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Abstract

In this paper, we proved that Non-deterministic Polynomial time com-
plexity (NP) is not equal to Polynomial time complexity (P). We devel-
oped the Boolean algebra that will infer the solution of two variables of a
Non-deterministic Polynomial computation time Markov Random Field.
We showed that no matter how we simplified the Boolean algebra, it can
never run in Polynomial computation time (NP # P). We also developed
proof that all Polynomial computation time multi-layer Boolean algebra
can be transformed to another Polynomial computation time multi-layer
Boolean algebra where there are only ‘Not’ operations in the first layer.
So in the process of simplifying the Boolean algebra, we only need to con-
sider factorization operations that only assumes only ‘Not’ operations in
the first layer. We also developed Polynomial computation time Boolean
algebra for Markov Random Field Chain and 2sat problem represented in
Markov Random Field form to give examples of Polynomial computation
time Markov Random Field.
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1 Introduction

Non-deterministic Polynomial (NP) problem refers to problem that requires
exponential number of steps with respect to the size of the input to solve the
problem. Whereas Polynomial (P) problem refers to problem that requires



polynomial number of steps with respect to the size of the input to solve the
problem. It is an open problem which asks whether it is able to convert a NP
problem to P problem ( [1H4]). We will show that in this paper that no algorithm
(represented as Boolean algebra and Markov Random Field) is able to solve NP
problem in Polynomial time as the Boolean algebra cannot be factorized into
another Boolean algebra that can be solved in Polynomial time (NP # P).

In this paper, the proof of NP # P is to show that the Boolean algebra of
Markov Random Field of a NP problem cannot be factorized into quadratic form
(A+B+...)(C+ D+...) and therefore the time complexity of the Boolean
algebra cannot be simplified from NP complexity to Polynomial complexity.
Note that since the Boolean algebra cannot be factorized into quadratic form,
it also cannot be factorized into a more time efficient multi-layer Polynomial
computation time Boolean algebra. In the process of factorizing the Boolean
algebra, we use only factoring steps that assume there is only ‘Not’ operations
in the first layer and no ‘Not’ operations in the second and higher layers. We
have proved that ‘Not’ operations in second and higher layers can be simplified
into first layer without changing the computation time complexity class, where
Polynomial time complexity remains as Polynomial time complexity and NP
time complexity remains as NP time complexity.

The prerequisite knowledge to understand this paper is the understanding
of Markov Random Field, Boolean algebra and digital gates diagram in digital
electronics.

The outline of this paper is how to represent NP problem as Markov Ran-
dom Field and Boolean algebra (section [2)), how to search for Boolean algebra
that infers the solution (section [3)), how to reformulate the Boolean algebra so
that only the first layer contains ‘Not’ operations while keeping the time com-
plexity as Polynomial (section , give an example of a Polynomial computation
time multi-layer Boolean algebra for a 7 variables Markov Random Field Chain
(section , proof that a 6 variables Markov Random Field NP problem cannot
be simplified into Polynomial time using Boolean algebra simplification (sec-
tion @, generalized the proof to higher number of variables (section , and
lastly also show how a 2sat problem can be represented in Markov Random
Field format together with Boolean algebra which can be solved in Polynomial
time (section . Finally, I will conclude my whole paper in section @

2 Discrete Markov Random Field definition

A NP problem can be represented by a discrete Markov Random Field. It has
n variables a1, as, ..., an.

A Markov random field with binary potential values looks something like
this

flai,az,...,a,) = HHi,j(aia aj)
i,

Hi,j(ai,aj) =0or 1.



For simplicity, we simply write

flar,az,... a,) = HH(ai, a;).
%

If fla; =v1,a0 =v9,...,a, =v,) =1 means a; = v1,a3 = Va,...,a, = Uy
is a solution to the NP problem. Note that H(a;,a;) is the same as H(a;, a;)
and there does not exist H(a;,a;) and H(aj,a;).

We assume that each variable can take a finite number of values. E.g. v; €
{0,1,...,10}, in this example it can take 11 values.

If
Z HH(ai:vi,aj:vj)>0,

V1,V2,...,Un 4,]

then the NP problem has a a solution. For

H(ap = v, a; = v)) = H(ap = vg, a; = vy) Z H H(a; = v, a5 =vj),
V1,902,500 \Vk, 01 (1,5)\(K,1)

if H’(ak = vg,a; = v;) = 0 after evaluation the above formula, it means that
ar = vk, a; = v; is not part of a solution else a = v, a; = v; is a solution to
this NP problem. Note that vy, v, ..., v, \ vk, v; means that all values v, to vy,
not including vy and v;. The notation is similar for (7, j)\ (k, 1), which does not
include the ¢ = k and j = [ variables.

Example of a four variables 4 coloring problem in Markov Random Field
representation. The equation

Z H(a1,a2)H (a1,a3)H (a1,a4)H (a2, a3)H (a2, a4)H (as,aq) >0

a1,a2,a3,a4

means that there is a solution for this problem. The variable a; can take values
0,1,2 or 3.
We define

FI(CL1 = V1,402 = 112)

:H(a1 = V1,02 :’Ug)

Z H(al,ag)H(al,a4)H(a2,ag)H(ag,a4)H(a3,a4)

a1:v1,ag:vg,ag:O,l,...B,a4:O,1,...3

as the real value of H(a; = v1,aa = vg) after combining all the constraints
H(a;,a;). The expression >, _, o _ 01 34,01, 3 means that a; and
as can only take 1 value, ag and a4 can take integer values between 0 to 3.
fI(al = v1, a9 = v2) is the solution of this potential taking values v; and vy,
output either a value of 0 or 1. If v; and v are the solution to this Markov Ran-
dom Field, then ﬁ(al =w1,a2 = v9) = 1, else it is a 0. Since this is a coloring
problem, each potential is a discrete function with the following definition

Oifai:aj

H i, A5) =
(a/ a/]) {1 ifaq?éa]



H(aj,a;) is a discrete function with inputs of discrete a;, a; values and output a
0 or 1 value. H(a;,a;) will be different for other types of NP problem that is not
coloring problem. This Markov Random Field can represent any problem. It
can represent other problems simply by using H(a;, a;) functions with different
0 and 1 outputs different from the 4 coloring problem.

3 Search for multi-layer Polynomial time com-
plexity Boolean algebra that infers the solu-

tion
—>
. Boolean
All —  Algebraor — H(aya)
H(ai,aj) — Circuit

Figure 1: Multi-layer Boolean algebra that infers the solution

Figure [1| shows the Boolean algebra that will infer the solution of H(a;,a;).
This solution represents the actual value of H(a;,a;) after considering all the
constraints in Markov Random Field. So to solve the NP problem, it is to find
an optimal Boolean algebra that has the smallest computational complexity. We
can find the optimal Boolean algebra by Boolean algebra simplification. The
Boolean algebra has multi-layer operations. The computational complexity of
this Boolean algebra can be derived from the number of operations to com-
pute the final output value. If the simplified multi-layer Boolean algebra has
Polynomial computational complexity then NP = P. Otherwise, NP # P.

4 How to reformat the Boolean algebra so that
only the first layer contains ‘Not’ operations

4.1 Proof of how to reformat the Boolean algebra using
recursive Boolean algebra equations

In this section, we are going to prove the lemma below.

Lemma 4.1 A Polynomial computation time multi-layer Boolean algebra with
‘Not’ operations at the second or higher layer can be converted to another Poly-
nomial computation time multi-layer Boolean algebra with ‘Not’ operations only
at the first layer.



