A*™, but
AP = 4a = 3|4a = 3|a. As b = 3kok}; then 3|b, but a,b are coprime, then
the contradiction and 3 1 A.

*k 1-2-1-2-2-2-2- 3|B™: If 3|B"™ = 3|B, but the equation (1.138)) implies
3|(A™ — B")? = 3|(A™ — B") = 3|A™ = 3|A. The last case above has
given that 31 A. Then case 3|B™ is to reject.

Finally the hypothesis k3 # 1 is impossible.

** 1-2-2- Now, we suppose that k3 =1 = b = ky and p = 3b = 3ks, then we
have:

20 k
(1.139) 2\/§sin§ = 31
with k1, coprime. We write (1.139)) as :
0 0 k
4\/§Sin§cos§ = ?1

0
Taking the square of the two members and replacing 0032§ by %, we obtain:

3x4%a(b—a) =k = ki =3 x4%d”(b - a)
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it implies that :
b—a=3a’>=0b=0d?+3a> = k1 = 12da
As:
k1 =12d'a = A™(A™ + 2B") = 3a =d + B"
We consider now that 3|(b — a) with b = a’?> + 3a?. The case a = 1 gives
a'+ B™ = 3 that is impossible. We suppose a > 1, the pair (a/, @) is a solution
of the Diophantine equation:
(1.140) X?4+3Y%=b
with X = ¢’ and Y = a. But using a theorem on the solutions of the equation
given by ([1.140]), b is written as (see theorem in [6]):
b= 228 X 3t,p2il o -ngq%sl A qzsr

where p; are prime numbers verifying p; = 1(mod6), the ¢; are also prime
numbers so that ¢; = 5(mod 6), then :

- If s > 1 = 2|b, as 2|a, then the contradiction with a,b coprime.

-Ift > 1 = 3|b, but 3|(b — a) = 3|a, then the contradiction with a,b
coprime.

** [-2-2-1- We suppose that b is written as :

281 25y

b:pilngql qr
with p; = 1(mod6) and ¢; = 5(mod6). Finally, we obtain that b =
1(mod 6). We will verify then this condition.

#% 1.2-2-1-1- We present the table giving the value of A™ 4+ B™ = C! modulo
6 in function of the value of A™, B™(mod 6). We obtain the table below after
retiring the lines (respectively the colones) of A™ = 0(mod6) and A™ =
3(mod 6) (respectively of B" = 0(mod 6) and B™ = 3(mod 6)), they present
cases with contradictions:
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A" B 1 2 4 5
1 2 350
2 3 401
4 5 0 2 3
) 01 3 4

TABLE 2. Table of C!(mod 6)

#% 1.2-2-1-1-1- For the case C! = 0(mod6) and C! = 3(mod6), we deduce
that 3|C' = 3|C = C = 3"Cy, with h > 1 and 3 { C;. It follows that
p— B"C!' =3b - 3"ClB" = A2 — 3|(A?™ = 4a) = 3|a = 3|b, then the
contradiction with a,b coprime.

#% 1.2-2-1-1-2- For the case C! = 0@mod6), C! = 2(@mod6) and C' =
4(mod 6), we deduce that 2|C! = 2|C = C' = 2"C}, with h > 1 and 2 1 C}.
It follows that p = 3b = A?™ + B"C! = 4a + 2"C{ B" = 2|3b = 2|b, then
the contradiction with a, b coprime.

** 1-2-2-1-1-3- We consider the cases A™ = 1(mod6) and B" = 4(mod6)
(respectively B" = 2(mod 6)): then 2|B" = 2|B = B = 2/B; with j > 1
and 21 By. It follows from 3b = A?™ + B"C! = 4a + 2/"B}C', then 2|b, then
the contradiction with a,b coprime.

** 1-2-2-1-1-4- We consider the case A”™ = 5(mod6) and B™ = 2(mod6):
then 2|B" = 2|B = B = 2/B; with j > 1 and 2 { B;. It follows that
3b = A’ 4 B"C! = 4a + 2" BPC!, then 2|b, then the contradiction with a,b
coprime.

** 1-2-2-1-1-5- We consider the case A™ = 2(mod 6) and B™ = 5(mod 6): as
A™ = 2(mod6) = A™ = 2(mod 3), then A™ is not a square and also for
B". Hence, we can write A™ and B™ as:
A™ = qg.o?
B" = by#*
where ag (respectively bgy) regroups the product of the prime numbers of A™
with exponent 1 (respectively of B™) with not necessary (ap,o/) = 1
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and (b, %) = 1. We have also p = 3b = A?™ + A™B" + B?" =
(Am — B")?2 + 3A™B" = 3|(b — A™B") = A™B" = b(mod3) but
b =oa+30®> = b =a = a?mod3), then A"B" = a*(mod3). But
A™ = 2(mod 6) = 2a' = 2(mod 6) = 4a? = 4(mod 6) = a’? = 1(mod 3).
It follows that A™B" is a square, let A™B" = 4% = &/ %% .a¢.by. We call
Jl/12 = ag.bp. Let p; be a prime number so that pilag = a¢p = p1.a7 with
p1tar. pi|AP? = pi|M = M = piA with t > 1 and p; 1 A7, then
p%t*l(/i/l’2 =aj.bp. As2t > 2= 2t—12> 1= pilai.by but (p1,a1) = 1,
then p1|bp = p1|B™ = p1|B. But p1|(A™ = 2d’), and p; # 2 because p;|B"
and B™ is odd, then the contradiction. Hence, p1la’ = pila. If p1 = 3,
from 3|(b — a) = 3|b then the contradiction with a,b coprime. Then p; > 3
a prime that divides A™ and B", then pi|(p = 3b) = p1|b, it follows the
contradiction with a,b coprime, knowing that p = 3b = 3(mod6) and we
choose the case b = 1(mod 6) of our interest.

** 1-2-2-1-1-6- We consider the last case of the table above A™ = 4(mod6)
and B™ = 1(mod 6). We return to the equation that b verifies :
(1.141) b= X2 43Y?
with X =d; Y=o«
and 3a=ad + B"
Suppose that it exists another solution of :
b=X243Y3 =1+ 30> = 2u# A™, 3v#d + B"

6o — A™
But B" = QT = 3a—a’ and b verify also :3b = p = A?™ 4+ A™B" 4 B,

it is impossible that wu, v verify:
6v =2u+2B"
3b = 4u® + 2uB" + B™"
If we consider that : 6v — 2u = 6a — 2a’ = v = 3v — 3a + d/, then b =
u? + 3v% = (3v — 3a + a)? + 3v?, it gives:
2% —BWw+a?—da=0
9

The resolution of the last equation gives with taking the positive root (because

A™ > B™), v; = a, then u = a'. It follows that b in ([1.141]) has an unique
representation under the form X2 + 3Y? with X,3Y coprime. As b is odd,

202 — B™y — =0
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we applique one of Euler’s theorems on the convenient numbers "numerus
idoneus" as cited above (Case C-2-2-1-2). It follows that b is prime.

We have also p = 3b = A?™ + A™B" + B* = 40> + B".C' = 902 — d? =
B™.C', then 3a,a’ € N* are solutions of the Diophantine equation:

(1.142) 22—y =N

with N = B"C! > 0. Let Q(N) be the number of the solutions of ([1.142)
and 7(N) the number of ways to write the factors of N, then we announce the
following result concerning the number of the solutions of (see theorem
27.3 in [6]):

-If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [1(N)/2].

-If N =0(mod 4), then Q(N) = [7(N/4)/2].

We recall that A™ = 0(mod4). Concerning B", for B” = 0(mod4) or
B" = 2(mod4), we find that 2|B" = 2|a = 2|b, then the contradiction
with a,b coprime. For the last case B" = 3(mod4) = C! = 3(mod4) —
N = B"C! = 1(mod4) = Q(N) = [r(N)/2] > 1. But Q(N) = 1, because
the unknowns of are also the unknowns of and we have an

unique solution of the two Diophantine equations, then the contradiction.
It follows that the condition 3|(b — a) is a contradiction.

The study of the case is achieved.

1.5.9. Case 3|p and b|4p: — The following cases have been soon studied:
* 3|p, b=2 = bl4p: case[L.5.]]

*3|p, b =4 = b|4dp: case

*3lp=p=23p, blp) = p' =bp”, p” # 1: case m

*3|p, b=3 = b|4p: case

*3lp=>p=3p, b=p = b|dp: case[L.5.§

** J-1- Particular case: b = 12. In fact 3|p = p = 3p’ and 4p = 12p’. Taking
b = 12, we have b|4dp. But b < 4a < 3b, that gives 12 < 4a < 36 = 3 < a < 9.
As 2|b and 3|b, the possible values of a are 5 and 7.
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4

# J1--q = 5 and b = 12 — 4p = 129/ = bp/. But A" — gp% -
5bp)  5p
35 = ?p = 3|p = p/ = 3p” with p” € N*, then p = 9p”, we obtain the
expressions:
(1.143) A?™ = 5p”

n vl p 29 »
(1.144) B"C' = 3 3 — 4cos 3 =4p

As n,l > 3, we deduce from the equation ((1.144)) that 2|p” = p” = 2%
with a > 1 and 2 { p;. Then (1.143) becomes: A?™ = 5p” = 5 x 2%p; =
2]A = A =2'A;,i>1and 21 A;. We have also B"C! = 29%%p; — 2|B"
or 2|C.

#* J-1-1-1- We suppose that 2|B" = B = 2/By, j > 1 and 2 { B;. We obtain
B?CZ — 2a+2—jnp1:

-If a+2— jn > 0= 2|C!, there is no contradiction with C! = 2im AP +
2in B = 2|C" and the conjecture is verified.

-Ifa+2—jn=0= BPC' = p;. From C=2"m AP + 2/" B} = 2|C! that
implies that 2|p;, then the contradiction with 21 p;.

-Ifa 42— jn < 0= 2m2"2BrC! = p, it implies that 2|p;, then the
contradiction as above.
#% J-1-1-2- We suppose that 2|C!, using the same method above, we obtain
the identical results.

** J-1-2- We suppose that ¢ = 7 and b = 12 = 4p = 12p' = bp’. But
Cdpa 1290 7T T

A2 — 33- 3 13- 3 — 3|p’ = p = 9p”, we obtain:
AQm — 7pav
0
Bncl _ g (3 o 400523> — 2p77

The last equation implies that 2|B"C!. Using the same method as for the
case J-1-1- above, we obtain the identical results.

