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Abstract. Carlo Rovelli’s “relational interpretation” of quantum me-
chanics tells us that our understanding of quantum states is limited
to their interactions with other quantum states. This implies that we
have no understanding of the symmetry properties of a state vector ex-
cept when considered in relation to at least one other state vector. The
SU(3)xSU(2)xU(1) symmetry of the Standard Model is derived from
their interactions and therefore cannot necessarily be applied to a single
state vector. Steven Weinberg showed that mixed density matrices can
have symmetries that are not available to state vectors.

We explore the symmetry properties of finite symmetry groups for
mixed density matrices. Just as mixed density matrices can define mixed
states that require multiple state vectors, we find that the symmetries
of mixed density matrices define “mixed symmetries” that are similar
in structure to the symmetry of the Standard Model. We explore the
point group symmetries and show one that gives the Standard Model
symmetry. With this symmetry, we can generalize the Pauli spin matri-
ces to a set that has irreducible representations matching the Standard
Model plus a dark matter candidate.
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1. Introduction

Carlo Rovelli’s paper “Relational Quantum Mechanics” [1] uses a simple ex-
ample to show that interactions between two quantum (or classical) systems
are more complicated than the sum of the interactions inside the individual
systems. L.e. since absolute positions cannot be determined, the number of
degrees of freedom in a 1-d collection of positions of N particles is N — 1.
Two such collections have twice as many degrees of freedom 2N —2, but when
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the collections interact an addition degree of freedom appears, the distance
between the collections giving 2N — 1. This shows that isolated systems are
simpler than interacting systems. The consequence of this that we will be
exploring is the conclusion that the symmetry of an interaction can be differ-
ent (and generally more complicated) than the symmetry of the individual
states.

In the usual quantum mechanics, a pure density matrix is mathemati-
cally created as a product of two state vectors, for example

Py = |+ y)(+yl (1.1)

where “4y” indicates spin-1/2 in the +y direction. Since this is an interaction
between two quantum states, that is, the bra and the ket, the relational
interpretation suggests that we consider the symmetry of the density matrix
as more fundamental than symmetry of the kets and bras. Does this make a
difference? The bra is a 2 of SU(2) while the ket is a 2, the density matrix
consists of all 2 x 2 = 4 products of an element of the bra and an element of
the ket. Therefore the density matrix transforms under SU(2) as

2x2=3+1. (1.2)

This symmetry decomposition is compatible with the fact that given a real
unit vector @ = (ug,uy, u,), the pure density matrix corresponding to spin
in the u direction is

1 +u, Uy — TUy 1/1 0
p“2(uz+iuy —U, >+2<0 1>’ (1.3)

that is, the pure density matrix is the sum of two components, the first of
which transforms as a real 3-vector (uy, uy, u,) and the second of which trans-
forms as a scalar. This simple example shows that the symmetry of density
matrices is not the same as the symmetry of state vectors. Steven Weinberg
makes this last point in his 2014 paper “Quantum Mechanics Without State
Vectors” [2] and also includes a list of quantum oddities that are eliminated
in the density matrix formulation.*

This spin-1/2 example calls into question the assumption that individ-
ual electrons have SU(2) symmetry. Considered as density matrices, their
symmetry is more naturally the symmetry of real unit vectors, SO(3). We
use SU(2) when we create a mathematical fiction and consider what happens
when we violate Rovelli’s relational interpretation by splitting interacting
electron state vectors into individual state vectors. As far as spin-1/2 goes,
this argument has no physical consequences. Density matrices and state vec-
tors are both fully sufficient to model spin-1/2 particles. But we will meet
interesting results when we apply the same reasoning to the Standard Model
symmetry.

1From Weinberg’s abstract: “This change in the description of physical states opens up a
large variety of new ways that the density matrix may transform under various symmetries,
different from the unitary transformations of ordinary quantum mechanics.”
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Our concern is with a finite symmetry group G of size N with group
members given by g € G. With density matrices p given by their matrix?
elements p,,,, the transformation defined by g is a set of complex numbers
Kpmonnlg], and the transformation is

Q(P)m/n’ = Z Km’m,n’n[g] Pmn>y (14)

given as equation (3) in Weinberg.[2] We can see that Weinberg’s notation
includes the situation we will cover. Different from Weinberg, we will analyze
the symmetry using group theory. For Abelian finite groups, density matrices
and state vectors will have the same symmetries but it is advantageous to
cover the non Abelian situation as a generalization of the Abelian case so we
will begin with Abelian symmetries.

2. Density Matrix Symmetry, Abelian Case

In addition to symmetries different from state vectors, such as the electron
spin symmetry being SO(3) instead of SU(2), density matrices live in the
operator space and so allow some improvements in describing the relationship
between symmetry and quantum states, particularly in the Abelian case.
Note that SU(2) and SO(3) are non Abelian symmetries; for the Abelian
symmetries, density matrices and state vectors have the same properties.

Mixed density matrices allow thermodynamics so we can unify an un-
derstanding of entropy, symmetry and quantum states that is more difficult
in state vectors. These are also closely related to the Fourier transforms and
the group character tables.