The multi-layer boolean algebra can be represented by multiple recursive
Boolean algebra equations with each equation in the form of
H;, = \/Hj or H; = /\Hj or H; = —|\/Hj or H; = —|/\Hj where j < 1.
J J J J

And H; = H(ay,a;) for the first layer of this recursive Boolean algebra. H; is
the output of one of the intermediate nodes in the boolean algebra or circuit.
Each node is either an ‘And’ operation or ‘Or’ operation sometimes with a ‘Not’
operation at the output of an intermediate node. The equations

Hi :_\\/Hj or Hi :_\/\Hj
J J

can be simplified to
Hi = /\"Hj or Hz = \/"Hj
J J
where the ‘Not’ operation is pushed to the previous layer using a De Morgan’s
theorem. Replace the simplified equations by

H; :/\Hg or Hi:\/Hé.
J J

Add additional nodes, H; = —H;. If H; = ﬂ\/j Hj or H; = ﬂ/\j Hj, then
H{ = VjHj or Hzl = /\j Hj. If H1 = V_jHj or Hl = /\J‘va then H{ = /\JHJ/
or H = Vj HJ’ Continue push the ‘Not’ operations until they are at the first
layer, H; = —H(ay,a;). So any multi-layer Boolean algebra only need ‘Not’
operations at the first layer.

4.2 An example of how to reformat a Boolean algebra

Figure [2] shows a graphical step-by-step example of how to transform a multi-
layer Boolean algebra with ‘Not’ operations at any layers to ‘Not’ operations
only at the first layer.
In the figure [2| the Boolean algebra can be represented in recursive form,
Hy = H(ai,az) , Hy = H(a1,a3) , Hy = H(a1,a4) , Hy = H(ag, a3) ,
Hs = H(az,a4) , He = H(as,a4) , Hr = =(H1 V Hz) , Hg = H3 V Hy ,
Hy = HsV Hg , Hio = Hy N Hg , Hyy = =(Hg A Hg) , Hiz = =(H1o V H11)
H=Hy,.
The complements are
H{ = —|H(a1,a2) s Hé = —|H(a1,a3) y Hé = ﬂH(al,a4) s Hi = _‘H(G,Q,ag) s
Hé = —|H(a2,a4) 5 Hé = —|H(a3,a4) 5 Hr/7 = H1 \/H2 5 Hé = _‘(Hg V H4) 5
H{=~(HsV Hg) , H}y = ~(H; NHg) , H;, = Hs AN Hy , H|5 = Hio V H11
H = Hy,.



H(aya,)

H(ay,as) »O\
Hiay) )
> 10 o

Output
Hiayas) O/

H(aya,)
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Not operation
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(a) Step 1
H(aya;)
e}
H(aya,) — 83 - a
Houa / D 83 "~ output
s Do

)/ Apply De Morgan's theorem
H(aya,) on some of the ‘And’ or ‘Or’

operations

(b) Step 2

Hana)

H(aya;) »

gD D
Hizaa) <)> [: / ot

H(aa,)
\D Remove the unnecessary ‘Not’ operations.
We can see that only the first layer needs

H(aza,) — i
(23,2,) ‘Not’ operations

(c) Step 3

Figure 2: Graphical example of how to push all the ‘Not’ operations from second
or higher layers into the first layer

Removing the not operation in the intermediate layers

Hy = H(ay,a2) , Hy = H(ay,a3) , Hy = H(ay,a4) , Hy = H(as,as) ,

Hs = H(as,a4) , Hs = H(as,a4) , H; = H{ N Hy , Hs = H3 V Hy

Hyg = HsV Hg , Hio= H; ANHg , Hiy = HyV H), , Hi = Hiyg A HY;

H, =-H/(ay,a3) , Hy = =H(a1,a3) , H, = =H(a1,a4) , Hy = ~H(aa,a3) ,
H. =-H(az,a4) , H = —H(a3,a4) , H, = H1 V Hy , Hy = H; N H} ,
H)=H,AH, , Hly=HLVH,, Hl, = Hs A Hy , H}y = HigV Hy;

H = Hys.



Removing the unnecessary H terms

Hy = H(ay,a2) , Hy = H(a1,a3) , H3 = H(a1,a4) , Hy = H(ag,as) ,
Hs = H(ag,a4) , Hs = H(as,a4) , Hg = H3V Hy , Hy = H5 V Hg ,

Hys = Hjy ANH}, , Hy = —H(a1,a4) , Hy = —H(as,a3) , H, = H; V Hy ,
H{=HiANH;, H,=H,V H, H; = Hg A\ Hy

H = Hs.

Note that the Boolean algebras before and after removal of ‘Not’ operations
at second and above layers have Polynomial time complexity, same Polynomial
time complexity before removal.

4.3 Expanding recursive Boolean algebra into sum of prod-
ucts and product of sums forms

Using the Boolean algebra in the previous subsection,
H = ((HiV Ha) v (H,AHY)) A ((Hs Vv Hy) A (Hs V Hg)),
we expand it out into sum of products form

H=(H,V HyV (HyNHY)) A ((Hs A Hs)V (Hs A He) V (Hy A Hs) V (Ha A Hg))

= (Hy ANH3 AN Hs)V (Hy ANHs A Hg)V (Hy AN Hy AN Hs)V (Hy A Hy A Hg) V (Hy A Hz A Hs)
V (Hy AN Hs AN Hg) V (Hy N Hy AN Hs) V (Hy A Hy N Hg) V (H5 A Hy A Hs A Hs)

V (Hi, NHy AN Hs A Hg)V (Hy NHy AN Hy A Hs) vV (H5 A Hy A Hy A Hg).

We can also expand it into product of sums form

H = ((HiV HyV H;) A (HyV Hy V HY)) A (Hs V Hy) A (Hs V He)
= (H1V HyV H5) A (Hy V Ha V Hy) A (Hs V Hy) A (Hs V Hg).

So to find the recursive Boolean algebra from sum of products form or prod-
uct of sums form, we simply reverse the process of expanding the algebra by
factoring it into multi-layer Boolean algebra. The multi-layer Boolean algebra is
more computational efficient, and in later part of the paper, we will use it to try
to find Polynomial computation time Boolean algebra from Non-Deterministic
Polynomial computation time Boolean algebra by factoring the Boolean alge-
bra. We will show that Polynomial computation time Boolean algebra cannot
be found from Non-Deterministic Polynomial computation time Boolean alge-
bra and NP # P. So no matter whether we factor the sum of products form
Boolean algebra or the product of sums Boolean algebra, we still can get the
original recursive multi-layer Boolean algebra. Later we will express the Boolean
algebra to solve the Non-Deterministic Polynomial time Markov Random Field
using sum of products form as it is simpler and neater than product of sums
form.



4.4 Represent Boolean algebra using addition and multi-
plication

Boolean algebra can be represented using addition for ‘Or’ operation and mul-
tiplication for ‘And’ operation. E.g. (AV B) A (C'V D). It can be written as,
if (A+ B)(C + D) > 0, then the Boolean operation give us an output 1, else it
will output a 0. This addition and multiplication format is easier to read.