We study now the general case. As 3|p = p = 3p’ and b|4p = Tk € N* and
4p = 12p' = kqb.
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¥ J2-kp = 1: If ky = 1 then b = 129/, (p) # 1, if not p = 3 <K
4p 0 12p'a 4p'a a
A?™ 4 B2 4 AmB"). But A" = —.cos’= = - = =_- =3
e ). Bu 30 3T 3 T 1y 3 0
because A?™ is a natural number, then the contradiction with a, b coprime.

4 20 k1.
** J3- k=3 : If ky = 3, thenb:4p'andA2m:—pcos 209 _ =

3 3 o 3

260
(A™)? = /> = A™ = d/. The term A™B" gives AMB" = pT n %,
then:
2

(1.145) A% 4 2A™B" = p?:[.sm =2p \fsm

20
The left member of ((1.145)) is a natural number and also p’, then 2\/§sm§

can be written under the form:

Q\fsm 20 kQ
ks

where ko, k3 are two natural numbers and are coprime and ks|p’ = p’ = ks.k4.

** J-3-1- k4 # 1 : We suppose that kg # 1, then:
(1.146) AP L 9A™B™ = ko.ky

Let 1 be a prime natural number so that u|ky, then u|A™(A™+2B") = p|A™
or u|(A™ + 2B™).

R J3-1-1- p|A™ ¢ If p|A™ = p|A?™ = pla. As plky = plp’ = u|(4p’ =
b). But a,b are coprime, then the contradiction.

K J-3-1-2- pl(A™ 4 2B™) @ If p|(A™ +2B") = pt A™ and p 1 2B, then
p#2and ptB". p|(A™+ 2B"™), we can write A™ + 2B™ = p.t’. Tt follows:
Am_|_Bn — ,UJt/ —_B" — A2m+B2n+2AmBn — M2t12 —2t,,uBn—|—B2n
Using the expression of p, we obtain p = t"2y% — 2t/ By + B™"(B™ — A™). As
p = 3p’ and ulp’ = u|(3p") = plp, we can write : I’ and p = py', then we

arrive to:
p o= p(pt"? — 2t'B") + B"(B" — A™)
and p|B"(B" — A™) = u|B™ or pu|(B™ — A™).

*k J-3-1-2-1- p|B™ : If p|B™ = u|B, it is in contradiction with J-3-1-2-.
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K J-3-1-2-2- p|(B"—A™) : If p|(B™—A™) and using u|(A™+2B"), we obtain

| B™
p|3B" = ¢ or
p=3

*k J-3-1-2-2-1- p|B™ : If p|B™ = p|B, it is in contradiction with J-3-1-2-.

*K J-3-1-2-2-2- =3 : If p = 3 = 3lky = kg4 = 3K/, and we have p’ =
ksky = 3ksk}, it follows that p = 3p’ = 9ksk);, then 9|p, but p = (A™ — B")2 +
3A™B"™, then we obtain:

9k3k) — 3A™B" = (A™ — B")?

that we write : 3(3k3k} — A™B") = (A™ — B™)?, then : 3|(3ksk},— A" B") —
3|A™B" = 3|A™ or 3|B".

¥ J-3-1-2-2-2-1- 3|[A™ : If 3|A™ = 3|A?™ = 3]a, but 3|p’ = 3|(4p’) = 3b,
then the contradiction with a,b coprime and 3 1 A.

% J.3.1-2-2-2-2- 3|B" : If 3|B™ but A™ = put’ — 2B" = 3t/ — 2B™ = 3|A™,
it is in contradiction with 3 { A.

Then the hypothesis k4 # 1 is impossible.

** J-3-2- k4 = 1: We suppose now that ky = 1 = p/ = k3ks = k3. Then we
have:

2
(1.147) 2\/§sin§0 _ k2

p/
with ks, p’ coprime, we write (1.147) as :
ko

4\/§5ingcos§ = p—

/

0
Taking the square of the two members and replacing 0032§ by % and b = 4p/,
we obtain:
3.a(b—a) = k3

As A?™ = g = a/?, it implies that :

3|(b—a), and b—a=0b—ad?=3a"
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As kg = A™(A™ 4 2B™) following the equation (|1.146) and that 3|ke —
3|A™(A™ + 2B™) = 3|A™ or 3|(A™ + 2B").

#H J-3-2-1- 3|A™: If 3|A™ = 3|A?™ = 3|a, but 3|(b — a) = 3|b, then the
contradiction with a,b coprime.

#¥ J-3-2-2- 3|(A™ + 2B") = 31 A™ and 31 B". As k3 = 9aa? = 9d?a® =
ke = 3d'a = A™(A™ + 2B"), then :

(1.148) 3a = A™ + 2B"

As b can be written under the form b = a’? + 3a?, then the pair (d’,a) is a
solution of the Diophantine equation:

(1.149) 2?4+ 3y =b
As b =4p, then :

*k J-3-2-2-1- If x,y are even, then 2|a’ => 2|a, it is a contradiction with a,b
coprime.

*k J-3-2-2-2- If x, y are odd, then o/, o are odd, it implies A™ = ¢’ = 1( mod 4)
or A™ = 3(mod4). If u,v verify , then b = u? + 302, with v # o
and v # «, then w,v do not verify : 3v # u 4+ 2B"™, if not,
u = 3v—2B" = b = (3v — 2B")? + 3v? = a? + 3a, the resolution of
the obtained equation of second degree in v gives the positive root v; = a,
then u = 3o — 2B™ = d/, then the uniqueness of the representation of b by the

equation (|1.149)).

** J-3-2-2-2-1- We suppose that A”™ = 1(mod4) and B" = 0(mod4), then
B" is even and B"™ = 2B’. The expression of p becomes:

p=a?+2d'B +4B”? = (d + B")?+3B? =3p = 3|(d + B') = d + B' = 3B”
p'=B?+3B" = b=4p = (2B')* + 3(2B")* = a” + 30?

that gives 2B’ = B" = a’ = A™, then the contradiction with A™ > B".
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*kJ-3-2-2-2-2- We suppose that A”™ = 1(mod4) and B™ = 1(mod4), then
C' is even and C! = 2C". The expression of p becomes:

p= CQl o Can + BQn — 4Cl2 —2C'B"™ + BQn — (Cl o Bn)Q + 30/2 _ 3p/
— 3|(C' = B") —> ' — B" = 3C”
P =C%+3C" = b=4p' = (2C")? + 3(2C")* = a”* + 302

We obtain 20" = C! = a/ = A™, then the contradiction.

**k J-3-2-2-2-3- We suppose that A”™ = 1(mod4) and B™ = 2(mod4), then
B™ is even, see J-3-2-2-2-1-.

**k J-3-2-2-2-4- We suppose that A”™ = 1(mod4) and B™ = 3(mod4), then
C! is even, see J-3-2-2-2-2-.

** J-3-2-2-2-5- We suppose that A™
B"™ is even, see J-3-2-2-2-1-.

3(mod4) and B"

0(mod 4), then
** J-3-2-2-2-6- We suppose that A™ = 3(mod4) and B" = 1(mod4), then
C! is even, see J-3-2-2-2-2-.

** J-3-2-2-2-7- We suppose that A™ = 3(mod4) and B" = 2(mod4), then
B" is even, see J-3-2-2-2-1-.

o J-3-2-2-2-8- We suppose that A™
C! is even, see J-3-2-2-2-2-.

3(mod4) and B"

3(mod4), then

We have achieved the study of the case J-3-2-2- given contradictions.

* J-4- We suppose that ky # 3 and 3|k = ki = 3k} with k] # 1,

then 4p = 12p' = kib = 3kib = 4p’ = kib. A?" can be written as
4 0 Kb /

azm = P 32723 122 k1(3b—4a).

0
g0 g =37 = kja and B"C! = g (3 — 4c0523> =7

As B"C! is a natural number, we must have 4|(3b — 4a) or 4|k} or
[2|k] and 2[(3b — 4a)].

** J-4-1- We suppose that 4|(3b — 4a).
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** J-4-1-1- We suppose that 3b — 4a = 4 = 4|b = 2|b. Then, we have:
A% = Kla
B"C' =k

#* J-4-1-1-1- If K} is prime, from B"C! =k}, it is impossible.

** J-4-1-1-2- We suppose that k] > 1 is not prime. Let w be a prime natural
number so that w|kj.

** J-4-1-1-2-1- We suppose that k] = w®, with s > 6. Then we have :
(1.150) A% = s
(1.151) B"C! = w*

** J-4-1-1-2-1-1- We suppose that w = 2. If a, k] are not coprime , then 2|a,
as 2|b, it is the contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose w = 2 and a, k] are coprime, then 2 4 a. From
, we deduce that B = C = 2 and n + 1 = s, and A?™ = 2%.a, but
Am — 2[ —on — AQm — (21 _2n)2 — 22l+22n _2(21+n) — 22l+22n _9x Qs —
2.0 = 2% + 22" = 2%(a 4+ 2). If I = n, we obtain a = 0 then the
contradiction. If I # n, as A =21 —2" >0 = n < | = 2n < s, then
221 (1422120 _gs+1=2n) — 99l 4 We call | = n+ny = 142272 _2s+1=2n
2™ a, but the left term is odd and the right member is even, then the contra-
diction. Then the case w = 2 is impossible.

*% J-4-1-1-2-1-3- We suppose that k] = w® with w # 2:

** J-4-1-1-2-1-3-1- Suppose that a, k| are not coprime, then wla = a = w'.ay
and t 1 a;. Then, we have:

(1.152) AP = 5Ty

(1.153) B"C! = w*

From (1.153)), we deduce that B® = w", C" = w!, s = n+land A™ = wl—w" >
0 = [ > n. We have also A?™ = w.a; = (W — w")? = W + W — 2 x w°.
As w # 2 = w is odd, then A?" = w¥*.a; = (W' — w™)? is even, then

2|la; = 2|a, it is in contradiction with a,b coprime, then this case is impos-
sible.
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** J-4-1-1-2-1-3-2- Suppose that a, k] are coprime, with :

(1.154) AP = Wt
(1.155) B"C! = w*
From (1.155), we deduce that B" = w", C!' = w! and s = n+ 1. As

w# 2= wis odd and A?™ = w*.a = (W' —w")? is even, then 2|a. It follows
the contradiction with a, b coprime and this case is impossible.