5 A Polynomial time multi-layer Boolean alge-
bra that solves the Markov Random Field Chain
problem

5.1 An example of a factorized Boolean algebra that has
Polynomial time

Example of a Markov Random Field Chain with each variable a; taking a value of
either 0 or 1. The Markov Random Field can be solved by a 5 layers Boolean al-
gebra. This Boolean algebra infers the value of H(ag = 0, a7 = 0). This Boolean
algebra has Polynomial complexity. The example of a 7 variables Markov Ran-
dom Field Chain Boolean algebra is

((H(al =0,a2 = 0)H(az =0,a3 =0) + H(ay = 0,a2 = 1)H(az = 1,a3 = 0))

(H(as = 0,a4 = 0)H(as = 0,a5 = 0) + H(az = 0,a4 = 1)H(as = 1,a5 = 0))
+(H((Ll :0,612: )H(CLQ:O,G3:1)+H((11 :0,a2:1)H(a2:17a3:1))

(H(a3 =1,a4 =0)H(ag =0,a5 =0)+ H(as =1,a4 = 1)H(ag = 1,a5 = 0))>H(a6 =0,a7 =0).
This Markov Random Field Chain lacks of potential H terms (or constraints),
H(al,a3),H(al,ad),H(al,ab),H(a2,a4),H(a2,a5),H(a3,ab) as shown in figure

Because of these missing constraints, this Markov Random Field can be solved
efficiently in Polynomial computation time.

Graphically, the Markov Random Field Chain looks like this

Figure 3: Graphical representation of a Markov Random Field Chain

Figure[d]shows the graphical form of the Polynomial time complexity Boolean
algebra that solves the Markov Random Field Chain.
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Figure 4: The graphical form of the Polynomial time complexity Boolean algebra
that solves the Markov Random Field Chain

5.2 An example of an expanded Boolean algebra that has
Non-Deterministic Polynomial time

After expansion, it looks like this

H(a; =0,a2 =0)H(as = 0,a3 = 0)H (a3 = 0,a4 = 0)H (a4 = 0,a5 = 0)H (ag = 0, a7 = 0)
+H(a; =0,a2 =0)H(az =0,a3 = 0)H (a3 = 0,a4 = 1)H(ag = 1,a5 = 0)H(ag = 0,a7 = 0)
+H(a; =0,a2 =0)H(az =0,a3 =1)H(ag =1,a4 = 0)H (a4 = 0,a5 = 0)H(ag = 0,a7 =0)
+H(a; =0,a :O)H(a2 =0,a3 =1)H(az = 1,a4 = 1)H (a4 = 1,a5 = 0)H(ag = 0,a7 = 0)
+H(ay =0,a2 = 1)H(ag = 1,a3 = 0)H (a3 = 0,a4 = 0)H (a4 = 0,a5 = 0)H (ag = 0, a7 = 0)
+H(a; =0,a3 =1)H(az =1,a3 = 0)H (a3 = 0,a4 = 1)H(ag = 1,a5 = 0)H(ag = 0,a7 = 0)
+H(a; =0,a2 =1)H(az =1,a3 =1)H(ag =1,a4 = 0)H(ag = 0,a5 = 0)H (ag = 0,a7 = 0)
+H (aq :O,az =1)H(az =1,a3 =1)H(az = 1,a4 = 1)H (a4 = 1,a5 = 0)H(ag = 0,a7 = 0)

This expanded Boolean algebra has Non-Deterministic Polynomial time com-
plexity, with exponential number of additions.

Figure[d]shows the graphical form of the NP time complexity Boolean algebra
that solves the Markov Random Field Chain.

To find the Polynomial complexity 5 layers Boolean algebra from the ex-
panded Boolean algebra, we need to factorize the expanded Boolean algebra in
the reverse order it is expanded.

10
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Figure 5: The graphical form of the NP time complexity Boolean algebra that
solves the Markov Random Field Chain

6 A six variables Non-Deterministic Polynomial
time Markov Random Field cannot be solved
by Polynomial time multi-layer Boolean alge-
bra, therefore NP not equal P

In this section, we will prove the lemma below.

Lemma 6.1 All 6 variables Non-Deterministic Polynomial computation time
Markov Random Field Boolean algebra cannot be factorized into quadratic form
(A+B+...)(C+D+...) or more simplified multi-layer Polynomial computation
time Boolean algebra form.

6.1 Definition of the Markov Random Field

A Boolean algebra that solves a 6 variables Markov Random Field looks like
this below. This Boolean algebra infers the value of H(as =0, a¢ = 0),

ﬁ(a5 = O,a6 = 0) = Z H(al,ag)H(al,ag)H(al,a4)H(a1,a5)H(a1,a6)H(a2,a3)

a1,a2,a3,04,a5=0,a6=0

H(ao,a4)H (a2, a5)H (a2, a6)H (as,a4)H (a3, as5)H (a3, ag)H (a4, a5)H (a4, ag) H (as, ag)

where Z%:o ag—0 Ineans that a5 and ag can only take the value 0. a5 and ag

are set to zero because the H(as = 0,a6 = 0) is what we want to infer. If

11



H(as = 0,a6 = 0) = 1 means that a5 = ag = 0 is the solution to this Markov
Random Field. Else if f[(a5 = 0,a6 = 0) = 0 means that a5 = ag = 0 is not
the solution to this Markov Random Field. Note that this Boolean algebra is
in sum of products form.

6.2 How to factorize the terms

For example, some product terms of the Boolean algebra can be factorized into
this form

H(a5 = 0,&6 = 0) Z H(al,ag)H(al,a3)H(a1,a4)H(a1,a5)H(a1,a6)H(a2,a3)

a1,a2,a3,04,a5=0,a6=0

H(az,a4)H (az,a5)H (a2, a6)H (a3, as)H (a3, a5)H (a3, as) H (a4, as5) H (a4, ap)
Or
H(a1 =0,a2 =0) Z H(ai,a3)H (a1, a4)H (a1, a5)H (a1, a6)H (a2, a3)H (a2, as)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(CI,Q, a5)H(a2, a(j)H<CL3, a4)H(a3, a5)H(a3, aG)H(a4, a5)H(a4, CLG)H(G5, a6).

The grammar to transform a set of boolean algebra terms into a factored
form is e.g.

H(a1 = O, a9 = O)H(al, ag)H(al, a4)H(a1, Cl5)H(CL1, ag)

a1=0,a;=0,a3,a4,a5=0,a5=0
H(ag,a3)H (az,a4)H (a2, a5)H (as,a6)H (as, a4)
H(ag,as)H (a3, a6)H (a4, a5)H (aq,a6)H (a5 = 0,a6 = 0)
=
H(a; =0,a2 =0)H(as =0,a6 = 0)
Z H(ay,a3)H(a1,a4)H (a1, a5)H (a1, ag)

a1=0,a2=0,a3,a4,a5=0,a6=0
H(az,a3)H (az,as)H (az,as5)H (a2, as)H (a3, as)
H(as,as)H (a3, a6)H (a4, a5)H (a4, as)

12



6.3 Only one sum of products representation of the Boolean
algebra to solve the Markov Random Field

Given the 6 variables Markov Random Field representation of a NP problem,

Z H(a1,a2)H(a1,a3)H (a1,a4)H (a1, a5)H (a1, a6)H (az,as)

a1,a2,a3,a4,a5=0,a6=0

H(ag,aq4)H (a2, a5)H (a2, a6)H (a3, a4)H (a3, as5)H (a3, a6)H (a4, a5)H(ay, ag) H(as, ag).