#* J-4-1-1-2-2- We suppose that k] = w®.kg, with s > 6, w t k2. We have :
A =P ky.a
B"C! = w® ks

** J-4-1-1-2-2-1- If ko is prime, from the last equation above, w = ko, it is in
contradiction with w { k2. Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that k] = w®.ke, with s > 6, w t k2 and ko not a
prime. Then, we have:

A% = w8 ky.a
(1.156) B"C! = w® ko
** 0 J-4-1-1-2-2-2-1- We suppose that w,a are coprime, then w { a. As

AP = ¥ ko.a = WA = A = w'A; withi > 1 and w{ A, then s = 2im.
From (1.156)), we have w|(B"C!) = w|B" or w|C".

¥ J-4-1-1-2-2-2-1-1- We suppose that w|B" = w|B = B = w/B; with
j>1and wt Bj. then :
B?Cl — wZimfjnkQ

- If 2im — jn > 0, w|C! = w|C, no contradiction with C! = W™ AT + wI" B}
and the conjecture is verified.

-1f 2im—jn = 0 = BPC! = kg, as w t ks = w { C', then the contradiction
with w|(C! = A™ + B").

-If 2im — jn < 0 = wj"_QimB’fC’l = ko = wlke, then the contradiction
with w )[ kg.

#% J-4-1-1-2-2-2-1-2- We suppose that w|C!. Using the same method used
above, we obtain identical results.
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#k J-4-1-1-2-2-2-2- We suppose that a,w are not coprime, then wla = a =
w'.a; and w1t a;. So we have :

(1.157) AP = 5T ey ay
(1.158) B"C! = w® ky

As A?" = w3t ky.a; = w|A = A = W'A; with i > 1 and w { A, then
s+t = 2im. From (1.158)), we have w|(B"C') = w|B" or w|C".

¥ J-4-1-1-2-2-2-2-1- We suppose that w|B" = w|B = B = w/B; with
j>1and wt By. then:
B?Cl — w2im7tfjnk2

-If 2im—t—jn > 0, w|C! = w|C, no contradiction with C! = w™ AT +wI" B
and the conjecture (3.1)) is verified.

- If 2im —t — jn = 0 = B}C! = ko, As w { ko = w 1 C', then the
contradiction with w|(C! = A™ + B").

- If 2im —t — jn < 0 = winHt=2mprCl = ky — w|ky, then the contra-
diction with w 1 ko.

¥ J-4-1-1-2-2-2-2-2- We suppose that w|C!. Using the same method used
above, we obtain identical results.

ok J-4-1-2- 3b — 4a # 4 and 4[(3b — 4a) = 3b — 4a = 4°Q with s > 1 and
41 Q. We obtain:

(1.159) A% = Kha

(1.160) B"C! = 471K Q

** J-4-1-2-1- We suppose that k] = 2. From , we deduce that 2|a. As

4](3b — 4a) = 2|b, then the contradiction with a,b coprime and this case is
impossible.

#¥ J-4-1-2-2- We suppose that k] = 3. From (1.159) we deduce that 33| A%™.
From , it follows that 33| B™ or 33|C’. In the last two cases, we obtain
33|p. But 4p = 3k{b = 9b = 3|b, then the contradiction with a,b coprime.
Then this case is impossible.

** J-4-1-2-3- We suppose that k] is prime > 5:
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**J-4-1-2-3-1- Suppose that kj and a are coprime. The equation (1.159)
gives (A™)? = k| .a, that is impossible with &} { a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k] and a are not coprime. Let k||a = a = k*ay
with @ > 1 and k| t a;. The equation (1.159) is written as :

AP = Kra =Ky

The last equation gives kj|A?™ = kj|A = A = k}.Ay, with k| { A;. If
2i.m # (a+ 1), it is impossible. We suppose that 2i.m = « + 1, then kj|A™.
We return to the equation . If k] and Q are coprime, it is impossible.
We suppose that k] and Q are not coprime, then k}|Q and the exponent
of k| in Q is so the equation is satisfying. We deduce easily that
k{|B™. Then k?|(p = A*™ + B?" + A™B"), but 4p = 3k}b = k||b, then the
contradiction with a, b coprime.

** J-4-1-2-4- We suppose that k] > 4 is not a prime.

#% J-4-1-2-4-1- Supposons que ki = 4, we have then A?" = 4a and
B"C! = 3b —4a = 3p' — 4a. This case was studied in the paragraph
1.5.8) case ** I-2-.

** J-4-1-2-4-2- We suppose that k] > 4 is not a prime.

** J-4-1-2-4-2-1- We suppose that a, k] are coprime. From the expression
A%M = |4 .a, we deduce that a = a? and k] = k"2, Tt gives :

Am = al.k”l
B"C' = 4°7k7.0

Let w be a prime so that w|k”; and k" = wt.k”y with w { k”5. The last two
equations become :

(1.161) A™ = a1.0" k"

(1.162) B"C! = 477 k3.0

From ([1.161), w|A™ = w|A = A = w".A; with w { A; and im = t. From
(1.162), we obtain w|B"C' = w|B" or w|C".
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¥ J4-1-2-4-2-1-1- If w|B" = w|B = B = w’/.B; with w { B;. From
(1.161)), we have B}C! = w?—im4s=1 k2 Q.

% J-4-1-2-4-2-1-1-1- If w = 2 and 21 Q, we have BPC! = 22t+2s—jn=2p»2 ().

- If 2t + 25 — jn — 2 < 0 then 2 { O, then the contradiction with C! =
WA + WM BY.

-If 2t 4+2s—jn—2 > 1 = 2|C! = 2|C and the conjecture (3.1)) is verified.

*K J-4-1-2-4-2-1-1-2- If w = 2 and if 2|Q = Q = 2.Q; because 4t §2, we have
B{LCI — 22t+23+1—].n—2kw%Ql:

- If 2t + 25 — jn — 3 < 0 then 2 t C!, then the contradiction with C! =
WmMAT + WINBY.

-1f 2t 4+2s—jn—3 > 1 = 2|C! = 2|C and the conjecture is verified.

¥ J-4-1-2-4-2-1-1-3- If w # 2, we have B}C! = w?'=In45-1 72 ()
-If 2t — jn < 0 = w1t C' it is in contradiction with C! = W™ AT 4+ W/ BY.
-If 2t — jn > 1 = w|C! = w|C and the conjecture (3.1)) is verified.

¥ J4-1-2-4-2-1-2- If w|C! = w|C = C = W".Cy, with w { Cy. Using the
same method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k| are not coprime. Let w be a prime so
that w|a and w|k}. We write:
a=w"a
k] = wh k",

with a1, k”; coprime. The expression of A*™ becomes A*™ = wtH a1 k1.
The term B"C' becomes:

(1.163) B"Cl = 4571wt k71.Q

*k J-4-1-2-4-2-2-1- If w = 2 = 2|a, but 2|b, then the contradiction with a,b
coprime, this case is impossible.

*k J-4-1-2-4-2-2-2- If w > 3, we have w|a. If w|b then the contradiction with
a,b coprime. We suppose that w { b. From the expression of A%™, we obtain
WA = WA = A = w'. Ay with w{ Ay, i > 1 and 2i.m = o + p. From

(1.163), we deduce that w|B™ or w|C’.
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#¥J-4-1-2-4-2-2-2-1- We suppose that w|B" = w|B = B = w’/B; with
w{ By and j > 1. Then, BRC! = 457 1wh=In k71.Q

*wt Qo

- If 4 — jn > 1, we have w|C! = w]|C, there is no contradiction with
Cl = wmMAT + wI" B} and the conjecture is verified.

- If uw—jn < 0, then w { C' and it is a contradiction with C! =
w™MAT + wI" BT, Then this case is impossible.

* Wl we write Q = wPf.Qy with 3> 1 and w{ Q. As 3b — 4a = 4°.Q =
45 WP O = 3b = 4a + 4°.wWP.Qy = 4w.ay +4°.0°. Q) = 3b = dw(w* La +
4571 w871 0). If w = 3 and B = 1, we obtain b = 4(3* ta; + 4°7'Q) and
BPC! = 45~ 13pH1=in k71 Q).

-If 4 — jn + 1 > 1, then 3|C! and the conjecture is verified.

-If p—4jn+1 < 0, then 3 f C' and it is the contradiction with
Cl = 3m AP 4 3inpr.

Now, if 3 > 2 and a = im > 3, we obtain 3b = 4w?(w* 2a; + 45*1w5*291).
If w = 3 or not, then w|b, but wl|a, then the contradiction with a, b coprime.

¥ J-4-1-2-4-2-2-2-2- We suppose that w|C! = w|C = C = w"C; with
w{Cy and h > 1. then, B"C! = 45~ 1w#=h k71 Q. Using the same method as
above, we obtain identical results.

** J-4-2- We suppose that 4|k].

*K J-4-2-1- K} = 4 = 4p = 3k}b = 12b = p = 3b = 3p/, this case has been
studied (see case I-2- paragraph [1.5.8)).

% 1422 k) > 4 with 4, — k| = 4°%”, and s > 1, 4 | k1. Then, we
obtain:
A2m —_ 431{3”101 —_ 223k771a
Bncl — 4571]{/_7’1(3() o 4(1) — 22872k771(3b o 4&)

** J-4-2-2-1- We suppose that s = 1 and k] = 4k”; with k71 > 1, so p = 3p/
and p’ = k”1b, this is the case already studied.



1.5. HYPOTHESE: {3|p and bl4p} 70

** J-4-2-2-2- We suppose that s > 1, then k} = 4°k”; = 4p = 3 x 45k”1b and
we obtain:

(1.164) AP = 45k 1a

(1.165) B"C! = 457171 (3b — 4a)

*kJ-4-2-2-2-1- We suppose that 2 1 (k”1.a) = 2 t k71 and 2 { a. As
(A™)2 = (2%)2.(k"1.a), we call d*> = k”j.a, then A™ = 2°.d = 2|A™ —
2]A = A = 2'A; with 21 Ay and i > 1, then: 2MmAT = 25.d = s = im.
From the equation (1.165)), we have 2|(B"C') = 2|B" or 2|C".