The equation above shows the Boolean algebra to solve the Markov Random
Field using sum of products representation.
If the product term misses 1 factor, e.g. H(a1,az), then

H(ay,a3)H (a1,a4)H (a1, as5)H (a1, a6)H (a2, a3)H (a2, as)H(az, as5)H (a2, as)

H(ag, a4)H(a3, CL5)H(G3, ag)H(a4, a5)H(a4, aG)H(CL5 = 07 ag — 0)
term will recognize H(ay,a2) =0 and
H(ay,a3) = H(a1,a4) = H(a1,a5) = H(a1,a6) = H(az,a3) = H(az,as) = H(az,as) = H(az,ag)
= H(as,a4) = H(as,a5) = H(as,a) = H(as,a5) = H(as,a6) = H(as = 0,a6 =0) =1

as the solution, which is incorrect as the constraint H(aq,as2) is not satisfied,
H(ay,as) = 0. If the product term have an additional factor, e.g H(as = 1,a¢ =
1), then

H(ay,a2)H (a1,a3)H (a1, a4)H (a1, a5)H (a1, a6)H (a2, a3)H (a2, as)H (a2, as)

H(ag,a¢)H (a3, a4)H (a3, a5)H (a3, a¢)H (a4, as5)H (ag,a6)H (a5 = 0,a6 = 0)H (a5 = 1,a6 = 1),

it will miss out the solution

H(ay,a2) = H(a1,a3) = H(a1,a4) = H(a1,a5) = H(a1,a6) = H(az,a3) = H(az,as) = H(as,as)

= H(az,a6) = H(as,a4) = H(az,a5) = H(az,as) = H(as,a5) = H(as,a6) = H(as = 0,a6 =0) =1

as the solution when H(as =1,a6 = 1) = 0.

6.4 Unable to factorize the terms into quadratic form (A+B+...)(C+D+...)

For example for factored terml and term2,
Terml = H(a1 = 0, a9 = O)H(a5 = 0, ag = 0)
( Z H(al,ag)H(al,a4)H(a1,a5)H(a1,aG)H(aQ,aS)H(ag,a4)

al:(),a2:0,a3,a4,a5:0,a6:0
H(ag,a5)H(a2,a6)H(ag7a4)H(a3,a5)H(a3,a6)H(a4,as)H(a47a6))
Term2 = H(az = 1,a3 = 0)H (a5 = 0,a6 = 0)
( Z H(a1,a2)H (a1, a3)H (a1, as)H(ay, as)H(ay, a6) H(az, as)

a1,a2=1,a3=0,a4,a5=0,a6=0

H{(ag,as)H(az, as)H (a3, as)H (a3, as)H (a3, ag) H(as, as) H(as, a6)),
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term1 and term2 cannot be factorized into this form (H(a; = 0,as = 0)H (a5 =
0,a6 = 0) + H(az = 1,a3 = 0)H(as = 0,a6 = 0))(*) because the 2 product
factors of terml and term2 are different with as = 0 for terml and as; = 1 for
term?2.

( Z H(al,ag)H(al,a4)H(a1,a5)H(a1,aG)H(aQ,ag)H(ag,a4)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(az,a5)H (az,a6)H (a3, a4)H (a3, a5)H (a3, a6)H (a4, as)H (aq, a6))

is not equal to

( Z H(al,ag)H(al,ag)H(al,a4)H(a1,a5)H(a1,ag)H(ag,a4)

a1,a2=1,a3=0,a4,a5=0,a6=0

H(ag, a5)H(a2, aﬁ)H(CLg, a4)H(a3, a5)H(a3, aG)H(a4, as)H(a4, CL6)) .

The gammar of not able to factorize the terms into (A+B+...)(C+D+...)
is shown below.

H(a; =0,a2 = 0)H (a5 = 0,a6 = 0)
( Z H(ay,a3)H(a1,a4)H(a1,a5)H (a1, a6)H (a2, a3)H(ag, as)

a1=0,a2=0,a3,a4,a5=0,a6=0
H(as,a5)H (a2, a6)H (a3, as)H (a3, as5)H (a3, ag)H (a4, as) H (a4, ag))
A
H(a2 = 1,(13 = O)H(Cbg, = 0,(16 = 0)
( Z H(al,ag)H(al,ag)H(al,a4)H(a17a5)H(a1,a6)H(a2,a4)

ay,a2=1,a3=0,a4,a5=0,a6=0
H(ag,a5)H (az,a¢)H (as,a4)H (as,a5)H (a3, a¢)H (a4, a5)H (aq, aﬁ))
-

(H(ay =0,a2 =0)H(as =0,a6 = 0) + H(az = 1,a3 = 0)H (a5 = 0,a5 = 0))(x)

(2)
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6.5 How to combine two factorized terms

For another example of factored terml and term?2

Terml = H(a; = 0,a3 = 0)H (a5 = 0,a6 = 0)
( Z H(a1,a3)H (a1, a4)H (a1, a5)H (a1, ag)H (a2, a3) H(az, as)

a1=0,a2=0,a3,a4,a5=0,a6=0
H(az,a5)H (a2, a6)H (a3, as)H (a3, as)H(as, ag) H (a4, as)H (a4, ag))
Term2 = H(az = 0, az = 0)H(CL5 = 0, ag = O)
( Z H(a,l,&2)H(CL1,CL3)H(CL1,G4)H(CL1,a5)H(CL1,CL6)H(a2,CL4)

a1,a2=0,a3=0,a4,a5=0,a6=0

H(az,as5)H (a3, a6)H (a3, as)H (a3, as)H (a3, ag)H (aq, a5)H (a4, ag))
can be combined into this form
H(ay =0,a2 =0)H(ag = 0,a3 = 0)H(a; = 0,a3 = 0)H (a5 = 0,as = 0)
( Z H(ay,a4)H (a1,a5)H (a1,a6)H (a2, aq)H(az, as)

a1:070,2:070,3:0,(14,a5:0,a5:O
H(az, a6)H (a3, as)H (a3, a5)H (a3, ag)H (aq, a5) H (a4, ag))
+ H(az =0,a3 = 0)H (a5 = 0,a6 = 0)
Z H(a1,a2)H (a1, a3)H (a1, a4)H (a1, a5)H (a1, ag)

a1>1,a2=0,a3=0,a4,a5=0,a6=0
]‘]((lg7 a4)H(a2, a5)H(CL2, CLG)H(ag, a4)H(a3, a5)H(a3, ag)H(a4, a5)H(a4, a6)
—|—H(a1 = O,ag S O)H(a5 = 0,@6 = 0)

Z H(a1,a3)H (a1, a4)H (a1, a5)H (a1, a6)H (a2, a3)

a1=0,a2=0,a3>1,a4,a5=0,a6=0

H(ag,a4)H (az,a5)H (a2, a6)H (as,as)H(as, as)H (as, a¢)H (a4, as5)H (a4, ag).

Note that Za1>1 means that for all values of a; except a; = 0. Still it cannot
be factorized into (A + B +...)(C + D + ...) form (quadratic form). It is in
AB+C+...)+ D form.
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The grammar to combine factorized terms is shown below.

H((Zl = O,GQ = O)H(a5 = O,(LG = 0)
( Z H(a1,a3)H (a1, a4)H (a1, a5)H (a1, as)H (a2, a3) H (a2, aq)
a1=0,a2=0,a3,a4,a5=0,a6=0
H(as,a5)H (a2, a6)H (a3, as)H (a3, as)H (a3, ag)H (a4, as)H (a4, ag))
A\
H(as =0,a3 =0)H(as =0,as = 0)
( Z H(a1,a2)H (a1, a3)H (a1, a4)H (a1, a5)H (a1, a6) H(az, as)
a1,a2=0,a3=0,a4,a5=0,a6=0
H(as,as)H (a2, a6)H (a3, as)H (a3, as5)H (a3, ag)H (a4, as)H (a4, ag))
—
H(a; =0,a2 =0)H(az =0,a3 = 0)H(a; = 0,a3 = 0)H (a5 = 0,as = 0)
( Z H(ay,aq4)H(a1,a5)H (a1,a6)H (ag,as)H(as,as)
a1=0,a2=0,a3=0,a4,a5=0,a6=0
H(as,a6)H (a3, as)H (a3, as)H (a3, a¢)H (a4, a5)H (a4, ag))
+H(a2 :O,ag :O)H(a5 :O,a()‘ :O)
Z H(a1,a2)H (a1, a3)H (a1, a4)H (a1, a5)H (a1, ap)
a1 >1,a2=0,a3=0,a4,a5=0,a6=0
H(az,a4)H (a2, a5)H (a2, a6)H (a3, as)H (a3, a5)H (a3, a¢)H (a4, as)H (as, as)
+H(a1 =0,a9 ZO)H(CL5 =0,a¢ :0)
Z H(al,ag)H(al,a4)H(a1,a5)H(a1,aG)H(ag,ag)
a1=0,a2=0,a3>1,a4,a5=0,a6=0

H(as,a4)H (a2, a5)H (a2, as)H (a3, as)H (a3, as)H (a3, as) H (a4, as)H (a4, ag)

(3)
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6.6 How to expand a term by multiply (u+u’) to a term

Terml = H(a; = 0,a2 = 0)H (a5 = 0,a6 = 0)
( Z H(a1,a3)H (a1, as)H (a1, a5)H (a1, a6)H (a2, az)H(az, as)

a1=0,a2=0,a3,a4,a5=0,a6=0
H(as,a5)H (a2, a6)H (a3, as)H (a3, as)H(as, ag)H (a4, as)H (a4, ag))
Term2 = H(ag = 1,a3 = 0)H (a5 = 0,a6 = 0)
( Z H(a1,a2)H (a1,a3)H (a1, as)H (a1, a5)H (a1, a6)H(az, as)

a1,a2=1,a3=0,a4,a5=0,a6=0

H(ag,as)H (az,a6)H (a3, a4)H (a3, a5)H (a3, ag) H (as, as)H (a4, ag))
For the terml, even if you expand the product term, e.g.

( Z H(al,&3)H(CL1,CL4)H(CL1,a5)H(a1,a6)H(CL2,CL3)H(CL2,CL4)

a1:O,a2:0,a3,a4,a5:0,a6:0
H(ag, a5)H(a2, GG)H(G;),, a4)H(a3, a5)H(a3, aG)H(a4, a5)H(a4, G6)) (H'(a1 = 1, ag) + H(al = 1, ag))
=H'(a; = 1,a9) Z H(ay,a3)H(a1,a4)H (a1,a5)H (a1, a6)H(ag, a3)H (az, aq)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(ag, a5)H(a2, aG)H(CLg, a4)H(a3, a5)H(a3, ag)H(a4, CL5)]J(CL47 0,6)
—|—H(a1 = 1,a2) Z H(al,ag)H(al,a4)H(a1,a5)H(a17a6)H(a2,ag)H(ag,a4)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(ag, a5)H(a2, aﬁ)H(ag, a4)H(a3, a5)H(a3, aﬁ)H(a4, a5)H(a4, 0,6),

the 2 terms term1 and term2 still cannot be factored into (A+B+...)(C+D+
...) format (quadratic format) because the ay values are still different (terml
as = 0 and term2 as = 1). Note that H'(a;,a;) = 1 — H(a;,a;), which means
in Boolean algebra it is a ‘Not’ operation.
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The grammar to expand the product term is e.g.

H(ay,a3)H(a1,a4)H (a1, as5)H (a1, a6)H (a2, a3)H (a2, as)
a1:0,a2:0,a3,a4,a520,a5:0
H(as,a5)H (a2, a6)H (a3, a1)H (a3, as)H (a3, as) H (a4, as5) H (a4, ag)
—
( > H(a1,a3)H (a1, as)H (a1, a5)H (a1, a)H (a2, az)H (az, as)

a1=0,a2=0,a3,a4,a5=0,a6=0
H(CLQ, a5)H(a2, CL@)H(ag, a4)H(a3, a5)H(a3, CLG)H<G4, CL5)H(0,4, ag))
(H/(al =1,a2) + H(a; = 1,G2))

6.7 How to expand a factorized term

Terml = H(a1 = 0, as = O)H(a5 = 0, ag = 0)
( Z H(al,ag)H(al,a4)H(a1,a5)H(a1,aG)H(ag,ag)H(ag,a4)

al:(),a2:0,a3,a4,a5:0,a6:0
H(ag,a5)H(a2,a6)H(ag7a4)H(a3,a5)H(a3,a6)H(a4,as)H(a47a6))
Term2 = H(az = 1,a3 = 0)H (a5 = 0,a6 = 0)
( Z H(a1,a2)H (a1, a3)H (a1, a4)H (a1, a5)H (a1, a6) H(az, as)

a1,a2=1,a3=0,a4,a5=0,a6=0

H(ag,a5)H(a2,a6)H(a3,a4)H(a3,a5)H(a3,a6)H(a4,a5)H(a4,a6))

Even if you add the new term below using

Term3 = H(a; = 0,a2 = 0)H (a5 = 0,a6 = 0)H' (a1 = 1,a2 = 0)(H(a; = 1,a2 = 0)
H(ay,a3)H(a1,a4)H(a1,a5)H (a1, a6)H (a2, a3)H (as, aq)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(ag,as)H (a2, as)H (a3, a4)H (a3, as)H (a3, ag) H (a4, as)H (a4, ap)
+ Z H(al,ag)H(al,a4)H(a1,a5)H(a1,aﬁ)H(az,ag)H(ag,zM)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(ag,as)H (az, as)H (a3, as) H (a3, as)H (a3, ag) H(as, as) H(as, a6)),
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term3 cannot be combined with term2 into the form (A+B+...)(C+D+...)
because ag values is 0 for term3 and 1 for term?2.
Another grammar to expand a factorized term is e.g.