#¥ J-4-2-2-2-1-1- We suppose that 2|B" = 2|B = B = 2/.By, with j > 1
and 2 1 B;. The equation (1.165]) becomes:

B11’Lcl — 228—jn—2k771(3b o 4&) _ 22im—jn—2k”1(3b . 4&)

* We suppose that 21 (3b — 4a):

- If 2im — jn — 2 > 1, then 2|C’, there is no contradiction with C! =
2im AT 4+ 27" B" and the conjecture (3.1)) is verified.

- If 2im — jn — 2 < 0, then 2 { O!, then the contradiction with
Ch=2/m AP 4 2I" By

* We suppose that 2#((3b — 4a), p > 1:

- If 2im + p — jn — 2 > 1, then 2|C, no contradiction with C! = 2im AP +
29" B and the conjecture is verified.

- If 2ém + p — jn — 2 < 0, then 2 { C!, then the contradiction with
Cl = 2Mm AT + 2i"BY.

% J-4-2-2-2-1-2- We suppose that 2|C! = 2|C = C = 2".Cy, with h > 1
and 2 1 Cq. With the same method used above, we obtain identical results.

#* J-4-2-2-2-2- We suppose that 2|(k”1.a):
** J-4-2-2-2-2-1- We suppose that k71 and a are coprime:

#¥ J-4-2-2-2-2-1-1- We suppose that 2 { a and 2|k"; = k"1 = 2%.k"3 and
a = a?, then the equations (1.164}{1.165)) become:

(1.166) AP = 4222750 = AT = 25 kg
(1167)  B'C = 4712k (3b — da) = 227 H273(3b — da)
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The equation (1.166]) gives 2|A™ = 2|4 = A = 2*.A; with 21 Ay, i > 1
and im = s + p. From the equation (1.167), we have 2|(B"C') = 2|B" or
2|C".

*% J.4.2.9.9.9.1-1-1- We suppose that 2|B" — 2|B — B = 2.B,, 2 B,
and j > 1, then B}C! = 22520=in=2E"2(3h — 4a):

* We suppose that 2 1 (3b — 4a):

- If 2im + 2 — jn — 2 > 1 = 2|C', then there is no contradiction with
C! = 2m A 4 27" B and the conjecture is verified.

- If 2im +2u — jn —2 < 0 = 2 { C', then the contradiction with
Cl = 2im AT + 20" BT,

* We suppose that 2%|(3b — 4a), « > 1 so that a,b remain coprime:

- If 2im 4+ 2u + o — jn — 2 > 1 = 2|0, then no contradiction with C! =
2im A 4 27" B7 and the conjecture (3.1)) is verified.

-If 2im 4+ 2u 4+ o — jn —2 < 0 = 2 4 C!, then the contradiction with
Cl = 2im A 4 2inph,

*%J-4-2-2-2-2-1-1-2- We suppose that 2|C! = 2|C = C = 2".Cy, with
h > 1 and 2 1 C;. With the same method used above, we obtain identical
results.

¥ J-4-2-2-2-2-1-2- We suppose that 2 { k71 and 2|a = a = 2%.43 and
k1 = k"%, then the equations ((1.164H1.165)) become:

(1.168) AP = 45 22278 = AT = 25T gy k7.
(1.169) B"C! = 4571k72(3b — 4a) = 2% 72k7%(3b — 4a)
The equation (1.168) gives 2|A™ = 2|4 = A = 2*.A; with 21 Ay, i > 1

and im = s + p. From the equation (1.169), we have 2|(B"C') = 2|B" or
2|C!.

#¥J-4-2-2-2-2-1-2-1- We suppose that 2|B" = 2|B = B = 2/.By, 2 { By
and j > 1. Then we obtain B}C! = 2257"=2"2(3b — 4a):

* We suppose that 21 (3b — 4a) = 21 b:
-1f 2im—jn—2 > 1 = 2|C', then no contradiction with C! = 2i™ A" 4-2/" B}
and the conjecture (3.1)) is verified.
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- If 2im —jn —2 < 0 = 2t C!) then the contradiction with C! =
20m AT 4 2N BT

* We suppose that 2%|(3b — 4a), o > 1, in this case a,b are not coprime,
then the contradiction.

#¥J-4-2-2-2-2-1-2-2- We suppose that 2|C! = 2|C = C = 2".Cy, with
h > 1 and 2 1 C;. With the same method used above, we obtain identical
results.

**J-4-2-2-2-2-2- We suppose that k7 and a are not coprime 2|a and 2|k”;.
Let a = 2'.a; and k" = 2"k”y and 2 { a; and 21 k”2. From (1.164)), we have
pu+t=2Xand ai.k”s = w?. The equations (1.164}{{1.165) become:

(11704%™ = 4°k71a = 225 2M k7920 ay = 225F2A W02 — A™ = 25FA

(1.171) B"C! = 45712075 (3b — 4a) = 22T 2k79(3b — 4a)

From (1.170) we have 2|A™ = 2|A = A = 2/A;,i > 1 and 2 { A;.
1.171)

From(1. , 25+ 1 — 2 > 1, we deduce that 2|(B"C!) = 2|B" or 2|C".

¥ J-4-2-2-2-2-2-1- We suppose that 2|B" = 2|B = B = 2/.By, 2{ B; and
j > 1. Then we obtain BPC! = 225+1r=in=2§"2(3h — 4q):

* We suppose that 2 1 (3b — 4a):

-If 25+ 1 — jn — 2 > 1 = 2|C', then no contradiction with C! = 2m AT +
2/m B and the conjecture (3.1)) is verified.

-If 254+ pu—jn—2 < 0 = 2 4 C! then the contradiction with
Cl = 2im AT + 21" B,

* We suppose that 2%|(3b — 4a), for one value o > 1. As 2|a, then
2%|(3b — 4a) = 2|(3b — 4a) = 2|(3b) = 2|b, then the contradiction with
a, b coprime.

¥ J-4-2-2-2-2-2-2- We suppose that 2|0 = 2|C = C = 2".Cy, with h > 1
and 2 1 Cq. With the same method used above, we obtain identical results.

#% J-4-3- 2|k} and 2|(3b — 4a): then we obtain 2|k} = k| = 2L.k7; with t > 1
and 21 k"1, 2|(3b —4a) = 3b—4a = 2*.d with p > 1 and 2 { d. We have also
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2|b. If 2|a, it is a contradition with a,b coprime.

We suppose, in the following, that 2 4 a. The equations (1.164H1.165)) be-

come:

(1.172) A% = 2t k7 0 = (A™)?
(1.173) BrC =9t g or g = 22 4

From ([1.172)), we deduce that the exponent ¢ is even, let £ = 2. Then we call
w? = k”1.a, it gives A" = 2) 0w = 2|A™ = 2|A = A = 20.A; with i > 1
and 21 Ay. From (1.173)), we have 2\ + y — 2 > 1, then 2|(B"C') = 2|B" or
2|C!:

#* J-4-3-1- We suppose that 2|B" = 2|B = B = 2/Bj, with j > 1 and
21 B;. Then we obtain B}C! = 22A+#=in=2 p») 4.
I 20+ p—jn —2 > 1 = 2|C' = 2|C, there is no contradiction with
C! = 2m AT 4- 27" B and the conjecture is verified.
-If2s+t+pu—jn—2 < 0 = 2 ¢ C, then the contradiction with
Cl = 2im A 4 2inBh.

¥ J-4-3-2- We suppose that 2|C! = 2|C. With the same method used above,
we obtain identical results.
]

The Main Theorem is proved.

1.6. Numerical Examples

1.6.1. Example 1: — We consider the example : 63 + 33 = 3% with A™ =
63, B” = 33 and C' = 3°. With the notations used in the paper, we obtain:

p=3"x73 ¢=8x3", A=4x383"x42-73% <0

8 4 3
(1.174) _FXTBYB g 4x 3 x V3
V3 7373
4 0 6 3A™m 3 x2?
As A2m2§.0032§ 2>0032§ = 1 = >7<3 = % — a=3x2% b="73;
then we obtain:
0 43
1.175 co0S— = ——, =3%b
(1.175) 3= /5 P
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We verify easily the equation ([1.174]) to calculate cosf using (|1.175]). For this
example, we can use the two conditions from (1.64) as 3|a,b|4p and 3|p. The

cases [[.4.4] and [1.5.3] are respectively used. For the case it is the case
B-2-2-1- that was used and the conjecture (3.1) is verified. Concerning the
case [1.5.3] it is the case G-2-2-1- that was used and the conjecture (3.1]) is
verified.

1.6.2. Example 2: — The second example is: 74 + 73 = 143. We take
A™ =74 B" =73 and C! = 143. We obtain p =57 x 70 =3x19x 7, ¢=
8x T A =27¢2—4p3 = 2T x4 x T18(16 x 49— 193) = —27Tx 4 x T8 x 6075 <

4x7 4p 0 0
0, =19x7" %19, cosh =— CAs AP = T2 cos’— = cos®= =
g 19v/19 3 3 3
3A42m 72 0 7
. :4X19:%:>a:72,b:4><19,thencos§:ﬁandwehave

the two principal conditions 3|p and b|(4p). The calculation of cosf from the

expression of cosg is confirmed by the value below:

9 0 7 \? 7 4x7
cosh = c0s3(0/3) = 4cos®~ — 3cos— = 4 () -3 = —
(0/3) 3 3 24/19 24/19 19+/19

Then, we obtain 3|p = p = 3p’, b|(4p) with b # 2,4 then 12p’ = k1b = 3 x 7%.
It concerns the paragraph of the second hypothesis. As k; = 3 x 7% = 3k
with &} = 76 # 1. Tt is the case J-4-1-2-4-2-2- with the condition 4|(3b — 4a).
So we verify :

3b—4a=3x4x19—4x 7% =32 = 4|(3b — 4a)

with A?™ = 78 = 76 x 72 = k{.a and k| not a prime, with a and k] not
coprime with w = 7 1 Q(= 2). We find that the conjecture (3.1)) is verified
with a common factor equal to 7 (prime and divisor of k] = 7°).

1.6.3. Example 3: — The third example is: 19* + 38 = 573 with
A" = 19* B" = 383 and C! = 57°. We obtain p = 195 x 577, ¢ =
8x27Tx 1910, A =27¢> —4p? =4 x 1918273 x 16 x 192 - 5773) <0, p=

199 x 577\/577 4 x 3t x 19V/3 9m 4p 40
T cosh = ———— " As AP = Zcos’s =
3V3 ) ) 577\/577 3 3

9 3A%m 3x 19 a
2 2
0053 1 157 b:>a 3 x 19%, b x 577, then
0  19V3

and we have the first hypothesis 3|a and b|(4p). Here again,

93 T 9mTT
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0
the calculation of cosf from the expression of cosg is confirmed by the value

below:
3
0 6 19v/3 19v/3 4% 3% %193
cos0 = c0s3(0/3) = 4cos®~—3cos~ = 4 -3 = —
(0/3) 3 3 (2\/577> 24/577 577577

Then, we obtain 3|a = a = 3a’ = 3 x 192, b|(4p) with b # 2,4 and b = 4p’
with p = kp’ soit p’ = 577 and k = 195. This concerns the paragraph of
the first hypothesis. It is the case E-2-2-2-2-1- with w = 19, @/, w not coprime
and w =191 (p —a') = (577 — 19?) with s — jn =6 — 1 x 3 =3 > 1, and the
conjecture is verified.

1.7. Conclusion

The method used to give the proof of the conjecture of Beal has discussed
many possibles cases, using elementary number theory and the results of some
theorems about Diophantine equations. We have confirmed the method by
three numerical examples. In conclusion, we can announce the theorem:

Theorem 1.3. — Let A, B,C, m,n, and [ be positive natural numbers
with m,n,l > 2. If :
(1.176) A™+ B" = C!

then A, B, and C have a common factor.
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CHAPTER 2

TOWARDS A SOLUTION OF THE RIEMANN
HYPOTHESIS

Abstract. — In 1859, Georg Friedrich Bernhard Riemann had announced the following
conjecture, called Riemann Hypothesis : The nontrivial roots (zeros) s = o + it of the zeta

function, defined by:
+oo

¢(s) = Z%, for R(s) >1

n=1

1
have real part o = 3

1
We give a proof that o = 3 using an equivalent statement of the Riemann Hypothesis

concerning the Dirichlet 1 function.

Résumé. — En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture
suivante, dite Hypothése de Riemann: Les zéros non triviaur s = o + it de la fonction zeta
définie par:

“+oo
1
¢(s) = ZE’ pour R(s) >1
n=1
] . 1
ont comme parties réelles o = 3
On donne une démonstration que o = 5 en utilisant une proposition équivalente de

I’Hypothese de Riemann.

2.1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
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Conjecture 2.1. — . Let ((s) be the complex function of the complex
variable s = o + it defined by the analytic continuation of the function:
+o0 1
Gi(s) = Z = for R(s) =0 >1
n=1

over the whole complex plane, with the exception of s = 1. Then the
nontrivial zeros of ((s) =0 are written as :

e
8—2 (4

In this paper, our idea is to start from an equivalent statement of the
Riemann Hypothesis, namely the one concerning the Dirichlet n function. The
latter is related to Riemann’s ¢ function where we do not need to manipulate
any expression of ((s) in the critical band 0 < (s) < 1. In our calculations,
we will use the definition of the limit of real sequences. We arrive to give a

1
proof that o = 3 except at most for a finite number of zeros.

2.1.1. The function (. — We denote s = o + it the complex variable of C.
For R(s) = o > 1, let ¢; be the function defined by :
+o0 1

Gls)=> = for N(s) =0 >1

n=1
We know that with the previous definition, the function (; is an analytical
function of s. Denote by ((s) the function obtained by the analytic contin-
uation of (1(s) to the whole complex plane, minus the point s = 1, then we
recall the following theorem [2]:

e ~

Theorem 2.2. — . The function ((s) satisfies the following :

1. ¢(s) has no zero for R(s) > 1;

2. the only pole of ((s) is at s = 1; it has residue 1 and is simple;

3. ((s) has trivial zeros at s = —2,—4, .. ;

4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the

critical strip) and are symmetric about both the vertical line R(s) = 3

and the real axis (s) = 0.

\. J

1
The vertical line R(s) = 3 is called the critical line. We have also the

theorem (see page 16, [3]):
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[ Theorem 2.3. — . For allt € R, ((1+it) #0. ]

It is also known that the zeros of ((s) inside the critical strip are all
complex numbers # 0 (see page 30 in [3]). Then, we take the critical strip as
the region defined as 0 < R(s) < 1.

The Riemann Hypothesis is formulated as:

Conjecture 2.4. — . (The Riemann Hypothesis,|2]) All nontrivial

zeros of ((s) lie on the critical line R(s) = 3"

In addition to the properties cited by the theorem [2.2] above, the function
((s) satisfies the functional relation [2] called also the reflection functional
equation for s € C\{0,1} :

(2.1) C(1—s) = 21—s7r—scos%r(s)g(s)

where T'(s) is the gamma function defined only for R(s) > 0, given by the
formula :

I'(s) :/ e 't dt,
0

So, instead of using the functional given by (2.1]), we will use the one presented
by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

+00 / 1\n—1
ns) = 3 CF = (-2t ()
n=1

The function eta is convergent for all s € C with R(s) > 0 [2].

2.1.2. A Equivalent statement to the Riemann Hypothesis. —
Among the equivalent statements to the Riemann Hypothesis is that of the
Dirichlet function eta which is stated as follows [2]:
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Equivalence 2.5. — . The Riemann Hypothesis is equivalent to the
statement that all zeros of the Dirichlet eta function :

= (_1)n—1 1-—s
(2.2) H(S):ZTZO—Q )C(s), o>1
n=1

that fall in the critical strip 0 < R(s) < 1 lie on the critical line R(s) =
1

5"

The series (2.2)) is convergent, and represents (1—217%)((s) for R(s) = o > 0
(I3], pages 20-21). We can rewrite:

= (_1>n71 1—s
(2.3) n(s) = s = (1=27¢(s), R(s)=0>0
n=1

n(s) is a complex number, it can be written as :

(2.4) n(s) = p.e'® = p* = 1(s).n(s)
and n(s) =0 <= p=0.

1
2.2. Proof that the zeros of 7(s) are on the critical line R(s) = 3
Proof. — . We denote s = o + it with 0 < o < 1. We consider one zero of

the function 7(s) that falls in critical strip and we write it as s = o + it, then
we obtain 0 < ¢ < 1 and 7(s) = 0 = (1 — 2!7%)¢(s) = 0. Let us denote
((s) =A+iB, and 0 = tLog2, then :

(1-2179)¢(s) = {A(l —217%¢0s0) — 21_"Bsin«9] +i {B(l —217%¢0s0) 4 2177 Asinf
(1 —2179)¢(s) = 0 gives the system:

A1 —2'%¢cos0) — 277 Bsinh = 0
B(1 —2'""%cosh) + 2177 Asinf = 0

As the functions sin and cos are not equal to 0 simultaneously, we sup-

pose for example that sinf # 0, the first equation of the system gives B =

A(1 — 219 cosb)
21-05ind

A(1 —2'79¢cosh)
21-95inf

, the second equation is written as :

(1—-2"7cos0) +2' "7 Asinf =0 = A =0
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Then, B =0 = ((s) = 0, it follows that:
(2.5)
‘s is one zero of n(s) that falls in the critical strip, is also one zero of C(s)‘

Conversely, if s is a zero of ((s) in the critical strip, let ((s) = A+iB =0 =
n(s) = (1 —217%)¢(s) = 0, then s is also one zero of n(s) in the critical strip.
We can write:

(2.6)

‘5 is one zero of ((s) that falls in the critical strip, is also one zero of 77(5)‘

Let us write the function n:

00 (_1)71—1 +00 ~+o00 '
77(8) — - — (_1)n71€stogn — Z(_l)nflef(chrzt)Logn _
n=1 n n=1 n=1
+o0

(_1)nflefaLogn.efitLogn

= Z(—1)”_16_0L09”(cos(tLogn) —isin(tLogn))

The function 7 is convergent for all s € C with R(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

Zo:o_

n 1

3
—_

or:

n—l

Ve >0 Hno,v,/V > no,

We definite the sequence of functions ((n,)nen+(s)) as:

(-t & 1)k L COS tLogk = 1)k L sin(tLogk)
m(s) = 2, e = L DT — i (F)T
P k=1 k=1 k

with s = o + it and t # 0.

Let s be one zero of n that lies in the critical strip, then 7n(s) = 0, with
0 < o < 1. It follows that we can write lim,—1oonn(s) = 0 = n(s). We
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obtain:
) _ tLogk)
; _qyk-1¢os(tLogk) _
Mp—s 400 Z( 1) % 0
k=1
) & _.stn(tLogk
limn— 1 oo Z(— k 1# =
k=1 k

Using the definition of the limit of a sequence, we can write:

(2.7) Ye1 >0 In,, YN >n, [R(n(s)y)| < e = [R(n(s)n)|* < &
(2.8) Vea >0 3Ing, VN >n; [S(n(s)n)| < e2 = [S(n(s)n)|? < €3

Then:
Z cos®(tLogk) i iv: (_1)k+k’cos(tLogk).cos(tLogk/) ce
kQO- . kok/cr
k=1 K =1k<k
Z sin? tLogk) ) iV: (_1)k+k/sin(tLogk).sin(tLogk/) _ e%
— kgo' koklo

k=1 k<k!

Taking € = €1 = €3 and N > maxz(n,,n;), we get by making the sum member
to member of the last two inequalities:

(29)  0< f: % +2 f: (— 1)k Cos(tigiff/ ) g0
k=1 kk'=1;k<k'

We can write the above equation as :

(2.10) 0< p% <26

or p(s) =0.

1 1
2.2.1. Case o = 3 = 20 = 1. — We suppose that ¢ = - = 20 = 1.
Let’s start by recalling Hardy’s theorem (1914) (2], page 24):

Theorem 2.6. — . There are infinitely many zeros of ((s) on the
critical line.