H'(a; =1,a3 = 0)H(as = 0,a¢ = 0)H(a; = 0,az = 0) Z

a1=0,a2=0,a3,a4,a5=0,a5=0
(a1,a3)H(a1,a4)H(a1,a5)H (a1, a6)H (a2, a3)H(ag, as)
ag,a5)H (az, a¢)H (a3, a4)H (a3, a5)H (as, a6)H (a4, a5)H (a4, ag)
—
(a1 =1,a2 = 0)H (a5 = 0,a6 = 0)H(a; = 0,a2 = 0)(H(a; = 1,a2 = 0)
Z H(a1,a3)H (a1, a4)H (a1, a5)H (a1, a6)H (a2, a3)H (a2, a4)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(as,a5)H (az,a6)H (a3, a4)H (a3, a5)H (a3, ag)H (a4, a5)H (a4, ag)+
Z H(al, ag)H(al, 0,4)H(CL1, CL5)H(0,1, aﬁ)H(ag, Clg)]‘[(ag7 (14)

a1=0,a2=0,a3,a4,a5=0,a6=0

H(az,as5)H (a2, a6)H (a3, as)H (a3, a5)H (a3, ag)H (a4, as)H (a4, ag))

T X

S

()

6.8 Summary of this section
Therefore the six variables Boolean algebra

Z H(al, ag)H(al, a3)H(a1, a4)H(a1, CL5)H(G1, CL@)H(GQ, a3)

a1,a2,a3,a4,a5=0,a6=0

H(az,a4)H (a2, a5)H (a2, a6)H (a3, as)H (a3, as)H (a3, ag)H (a4, as)H (as, a6)H (a5, as)

can never be factorized into (A+ B+ ...)(C + D+ ...) 2-layer Boolean algebra
(quadratic form), so it can also not able to factorized into 3 or higher layers
Boolean algebra. It is factorized using grammar rules from equations [
and Bl
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The Boolean algebra can never be executed in Polynomial time as it cannot
be factorized into multi-layer Polynomial time Boolean algebra. Therefore Non-
Deterministic Polynomial time algorithm cannot be converted to Polynomial
time algorithm, and NP # P. This six variables case can be easily extended to
7 or higher number of variables.

6.9 Example of how to factorize the Boolean algebra

Example of a factorization of the 6 variables Boolean algebra is

H(as = 0,05 =0) = Z H(a1,a2)H (a1, as)H (a1, a4)H (a1, a5)H (a1, ag) H (a2, as)
a1,a2,a3,a4,05=0,a6=0

H(az,as)H (a2, a5)H (a2, ag)H (a3, as)H (a3, as)H (a3, as) H (a4, as) H (a4, ag) H(as, ag)
- Z H(ay,a2)H (as,ag)

a1,a2,a5=0,a6=0

Z H(al, a3)H(a1, a4)H(a1, a5)H(a1, GG)H(CI,Q, ag)H(ag, (14)

az,aq

H(ag, a5)H((12, as)H(&& a4)H(a3, a5)H(a3, ag)H((ML, (IS)H(G/47 a6)
+ Z H(ay,a3)H (as, ag)

a1,a3,a5=0,a6=0

Z H(al, ag)H(al, a4)H(a1, 0,5)]‘](&17 CLG)H(GQ, ag)H(CLQ, (14)

az,a4

H(az, a5)H(az, ag) H (a3, as) H(as, a5) H (g, ag) H (a1, a5) H (as, )
+ Z H(ay,a4)H(as, ag)

a1,a4,a5=0,a6=0

Z H(ay,a2)H (a1,a3)H(a1,a5)H (a1, a6)H(az, a3)H (asz, aq)

az,as

H(az,as)H (a2, ag)H (a3, as)H (a3, as)H (a3, ag) H (as, as) H (a4, ag)
+ Z H(al,a5)H(a5,a6‘)

a1,a5=0,a6=0

Z H(al, CLQ)H(Ch, ag)H(al, a4)H(a1, ag)H(ag, a3)H(a2, Cl4)

a2,a3,a4

H(az,as)H (a2, a6)H (a3, as)H (a3, as)H (a3, ag)H (a4, as)H (as, ap)
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+ Z H(al,aG)H(CLs,aG)

a1,a5=0,a6=0

Y H(ay,az)H(ar, a3)H (a1, a4) H(ar, a5)H(az, az) H(az, as)

az,as3,aq4

H(az,a5)H (a2, ag)H (a3, as)H (a3, as)H (a3, ag) H (as, as) H (a4, ag)
+ Z H(ag,a3)H (a5, a6)

az,as,a5=0,a6=0

Z H(a1,a2)H (a1, as)H (a1, as)H (a1, as)H (a1, ag) H (az, as)
ai,a4

H(az, as)H (az, as)H (as, as)H (as, a5 ) H (as, ag) H (a4, as) H (a4, ag)
+ Z H(ag,a4)H(a5,ab‘)

az,a4,a5=0,a6=0

Z H(a1,a2)H (ax, a3)H(ay, as) H (a1, a5)H (a1, as) H(az, a)

ai,as

H(ay, as)H (a2, a6)H(as, as) H (a3, as5) H (a3, ag) H (a4, as) H (as, ag)
+ Z H(ag,a5)H(a57a6)

a2’a5:0,a5:0

Z H(a1,a2)H (a1, a3)H (a1, as)H (a1, a5)H (a1, a6) H (a2, az)
ay,a3,a4

H(az,a4)H (a2, a6)H (a3, as)H (a3, as)H (a3, a)H (a4, as)H (a4, ap)
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+ Z H(GQ,GG)H(GEMCLG)

az,a5=0,a6=0

Z H(a1,a2)H (a1, a3)H (a1, as)H (a1, a5)H (a1, a6) H (a2, az)
ay,as,aq

H(az,a4)H (a2, as)H (a3, as)H (a3, as)H (a3, ag) H (as, as) H (a4, ag)
+ Z H(as,a4)H (a5, a6)

a3,a4,a5=0,a6=0

Z H(ay,a2)H (a1,a3)H (a1,a4)H (a1, a5)H (a1, a6)H (a2, a3)
ai,a2

H (s, a4)H(az, as)H (a2, ag)H(as, as)H (a3, ag)H (a4, as) H(aa, ag)
+ Z H(as,as)H (as, ag)

a3,a5=0,a6=0

Z H(al, ag)H(al, ag)H(al, CL4)H(CL1, a5)H(a1, ag)H(ag, a3)

a1,a2,a4

H(a, as)H (a2, a5)H (as, ag) H (a3, as) H (a3, ag) H (a4, as) H (as, ag)
+ Z H(ag,ag)H(CLmaG)

az,a5=0,a6=0

Z H(a1,a2)H (a1, a3)H (a1, a1)H (a1, a5)H (a1, a6) H (a2, az)
ay,a2,a4

H(az,a4)H (a2, a5)H (a2, a6)H (a3, as)H (a3, as)H (a4, as)H (a4, ap)

+ Z H(a4,a5)H(a5,a6)

as,a5=0,a6=0

Z H(a1,a2)H (a1, a3)H (a1, a1)H (a1, a5)H (a1, a6) H (a2, a3)
ay,az,a3

H(az,a4)H (ag,a5)H (a2, a¢)H (a3, a4)H (a3, a5) H (a3, ag) H (a4, as)
+ Z H(ay,a6)H (a5, a6)

aq,as :0,0,6 =0

> H(ay,a2)H (a1, a3)H(ax, as)H (a1, a5)H (a1, ag) H(az, as)
ai,a2,as

H(as,a4)H (az,a5)H (a2, a6)H (as,a4)H (a3, a5)H (as, as)H (a4, as).

This Boolean algebra is too complex to show in graphical form.

7 (Generalized to higher number of variables Markov
Random Field

In this section, we want to prove the lemma below.
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Lemma 7.1 All Non-Deterministic Polynomial computation time Markov Ran-
dom Field Boolean algebra cannot be factorized into quadratic form (A + B +
. )(C+ D+...) or more simplified multi-layer Polynomial computation time
Boolean algebra form.

7.1 A generalized Markov Random Field

The equation

ﬁ(ak:vk,al:vl)zH(ak:vk,al:vl) Z H H(a; = v, a5 = vj)
V1,025,090 \Vk,v1 (3,5) \(K,1)

shows the Boolean algebra to determine Whethfzr ar = v and a; = v; is the

solution of the Markov Random Field. When H (a = Uk, ap = v;) = 1 means

that ar = v, and a; = v; is the solution, else when H(ay = vg,a; = v;) = 0

means that ap = vy and a; = v; is not the solution.