From the propositions (2.5{2.6|), it follows the proposition :

Proposition 2.7. — . There are infinitely many zeros of 7(s) on the
critical line.
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Let s; = % + it; one of the zeros of the function 7(s) on the critical line, so
n(sj) = 0. The equation (2.9)) is written for s;:

N N
1 rcos(tjLog(k/k')) 9
0<> —+2 Y (=DFtF 4 < 2e¢
k=1 k kk'=1;k<k’ VEVE

or:

N N . /
Z % < 262 ) Z (_l)k-‘rk}/ COS(t]Log(kj/k ))
k=1 k,k'=1;k<k’ \/%\/E

N
1
If N — +00, the series Z z is divergent and becomes infinite. then:
k=1

+oo “+oo /
1 / L
k=1 kok! =13k <K/ VEVE

Hence, we obtain the following result:

% (= 1)+ cos(tjLog(k/k"))
ke /=1 k< VEVE

(2.11) Limy —s 400

if not, we will have a contradiction with the fact that :

N

1 1

limy—s 100 Z(—l)k_lﬁ = 0 <= 1(s) is convergent for s; = 3 + it
k=1

As t; > 0, and that there is an infinity of zeros on the critical line, then the

result of the formula given by ({2.11)) is independent of ¢;. We return now to
1

s = o+it one zero of 77(s) on the critical, let n(s) = 0. We take 0 = 7 Starting

from the definition of the limit of sequences, applied above, we obtain:

—+oo —+oco /
1 / L
k=1 kk'=1;k<k’ VEvVE

with any contradiction. From the proposition (2.5)), it follows that ((s) =
1
¢(3 +it) = 0. There are therefore zeros of ((s) on the critical line R(s) = 7

2.2.2. Case 0 < R(s) <

| =
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2.2.2.1. Case there is no zeros of n(s) with s = o+ it and 0 < o < % —
Using, for this case, point 4 of theorem , we deduce that the function 7(s)
has no zeros with s = o+ it and 3 < 0 < 1. Then, from the proposition 1)
it follows that the function ((s) has all its nontrivial zeros only on the critical

line R(s) =0 = 3 and the Riemann Hypothesis is true.

1
2.2.2.2. Case where there are zeros of n(s) with s = o +it and 0 < 0 < 3

Suppose that there exists s = o + it one zero of 7(s) or n(s) = 0 = p?(s) =0

with 0 < 0 < % — s lies inside the critical band. We write the equation

Z9):

N N /
1 etk cos(tLog(k/E')) 9
0< Zﬁ+2 Z (—1) 1o o < 2e¢
k=1 bk =1:k<k!
or: N N
1 9 g cOs(tLog(k/K'))
Z k20 <2 -2 Z (=1) kok'o
k=1 kK =1:k<k’
N
But 20 < 1, it follows that limy_— 1 Z 720 — 400 and then, we obtain :
k=1
+o00 !
rcos(tLog(k/K'))
(2.12) > (—itE o 1o =—
k' =1:k<k/

Again, the above result is independent of ¢.

1
2.2.3. Case 5 < R(s) < 1. — Let s = o + it be the zero of n(s) in 0 <
R(s) < %, object of the previous paragraph. According to point 4 of theorem
the complex number s’ =1 — o0 +it =o' +it' with o' =1—0, ¢ =t and
$ <o’ <1, s also a zero of the function 7(s) in the band 5 < R(s) < 1, that
is n(s') =0 = p(s’) = 0. By applying (2.9)), we get:

N N / /
1 ki cos(t' Log(k/k')) 9
(2.13) 0< kz a2 > (-1 FoT o < 2
=1 kK =1k <k’
1
As0 <o <3 =>2>20 =2(1—-0) > 1, then the series Z{CVZIW is

convergent to a positive constant not null C'(¢”). As 1/k? < 1/k**', then :

7T2 “+o00 1 —+00 1 ,
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From the equation (2.13)), it follows that :

+o00 ! ! !
o vkaw cos(t'Log(k/K) — C(o')
Z ( ]‘) ka/k/gl - 9 > —00

(2.14)
kK =1;k<k!

Then, we have the 2 following cases:

1)- There exists an infinity of complex numbers s; = o;+it; with o; €]0,1/2]
such that n(s;) = 0. For each s, the left member of the equation above
is finite and depends of o] and ¢, but the right member is a function only of
o). Hence the contradiction, therefore, the function n(s) has all its zeros on

1
the critical line o = 3 It follows that the Riemann hypothesis is verified.

2)- There is at most a single zero sy = og+itg of n(s) with o9 €]0,1/2[,t9 > 0
such that 7(sg) = 0. Let us call this zero isolated zero that we denote by (I72).
Therefore, the interval |1/2,1[ contains a single zero s, = 1 — o + itg. Since
the critical line contains an infinity of zeros of ((s) = 0, it follows that all
the nontrivial zeros of ((s) are on the critical line o = > except the 4 zeros

relative to (IZ). Here too, we deduce that the Riemann Hypothesis holds
except at most for the (/Z) in the critical band. O

2.3. Conclusion

In summary: for our proofs, we made use of Dirichlet’s n(s) function:

400/ 1\n—1
ne) =3 T — a2 ), s= ot
n=1

on the critical band 0 < R(s) < 1, in obtaining:
1
- n(s) vanishes for 0 < o = R(s) = 3
1 1
- n(s) does not vanish for 0 < o = R(s) < B and 5 <o= R(s) < 1 except

at most for the (IZ) (with its symmetrical) inside the critical band.

Consequently, all the zeros of 7(s) inside the critical band 0 < R(s) < 1
vanish on the critical line R(s) = 5 except at most at (IZ) (with its symmet-
rical). Applying the equivalent proposition to the Riemann Hypothesis
all the nontrivial zeros of the function ((s) lie on the critical line R(s) = =

except at most at (IZ) (with its symmetrical) inside the critical band. The
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proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 2.8. — . All nontrivial zeros of the function ((s) with s =
o + it lie on the vertical line R(s) = =, except for at most four zeros of

respective affizes (09,to), (1 — 00,t0), (00, —t0), (1 — 00, —t0), belonging
to the critical band.
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CHAPTER 3

IS THE abc CONJECTURE TRUE?

Abstract. — In this paper, we consider the abc conjecture. In the first part, we give the
proof of the conjecture ¢ < rad1'63(abc) that constitutes the key to resolve the abc conjecture.
The proof of the abc conjecture is given in the second part of the paper, supposing that the

abc conjecture is false, we arrive in a contradiction.

Résumé. — Dans cet article, nous considérons la conjecture abe. Dans la premiére
partie, nous donnons la preuve de la conjecture ¢ < rad*®3(abc) qui constitue la clé pour
résoudre la conjecture abc. Dans la deuxiéme partie de article, la preuve de la conjecture

abc est donnée en supposant qu’elle est fausse, nous arrivons a une contradiction.

3.1. Introduction and notations

Let a be a positive integer, a = []; a;", a; prime integers and a; > 1 positive
integers. We call radical of a the integer []; a; noted by rad(a). Then a is

written as:

(3.1) a= H a;t = rad(a). H afi~t
i i

We denote:

(3.2) o = Haf"'_l = a = pg.rad(a)
i

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University
(Paris 6) [8]. It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:
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Conjecture 3.1. — (abc Conjecture): For each € > 0, there exists
K (€) such that if a,b, ¢ positive integers relatively prime with ¢ = a+b,
then :

(3.3) ¢ < K(e).rad ™(abc)

where K is a constant depending only of €.

Logc
Log(rad(abc))
best example given by E. Reyssat [5]:

We know that numerically, < 1.629912 [5]. It concerned the

(3.4) 2+ 319109 = 23° = ¢ < rad"%*°'2(abc)

A conjecture was proposed that ¢ < rad®(abc) [3]. In 2012, A. Nitaj [4]
proposed the following conjecture:

Conjecture 3.2. — Let a, b, ¢ be positive integers relatively prime with
c=a+b, then:

(3.5) ¢ < rad%(abc)

(3.6) abe < rad***(abc)

Firstly, we will give the proof of the conjecture given by (3.5 that consti-
tutes the key to obtain the proof of the abc conjecture. Secondly, we present
in section three of the paper the proof that the abc conjecture is true.

3.2. A Proof of the conjecture c < rad'%(abc), case c =a +b

Let a,b, c be positive integers, relatively prime, with ¢ = a + b, b < a and

R = rad(abe), ¢ = [];cp cff’,ﬁj/ > 1.

In a previous paper [1], we have given, for the case ¢ = a + 1, the proof that
¢ < rad*%(ac). In the following, we will give the proof for the case ¢ = a + b.

Proof. — If ¢ < rad(abc), then we obtain:

¢ < rad(abe) < rad % (abc) =

and the condition (3.5)) is satisfied.
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If ¢ = rad(abc), then a, b, c are not coprime, case to reject. In the following,
we suppose that ¢ > rad(abc) and a,b and ¢ are not prime numbers.

?
(3.7) c=a+b=pgrad(a) + pyrad(b) < rad"®(abc)

3.2.1. i, < rad”%(a). — We obtain :

¢ = a+b < 2a < 2rad"%(a) < rad"®(abc) = ¢ < rad"%(abc) =

Then (3.7) is satisfied.

3.2.2. p < rad®%(c). — We obtain :

¢ = perad(c) < rad"“%(c) < rad"%(abc) =

and the condition (3.7)) is satisfied.