7.2 How to factorize the terms

All terms can be factorized using the formula below. Factorized terml is

H(a;, = vy, a5, = vi)H(ai; = vy, a3, = v3,) - .. H(aiN1—1 = Vin,—15 Qin, = UiNl)
E : H H(ai, a;)
i1 =V; e i =; e P . . (1 (1 . .
Qig =Viq s @in, ’Uileajg)’ ,ajj(é)l 17J€{117---,1N1,]1( ),_4.731(\/11},175]

for all I and m in a;, and a0, i # jﬁ). Given another factorized term2

H(akl = Uky Aky = ka)H(a‘ks = Uk, Qky = vk4) s H(akN2—1 = Vkny—15Ckn, = 'UkNQ)

> 11 H(ai, a;)

=R gy VN 0520 @) G ek kg G i) i

for all [ and m in ay, and @2 k; # jg). This two factorized term cannot be

further factorized into (A + B.. J(C+D...) format (quadratic format) as long

as there is a variable a;, , ay,,, with different values v;, # vy, where i; = k,,. Note
(1 (2 : .
that _]m) and jm) are not the same index. a;,a; € {a;,,...,aiy,, @505 Q5 }
1

means that a; and a; can be one of the variables in the set {x}.
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The grammar to factorize a set of terms is shown below.

>

@iy =Vig @iy, =Vip, ﬂg_%l) ’W’a'&ll)
1

H(a’il = Uiy iy = viz)H(a‘ig. = Vig; Qiy = Ui4) s H(a‘iN171 = Vin, 15 Qin, = UiNl)
H H(ai7aj)
L . (1 (1) Y s
4,5 €{i1,0 50N, ,]§ ),»u:];w)l}yZ#J
—

H(a‘il = Uiy Qip = vi‘z)H(ais. = Vig, iy = Ui4) ce H(aiN1—1 = Vin,—15 iy, = viNl)

Z H H(ai7aj)

Qi =Viq ey Qi nr. =Vinr 50 na R ) (1) 1)y s
i TVig @iy iNg ].51)7 , J](é)l z,JE{zl,...,lNl,jl ,...,le},i;é]

The grammar of not able to factorize the terms into (A+B+...)(B+C+...)
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is shown below.

H(a’il = Uiy Qip = Uiz)H(aiz = Vig, Ay = (aiN171 = Vin, 15 iy, = UiNl)

U,‘4) ...H
Z H H(ai,aj)

@ia iy iy Vi 00 (0 € (i 5o LT
A
H(ak, = vk, ar, = Vky ) H (kg = Vg, kg = Vky) - - H Gy, 1 = Vkiny 15 Gy, = Vi)

Z H H(ai’aj)

= Qe = . (2 S(2)\ g
Oky =Vky 0k, kaQ’aj§2)’ ,ajgvzf)Z 17]6{k1,«~-7kN27]§)7---7]§VI;}71¢J

—~

-
H(ai, = viy, a5, = v, ) H (a3, = vy, a0y = 0iy) . H(aiy, o = Vi, 15 Qiy, = Vi)

+

H(ak, = Ok, g, = Vi, ) H (ks = Vpgy any = 0k,) - H(Apy, = Vkyy 15 Gkyy = Vky,))

(*)

(7)

7.3 How to combine factorized terms

If there exists pairs of variables a;, = v;,, ak,, = v, with i; = ky,, and v;, = vy, ,
and it does not exists pairs of variables a;, = v;,,ax,, = vk, with i, = k,,, and
v, # Uk, , then the two factorized term can only be factorized into A(B + C +
...) + D format. To be specific, let us write the condition needed to factorize
the two terms (we introduce T' new variables as, ),

Vit kel = km = 8¢ = vy, = Vg,
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If the above condition is True then the two factorized term can be factorized
into

( II H(a; = v, a; = v;))
i,j€{s1,52,....sT },i#]

Z H H(ai,aj)

ab’lzvsl’“'7aST:U3T’U‘j§3)""’ajﬁ) i,j€{s1,.. 76T7]§ .. 7jM)}Z;é]

+ additional terms.

Note that s, € ({i1,dz,...,in, JU{k ks, ..., kn, }) and {517, 58, 510 ) e
({](1)7j§1)a s 7]M2}m{](2)’j§2)3 v 7]MZ}) St € {517 82500y ST}’ Zl € {217127 s 7ZN1}
and ky, € {k1,k2,...,in,}-

After combining the factorized terms, it is still unable to factorize the terms
into (A+ B+...)(C+ D+...) form.

The grammar to transform a set of Boolean algebra terms into a factored
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form is

H(ai1 = Vi, Gy = viz)H(ais = Vig, Gy = vi4) cee H(aiNl—l = Vin, 15 Qin, = UiNl)
Z H H(ai, a;)
@iy =Vigr @iy TVing ’a_jgl) ""’ajg&i 4,5€{i1,.. 0Ny G JM)l} i#]
A
H(ag, = vk, ark, = gy ) H (agy = Ok, Qhy = Viy) -+ H(@hy, 1 = Vkyy 15 Gk, = Vkn,)
Z H H(aiva'j)
aklzvk17""akN2:UkN2’aj§2)""’aj§;)2 i,je{kl,...,kNQ,ji ). ,gM;}z;éj
—
( II H(a; = vi,a; = vj))
4,JE€E{S1,82,...,8T },i#]
Z H H(aivaj)
asl:vsl’m’aST:UST’aJ{:})’m’ajg\f}; i,J€{s1,.. 7ST7J§ )7 7.7]%;} i#j
+ additional terms
where
Vs itom @l = km = St = vj, = Vg,
St € {81752, ca ST} = ({il,ig, - ;Z.Nl} U {k‘l,k‘g, e sz})
{.7 ’]2 >"'7.7M3} € ({.71 ’321)7"'7.7M1} N {.71 7.72 ""JMZ})
St € {81,52,...,81“}, i € {il,iz,...,ZNl} and k,, € {k17k2,-~-7ZN2}
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7.4 How to expand a term by multiply (u+u’) to a term
Every term can be expanded by multiplying u + ' term,
H(a;,,ai,)H(aig, aiy) .- H(aiy_y,aiy ) (u+u).

u+u' can be e.g. H(a; = 0,a2) + H' (a1 = 0,a2). H' () =1 — H(), which is a
‘Not’ operation. Since u+u’ is always equal to 1, it can be multiplied to a term
without changing the meaning. Using this expansion, we can add complement
terms. But after expanding factorized terml and term2, we still cannot further
factorized terml and term2 into (A + B +...)(C + D + ...) form (quadratic
form).

The grammar to expand the product term is

H(ailaaiz)H(aisvau) cee H(aiN—l’aiN) (9)
=
H(ai,,aiy)H(ai,,a;,) ... Haiy_,,aiy)(u+u).

7.5 How to expand a factorized term
Another way of expanding the factorized term is

H(ai,,ai,)H(ai,,ai,) ... H(aiy_,,ai,)u

(v x u+ H(aj,, a;,)H(aj,,a;,) ... H(aj,_,,aj,)).
u, u' can be e.g. H(a; = 0,a3), H (a1 = 0,a3). Using this expansion, we can
add complement terms. v can be any product sum of H() potentials as u x u’
will always be False or 0. But after expanding factorized terml and term2, we
still cannot further factorized terml and term2 into (A4+B+...)(C+D+...)

form (quadratic form).
Another grammar to expand a factorized term is

H(ailvai2)H(ai3vai4) e 'H(aiN—lvaiN)u/ (10)
H(ajl ’ ajz)H(ajsa aj4) s H(ajkf—l ) ajM)
—

H(ai,,ai,)H(ai,,ai,) ... H(aiy_,,ai,)u

(U X U+ (ajl?a’jz)H(ajs’ aj4) ce H(a’jl\/f—17a’.jM)>'

7.6 An analogy of the Boolean algebra factorization

An analogy to explain whether a Boolean algebra can or cannot be factorized
into quadratic form (A+ B +...)(C + D + ...) is the example below. The
equation below
AC+ AD+ BC+ BD
=(A+ B)(C+ D)
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can be factorized into quadratic form (A + B)(C 4+ D). Whereas the equation
below

AC + AD + BE + BF
= A(C+ D)+ B(E+F)

cannot be factorized into quadratic form e.g. (A + B)(C + D).

7.7 Summary of this section

Since using grammar rules in equations [6] [7} [8] 0] and [I0] cannot factorized the
Boolean algebra of a Non-Deterministic Polynomial time Markov Random Field
to quadratic form (A+ B +...)(C' + D + ...), Non-Deterministic Polynomial

time problem can never be converted to Polynomial time problem, therefore
NP # P.

8 2sat problem in Markov Random Field repre-
sentation

8.1 2sat problem definition
A 2sat problem can be defined as

/\ ((ﬁAi’j Va; VvV aj) AN (ﬁAi/’j V —a; V aj) A\ (ﬁAZ‘}j/ Va; VvV ﬁ(lj) A\ (ﬁAiI’j/ V —a; V ﬁaj))
i,

where A; j, Ay j, A; j» and Ay j» determine whether the terms exist or not. E.g.
if A; ; = 0 (which means false), the term (a; Va;) does not exist. Elseif A; ; =1
means that the term (a; V a;) exists. In our paper, True or False can also be
represented as 1 or 0. An example a 2sat problem instance is

(may V az) A (—ag V —az) A (ag Voag) A (—aq Voas)
can be represented with
Ay o=1A0 3 =1,A34=1,Ap5=1
and other A; ; =0 for (¢,75) € {(1',2),(2,3'),(3,4), (4,5)}.

8.2 An algorithm to solve 2sat problem

2sat problem can be solved using the algorithm [1| below. This is the standard
algorithm to solve it.
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Algorithm 1: 2sat problem algorithm

Result: Return a True or False whether a 2sat problem has solution

1 for a; in {ay,as,...,a,} do
2 for a; =True or False do
Set values of all other variables to unknown (neither True or
False) except a;;
Then using the 2sat clauses, try to infer other variables values;
if there is a contradiction, e.g. variable ay is both True and
False then
6 The 2sat has no solution, return False;
7 end
8 end
9 The 2sat has a solution, return True;

8.3 How to solve a four variables 2sat problem

For a four variables 2 values Markov Random Field problem, it is the same as
a 2sat problem. The 2sat problem can be represented as

Z H(ay,a2)H (a1,a3)H (a1,a4)H (a2, a3)H (az,a4)H (a3, as),
a1,a2,a3=0,a4=0
where a1, ag,as, ay can only take values of either 0 or 1. It can be simplified to

> H(ay,a3)H (az,a3)H (a3, as)H (a1, as)

a1,a2,a3=0,a4=0

+ H(a1,a3)H(as,a4)H(az2,a4)H (a1, a2)
+ H(a1,a3)H(az,a3)H (a2, a4)H (a1, a4)
+ H(ay,a2)H (ag,a3)H (a1, a3)
+ H(az,a3)H (as,a4)H(az2,a4)
+ H(as,aq4)H(a1,a4)H (a1, as3)
+ H(ay,a2)H(az,a4)H (a1, a4)

where the above equation represents all loop constraints.

Loop constraints can be represented in graphical form of Markov Random
Field.

Figure [6] shows a graphical representation of all possible loops that can be
extracted for the Markov Random Field. A 2sat problem can be simplified into
solving a set of Markov Random Field loops.

A product term can be solved using dynamic programming

Z H(ay,a2)H (a2, a3)H (a3, as)H(ay,as)

a1,a2,a3,a4

= Z H(ay,as) ZH(ag, as)H (a1, as) ZH(ag,a4)H(a1, ay).

ay,az as a4
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Figure 6: Graphical representation of all possible loops in the Markov Random
Field

We ignored a3z = a4 = 0 in this example to explain the idea better. a3 = a4 =0
can be added without any problem. This can be further written into a dynamic
programming multi-layer Boolean algebra

Ho(ai,aj) = H(ai,aj)
H'(a;,a;) = H Y (a;, a;) ZHl_l(ai,ak)Hl_l(aj,ak)

ag

where 1 <=1 <= 4.

Note that H°(), H'() and H'~!() are the indexes of H (does not mean H is
raised to the power of 0, [ or [ —1).

8.4 How to solve a five or more variables 2sat problem
The generalized loop constraint for 5 or more variables is

H(ail ) ai2)H(ai2a ais) cee H(aiN—1 ) aiN)H(aiN ) ail)
or some cases

H(ah ) aiQ)H(ai2v aiNfl)H(aiNq ) aiN)H(aiN y iy )’

H(ail » Qi 4 )H(aiN—l ) Qi )H(aiN y Qiy )

Each loop constraint can be solved by dynamic programming

H(ai,, ai,) = H(ai,,05,) Y H(ai,, aiy)H(ai, , ai,)

Qig

: Z H(aiwfz ) aiNq)H(ah ) a’iN—l)

Fin_1

Z H(aiN—l ’ aiN)H(ah ) aiN)'

aiN
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This can be further written into a dynamic programming multi-layer Boolean
algebra

Ho(ai,aj) = H(ai,aj)
H'(a;,a;) = H (ai,a;) Y H' (a5, ar) H' " (a;, ar,)

(2

where 1 <=1 <=n.

Note that H°(), H'() and H'~!() are the indexes of H (does not mean H is
raised to the power of 0, [ or [ — 1). n is the number of a; variables.

9 Conclusion

We have proved Lemma and Lemma therefore NP # P. To make the
Boolean algebra simplification proof possible, we have explained how to repre-
sent NP problem using Discrete Markov Random Field, solve Markov Random
Field using Boolean algebra operations, and reformulate the Boolean algebra so
that only the first layer contains ‘Not’ operations while keeping the time com-
plexity of the Boolean algebra to Polynomial time. To make the proof more
complete, we have shown example of how a 6 variables NP problem represented
in Markov Random Field can be factored and why the factored form is still
NP in terms of time complexity, have shown how to factor a Polynomial time
Markov Random Field Chain, and have shown algorithm of how to solve a 2sat
(represented as Markov Random Field problem with only 2 possible values for
each variable) in Polynomial time.

A quick explanation of why a Non-Deterministic Polynomial time Boolean
algebra cannot be factorized into Polynomial time Boolean algebra, you can
look at subsection This Boolean algebra cannot be factorized into (A+ B+
...)(C+D+...) form and therefore it cannot be factorized into higher order
factorized Polynomial time form.
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