3.2.3. g > rad*%(a) and p. > rad®%3(c). —

3.2.3.1. Case: rad’%(c) < p. < rad*%3(c) and rad®%(a) < p, < rad*%(a): —
We can write:

e < radt%3(c) = ¢ < rad*%3(c)

— ac < rad*%(ac) = a® < ac < rad*%3(ac)
o < radt%3(a) = a < rad*%3(a)

— a < rad"3'%(ac) = ¢ < 2a < 2rad*3" (ac) < rad" % (abc)

N

3.2.3.2. Case: . > rad'%(c) or p, > rad*%(a) . — I- We suppose that
pe > rad-%3(c) and p, < rad*(a):

I-1- Case rad(a) < rad(c): In this case a = pg.rad(a) < rad*(a) <
rad>%(a)rad 3" (a) <
rad*%3(a).rad'3"(c) = ¢ < 2a < 2rad"%(a).rad**"(c) < rad'%(abc) =

e < R19)

[-2- Case rad(c) < rad(a) < rad%'?(c): As a < rad"%(a).rad?"(a) <
rad % (a).rad*%(c) = ¢ < 2a < 2rad'%(a).rad'%(c) < R —

e<m]

I-3- Case rad%(c) < rad(a):
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I-3-1- We suppose ¢ < rad®>25(c), we obtain:
c <rad**(c) = c < rad%(c).rad%(c) =

c < rad"%3(c).rad(a)'3" < rad*%(c).rad(a)*%.rad"%3(b) = R —

I-3-2- We suppose ¢ > rad>?®(c) = p. > rad**%(c). We consider the case
o = rad*(a) => a = rad>(a). Then, we obtain that X = rad(a) is a solution
in positive integers of the equation:

(3.8) X341l=c—b+1=¢

But it is the case ¢ = 1+ a. If ¢ = rad™(c’) with n > 4, we obtain the
equation:

(3.9) rad™(d) — rad®(a) = 1

But the solutions of the equation (3.9) are [2] :(rad(c’) = 3,n = 2,rad(a) =
+2), it follows the contradiction with n > 4 and the case ¢ = rad™(¢'),n > 4
is to reject.

In the following, we will study the cases u, = A.rad™(¢') with rad(c’) 1 A,n >
0. The above equation (3.8]) can be written as :

(3.10) (X+1D)(X2-X+1) =/
Let ¢ any divisor of ¢/, then:

(3.11) X+1=9¢
(3.12) X2—X+1:§:c”:52—3X

We recall that rad(a) > radrst (c).

I-3-2-1- We suppose § = l.rad(c'). We have § = l.rad(d') < ¢ = pl.rad(d) =
I < ul.. As ¢ is a divisor of ¢, then [ is a divisor of u.., we write u, = l.m.
From p, = 1(6% — 3X), we obtain:

m = 1?rad*(') — 3rad(a) = 3rad(a) = Prad*(d) —m
A- Case 3lm = m = 3m/, m’ > 1. As p, = ml = 3m/l = 3|rad(c’) and
(rad(cd’),m’) not coprime. We obtain:

rad(c) ,

rad(a) = Prad(c). 3 —m
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It follows that a,c’ are not coprime, then the contradiction.

B-Casem=3= p. =3l = ¢ =3lrad(c) = 35 = §(6> - 3X) = 6% =
3(1+ X) =35 = 0 =lrad(c) = 3, then the contradiction.

[-3-2-2- We suppose § = L.rad?(¢),1 > 2. Ifn=0= ¢’ = W = rad(c)|A,

then the contradiction with the hypothesis above rad(c’) 1 A. In the following,

we suppose that n > 0. If lrad(c’) 1 pe then the case is to reject. We suppose
/

lrad(d)|pe = pe = m.drad(c), then % =m = 6% — 3rad(a).

C-Casem=1=¢/§ = %> —3rad(a) =1 = (§ —1)(§ + 1) = 3rad(a) =
rad(a)(d + 1) = § = 2 = l.rad?(¢), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = 6> = 36 = § = 3 = lrad*(c).
Then the contradiction.

E - Case m # 1,3, we obtain: 3rad(a) = I>rad*(c') — m = rad(a) and
rad(c') are not coprime. Then the contradiction.

I-3-2-3- We suppose § = L.rad™(¢),l > 2 with n > 3. From ¢ = pl.rad(c) =
Irad™(c')(6? — 3rad(a)), we denote m = 62 — 3rad(a) = 6% — 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G - Case m # 1,3. Let ¢ be a prime that divides m, it follows q|u. = q =

c]/ = ¢ . |62 = c; . |3rad(a). Then rad(a) and rad(c’) are not coprime. It

follows the contradlctlon

1-3-2-4- We suppose § = [[;c, C;Bj, Bj > 1 with at least one jo € J; with
Bj, > 2, rad(c’) 1. We can write:

(3.13) § = ps.rad(d), rad(d)=m.rad(d), m>1, (m,us)=1
Then, we obtain:

d = pl.rad(d) = pl.m.rad(d) = §(62 — 3X) = ps.rad(9)(6? — 3X) =
(3.14) m.pl, = ps(62 — 3X)



3.2. A PROOF OF THE CONJECTURE c < rad!%3(abc), CASE c=a+b 93

Il = ps = m = 0% - 3X = (pl.rad(8))? —3X. As § < 6% —3X = m >
§ = rad(d) > m > pl.rad(d) > rad®(¢') because pi. > rad*?5(c'), it follows
rad(c') > rad?(c’). Then the contradiction.

- We suppose p.. < us. As rad(a) = psrad(d) — 1, we obtain:

rad(a) > pl.rad(d) — 1> 0= rad(ac) > .rad(6) — rad(c') > 0 =
rad(c)

C/

d > rad(ac) > d.rad(d) — rad(’) >0 =1 > rad(d) — >0, rad(d)>2

(3.15) = The contradiction

- We suppose s < .. In this case, from the equation (3.14) and as (m, us) =
1, it follows we can write:

(3.16) [ = p1-p2, 1,2 > 1
(3.17) d = plrad(d) = py.po.rad(8).m = 6.(6% — 3X)
(3.18) sothat m.u; =6% —3X, o= ps = 0 = po.rad(d)
** We suppose (p1,p2) # 1, then 3¢} so that ¢} [u1 and } [us. But ps =
pz = 2|6, From 3X = 6% — mu1 = ¢ [3X = ¢}, | X or ¢}, = 3.

- If ¢} | X, it follows the contradiction with (¢/,a) = 1.

-If ¢ = 3. We have mpu; = §2-3X = 62-3(0—1) = §°—35+3—m.uy = 0.
As 3|1 = 1 = 3%, 34 1), k > 1, we obtain:

(3.19) 6% =35 +3(1 — 3" Impf) =0

- We consider the case k > 1 == 31 (1-3*"1myu). Let us recall the Eisenstein
criterion [7]:

Theorem 3.3. — (Eisenstein Criterion) Let f =ag+ -+ + ap X"
be a polynomial € Z[X|. We suppose that Ip a prime number so that
p1fan, plai, (0<i<n—1), and p?{ag, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
(3.20) R(Z) = 7% - 37+ 3(1 — 3" Lmu))
then:

=311, -3|(=3),- 3|13(1 — 3" 1myu)), and - 32 3(1 — 3¥~Imu)).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction
with R(0) = 0.
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- We consider the case k = 1, then p; = 3u} and (¢),3) = 1, we obtain:
(3.21) 6% =36 4+3(1 —mph) =0
*If 34 (1 —m.pj), we apply the same Eisenstein criterion to the polynomial
R'(Z) given by:

R(Z)=7*—-3Z +3(1 —mu))
and we find a contradiction with R'(§) = 0.

* We consider that 3|(1 — m.u}) = mu), —1=3"h,i>1,3{h,h € N*. § is

an integer root of the polynomial R/(Z):

(3.22)

R(Z) = Z*-3Z+3(1—mu}) = 0 = the discriminant of R'(Z)is :A = 32+3" " x4.h

As the root § is an integer, it follows that A = [? > 0 with [ a positive integer.
We obtain:

(3.23) A=321+3"1 x4n) =17
(3.24) — 143 'x4h=¢*>>1,qgeN*
We can write the equation (3.21)) as :

rad(9)

(3.25) 0(6 —3) = 3. h = 3%}

(3.26) p 7220

We obtain i = 2 and ¢ = 1 + 12h = 1 + 4yrad(0)(pyrad(s) — 1). Then, q
satisfies :

(3.27) ¢*—1=12n = LN @ — 35 — (4hrad(6) — 1).ujrad(8) =

(3.28) q—1=2u\rad(d) — 2

(3.29) q+1=2u\rad(d)

(phrad(s) — 1) =3 h =

(Whrad(6) —1) =h

It follows that (¢ = x,1 = y) is a solution of the Diophantine equation:
(3.30) -y =N

with N = 12h > 0. Let Q(N) be the number of the solutions of
and 7(NV) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation
(see theorem 27.3 in [6]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [r(N)/2].
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- If N = 0(mod 4), then Q(N) = [1(N/4)/2].
[x] is the integral part of z for which [z] <z < [x] + 1.

Let (o/,m’), o/, m’ € N* be another pair, solution of the equation (3.30), then
a?—m'? = 22 —y?> = N = 12h, but ¢ = z and 1 = y satisfy the equation
given by = +y = 2urad(9), it follows o/, m’ verify also o +m/ = 2u)rad(9),
that gives o/ — m’ = 2(pjrad(§) — 1), then o/ = z = ¢ = 2pjrad(§) and
m' = y = 1. So, we have given the proof of the uniqueness of the so-
lutions of the equation with the condition = +y = 2ujrad(d). As
N = 12h = 0(mod 4) = Q(N) = [1(N/4)/2] = [7(3h)/2], the expression of
3h = pf.rad(d). (uirad(d) — 1), then Q(N) = [7(3h)/2] > 1. But Q(N) =1,
then the contradiction and the case 3|(1 — m.uj) is to reject.

** We suppose that (u1, p2) = 1.

From the equation mu; = 62 — 3X = 62 — 3(§ — 1), we obtain that J is a root
of the following polynomial :

(3.31) R(Z)=27?-3Z+3—m.u1 =0
The discriminant of R(Z) is:
(3.32) A=9—4(3—m.p) =4m.pu —3=¢> with ¢ N* as § € N*

- We suppose that 2|mu; = ¢ is even. Then ¢®> = 5(mod8), it gives a
contradiction because a square is = 0,1 or 4(mod 8).

- We suppose ¢ an odd integer, then a is even. It follows a = rad®(a) =
0(mod8) = ¢ = 1(mod8). As ¢ = §? — 3X.§, we obtain 42 — 3X.§ =
1(mod8). If §2 = 1(mod 8) = —3X.J = 0(mod 8) = 8|X.6 = 4|6 = ¢
is even. Then, the contradiction. If 6> = 4(mod8) = & = 2(mod8) or
0 = 6(mod 8). In the two cases, we obtain 2|J. Then, the contradiction with
¢ an odd integer.

It follows that the case ¢ > rad®?®(c) and a = rad>(a) is impossible.

[-3-3- We suppose ¢ > rad>2%(c) and large, then ¢ = rad3(c) + h, h > rad>(c),
h a positive integer and p, < rad®*(a) = a + 1 = rad3(a), l > 0. Then we
obtain :

(3.33) rad*(c) + h =rad®*(a) — 1 + b= rad®*(a) —rad*(c) =h+1—-b>0
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as rad(a) > md%(c). We obtain the equation:
(3.34) rad®(a) —rad®*(c) =h+1—b=m >0

Let X = rad(a) — rad(c), then X is an integer root of the polynomial H(X)
defined as:

(3.35) H(X) = X3+ 3rad(ac)X —m =0
To resolve the above equation, we denote X = u+ v, It follows that u3, v*

the roots of the polynomial G(t) given by:
(3.36) G(t) = t* —mt — rad®(ac) =0

are

The discriminant of G(t) is A = m? + 4rad3(ac) = a?, «a > 0. The two real

roots of (3.36) are:
m—+ m—«
3.37 t=u’= s
(3:37) L 2 2
As m = rad®(a) — rad(c) > 0, we obtain that a = rad®(a) + rad3(c) > 0,
then from the expression of the discriminant A, it follows that (« = z,m = y)

is a solution of the Diophantine equation:
(3.38) 2 —y* =N

with N = 4rad3(ac) > 0. From the expression of A above, we remark that a
and m verify the following equations:

(3.39) z+y = 2u® = 2rad®(a)
(3.40) r—y=—20° = 2rad®(c)
(3.41) then 22 — % = N = 4rad®(a).rad>(c)

Let Q(N) be the number of the solutions of (3.38)) and 7(/N) is the number of
suitable factorization of IV, and using the same method as in the paragraph
[-3-2-4- (case 3|(1 — m.u})), we obtain a contradiction.

It follows that the cases ji, < rad?(a) and ¢ > rad®?5(c) are impossible.

I1- We suppose that rad'%3(c) < p. < rad?(c) and pg > rad%(a):

[I-1- Case rad(c) < rad(a) : As ¢ < rad*(c) = rad'%3(c).rad'3"(c) =
c < rad“%(c).rad%"(a) < rad*%3(ac) < rad%3(abc) = .

II-2- Case rad(a) < rad(c) < radist (a) : Asc < rad®(c) < rad'%(c).rad?"(c) =
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c < rad%(c).rad*%(a) < rad*%(abc) = .
II-3- Case rad%?(a) < rad(c):

I1-3-1- We suppose rad>%(a) < a < rad®?%(a) = a < rad"%(a).rad"%(a) =
a < rad®(a)orad?(c) = ¢ = a+b < 2a < 2rad"%(a).rad"%(c) <

rad" % (abc) = ¢ < R'% — .

I1-3-2- We suppose a > rad>?%(a) and p. < rad?(c). Using the same method
as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a, ¢), we arrive
at a contradiction. It follows that the case u. < rad?(c) and a > rad®?%(a) is
impossible.

Finally, we have finished the study of the case rad'®3(c) < u. < rad?(c) and
o > radt%3(a).

3.2.3.3. Case p. > rad*%3(c) and pg > rad*®3(a). — Taking into account
the cases studied above, it remains to see the following two cases:

- pe > rad?(c) and p, > radt%3(a),

- Ua > rad?(a) and p. > radt%3(c).

II-1- We suppose p. > rad?(c) and p, > rad®(a) = ¢ > rad3(c) and
a > rad*%3(a). We can write ¢ = rad®(c) + h and a = rad®(a) + [ with h a
positive integer and [ € Z.

ITI-1-1- We suppose rad(c) < rad(a). We obtain the equation:

(3.42) rad®(a) —rad®*(c)=h—1—b=m >0

Let X = rad(a) — rad(c), from the above equation, X is a real root of the
polynomial:

(3.43) H(X)= X3+ 3rad(ac)X —m =0

As above, to resolve (3.43), we denote X = u+v, It follows that u3, v3 are the
roots of the polynomial G(t) given by :

(3.44) G(t) = t* —mt — rad®(ac) =0
The discriminant of G(t) is:

(3.45) A =m? +4rad®(ac) = o?, a >0
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The two real roots of (3.44)) are:
(3.46) t =ud = mT—&-a’ to =v° =
As m = rad®(a) — rad(c) > 0, we obtain that a = rad®(a) + rad3(c) > 0,
then from the equation ([3.45)), it follows that (« = x,m = y) is a solution of
the Diophantine equation:

(3.47) 2 —y? =N

with N = 4rad®(ac) > 0. From the equations (3.46)), we remark that a and
m verify the following equations:

(3.48) z+y=2u® = 2rad’(a)
(3.49) xr—y=—20° = 2rad®(c)
(3.50) then 22 —y? = N = 4rad®(a).rad’(c)

Let Q(N) be the number of the solutions of (3.47)) and 7(NN) is the number of
suitable factorization of IV, and using the same method as in the paragraph
[-3-2-4- (case 3|(1 — m.u})), we obtain a contradiction.

ITI-1-2- We suppose rad(a) < rad(c). We obtain the equation:

(3.51) rad®(c) —rad®(a) =b+1—h=m >0

Using the same calculations as in III-1-1-, we find a contradiction.

It follows that the case j. > rad®(c) and p, > rad*%3(a) is impossible.

I1I-2- We suppose g, > rad?(a) and pe. > rad*%3(c) = a > rad3(a) and
¢ > rad®>%3(c). We can write a = rad(a) + h and ¢ = rad>(c) + [ with h a

positive integer and [ € Z.

The calculations are similar to those in case III-1-. We obtain the same results
namely the cases of III-2- to be rejected.

It follows that the case u. > rad*%3(c) and p, > rad®(a) is impossible. O

We can state the following important theorem:

Theorem 3.4. — Let a,b, c positive integers relatively prime with ¢ =
a+b, then c < rad'-%(abe).
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3.3. The Proof of the abc conjecture

We note R = rad(abc) in the case ¢ = a + b or R = rad(ac) in the case
¢ =a+ 1. We recall the following proposition [4]:

Proposition 3.5. — Let ¢ — K (e) the application verifying the abc
conjecture, then:

(3.52) lime—oK (€) = 400

3.3.1. Case : ¢ > 0.63. — As ¢ < R'53 is true, we have Ve > 0.63:
1
(3.53)  c¢< RYS3 < R < K(e).R'™, with K(e) = e0.632, ¢ >0.63

Then the abc conjecture is true.

3.3.2. Case: € < 0.63. —

3.3.2.1. Case: ¢ > R. — From the statement of the abc conjecture (3.1

we want to give a proof that ¢ < K(€)R'"® <= Logc < LogK(e) + (1 +

€)LogR <= LogK (€¢) + (1+¢€)LogR — Logc > 0. For our proof, we proceed by
contradiction of the abc conjecture, so we assume that the conjecture is false:

(3.54)

Jep €]0,0.63[,V K(€) >0, Jeg=ap+by sothat cg > K(eo) Ry = ¢p not a prime

1
We choose the constant K(e) as K(€) = e€®. Let Yy (e) = & + (1 +

€)LogRy — Logcy, € €]0,0.63]. From the above explications, if we will obtain
Ve €]0,0.63[, Y, () > 0 = Y., (€0) > 0, then the contradiction with (3.54)).

About the function Yy, we have lim.—0.63Ye, (€) = 1/0.63% 4+ Log(R}%3 /c) >
0 and lime—0Yg,(€) = 4+00. The function Y, (e) has a derivative for Ve €
10,0.63[, we obtain with Ry > 2977:

(3.55)

2 e3LogRy — 2 2
Yclo(e) = —6—3+LogRo =3 = YCIO(G) =0=e=¢ = Y| TLogRo €10,0.63]

Discussion:
-If Yy, (¢') > 0, it follows that Ve €]0,0.63[, Y, (¢) > 0, then the contradiction
with Y, (e0) < 0 = ¢p > K(e)Rp ™. Hence the abe conjecture is true for
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e €]0,0.63].

-If Yo (€) < 0 = Jep,en satisfying 0 < 61 < € < ea < 0.63, so that
Yo (€1) = Yy (e2) = 0. Then we obtain co = K(€1)Rp™ = K(e2) Ry, We
recall the following definition:

Definition 3.6. — The number ¢ is called algebraic number if there
is at least one polynomial:

(3.56) i) = iy At k- oo - ™, i 22 (0

with integral coefficients such that [(§) = 0, and it is called transcen-
dental if no such polynomial exists.

o _ _He _ e
R rad(ab)

i) - We suppose that ¢ = 31 is an algebraic number then By = 1/€? and
Ry = a1 are also algebraic numbers. We obtain:

1

Fe @ ga — oBo o
(3.57) rad(ab) e 1Ry =e™.o)

»—Aw‘ =

We consider the equality ¢ = K(e1) Ry = R

From the theorem (see theorem 3, page 196 in [9]):

Theorem 3.7. — eﬁoafl . ag" is transcendental for any nonzero al-
gebraic numbers aq, ..., Qn, 8oy - -, Bn-

we deduce that the right member eﬁo.af bof 1D is transcendental, but the

term is an algebraic number, then the contradiction and the abc

C
rad(ab)
conjecture is true.

ii) - We suppose that €; is transcendental, in this case there is also a contra-
diction, and the abc conjecture is true.

Remark 3.8. — - We obtain also that K (e) > 1 if € €]0,0.63[. If not,
we consider the example 9 = 8 + 1 with 9 > 2 x 3, we take ¢ = 0.2,
then ¢ < K(0.2)R'"92 < 1.R'"2. But ¢ = 9 > 62 ~ 8.58, then the
contradiction and ‘K(e) > 1, Ve €]0,0.63] ‘




3.4. CONCLUSION 101

3.3.2.2. Case: ¢ < R. — In this case, we can write :
(3.58) c< R< R < K(e).R"™, with K(e) >1, 0<e<0.63

The constant K (e) is taken as for the case ¢ > R above, and the abc conjecture
is true.

Then the proof of the abc conjecture is finished for all € > 0.

3.4. Conclusion

We have given an elementary proof of the abc conjecture. We can announce
the important theorem:

Theorem 3.9. — For each € > 0, there exists K(e) > 0 such that if
a, b, ¢ positive integers relatively prime with ¢ = a + b, then :

(3.59) ¢ < K(e).rad *¢(abc)

where K is a constant depending of €.
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