For simplicity, we will discuss cyclic Abelian symmetries; the same ideas
apply to all finite Abelian symmetry groups. Let G be a cyclic Abelian group
of size N which is generated by s so that G = {s"|0 < n < N}. These
symmetry operators act on the state vectors by left multiplication:

|s?) = s 5 |s%), (2.1)
and the corresponding density matrix symmetry transformation:
pa=s55pst st (2.2)

where st s = s sT = 1. Choosing the basis where the state vector |s7) has 1
in the jth position and the rest zero, we have s with 1s below the diagonal
and at the top right corner, and zero everywhere else. L.e., for N = 4 we have

(2.3)

The various powers of s have the diagonal 1s in other positions.

2For simplicity, we are not specifying the size of the matrices here.
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The N symmetry operators are not enough to form a basis for the N x NV
matrices but it turns out that they are just enough to form a basis for the N
pure density matrices. The easiest one is obtained by summing over all the
powers of s and dividing by N. So for N = 4 we have

(2.4)

—_ = =

1
poz(50+31+82+s3)/4:i

— e
— = e
[ R
—_

For 0 < n < N, the trace of s" is zero while the trace of s° is N. So the
above pure density matrix has 1/N = 1/4 as the coefficient for s. And the
other s/ take this same coefficient.

Learned readers might notice that the character table for a finite sym-
metry group has a row of 1s for its top entry. In fact, at least for Abelian
symmetries, each row of the character table, when divided by the size of the
group N, defines the coefficients for a pure density matrix. Continuing our
example, the cyclic group of size 4, the point group C4, has character table:

Cy ‘ O st os2 8
Apo | +1 +1 +1 +1
dpy | +1 +i -1 — (2.5)
4po | +1 -1 +1 -1
dpy |41 —i -1 +i

where we’ve modified the usual character table labels by replacing the irrep
labels with the corresponding pure density matrix, and the group elements
with powers of the generating element s'. These coefficients define the four
pure density matrices associated with the C; symmetry, for example:

+1 4+ -1 —i
—i +1 4+ -1
—1 —i 41 +4i
+i -1 —i 41

1
ps = (+1s° —is! — 157 +is?) /4 = 5 (2.6)

The point here is that the symmetry group’s character table defines the pure
density matrices.

We can convert the ps density matrix to a state vector by taking any
of its non zero columns and normalizing. The choice of four columns gives
us four different phases but these don’t mean much in state vectors so we’ll
take the second column and we have:
+1
+1
—i

-1

3) = 0.5 (2.7)

The non Abelian case will be somewhat different from this.
Learned readers might also notice that the N x N coefficients defining
the irreps and the pure density matrices is also the matrix for the inverse of
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the discrete Fourier transform:

+1 41 41 +1
P I e A W
7o 41 -1 41 -1 |

+1 +i -1 —i

(2.8)

with normalization chosen to normalize the resulting state vectors. The in-
verse Fourier transform is given by the complex transpose:

+1 +1 +1 +1
Il +1 +i -1 —i

-1 _
Br=sl v -1 41 4 (29)
+1 —i -1 4
If we act on our ket |3) with the Fourier transform Fj we obtain:
+1 +1 +1 +1 +i 0
B I R A B I I O 0
BB=5 4 21 41 <1 2| = | =] o | @10
+1 +i -1 —i -1 +i

Similarly, the bra (3] is transformed by F; ' to (0,0,0,—i) and the density
matrix ps is transformed to

000 0

_ 0000
Fyps Fyl = 00 0 0 (2.11)

00 01

Thus the Fourier transform diagonalizes the pure density matrices. Note that
a mixed density matrices will have at least two off diagonal entries non zero.

Finally, it’s very important to see what the Fourier transform does to
the symmetry group elements. Of course it leaves s° unchanged, so let’s apply
it to s':

1 0 0 0
_ 0 —i 0 0

Fyst Byt = 0 0 -1 0 (2.12)
0 0 0 +i

We see that the Fourier transform diagonalizes the symmetry group. Of course
diagonalization is only possible for an Abelian symmetry group; we will be
looking for a generalization of the Fourier transform which does as much
diagonalization as possible.

Given a set of probabilities 0 < p; < 1 that sum to 1, we define the
mixed density matrix defined with these probabilities as

Pp =Y DjPj (2.13)
i

so that the pure density matrices are given when only one of the p; are 1 and
the rest are zero. The Boltzmann relation of thermodynamics tells us that



6 Carl Brannen

the probabilities p; are related to energy by an exponential. This is in the
context of a Hamiltonian H where we have

pu(T) o exp(—H/T), (2.14)

for a temperature T and we’ve selected units where the Boltzmann constant
kp is unity. The proportionality constant is determined by the requirement
that the trace of p is 1, that is, that the probabilities sum to 1. We can square
to obtain
(pr(T))? o (exp(~H/T))* = exp(—H/(T/2)), (2.15)

and we see that squaring gives a result that is proportional to the density
matrix at half the temperature. The process can be continued indefinitely.
To avoid nasty surprises, we should divide by the trace after squaring to
normalize the probabilities so they sum to 1.

Under the assumption that there was a single p; that was larger than
any other, the limit as the temperature goes to zero is:

p(u(T))* o< pr (0) = |7) (il (2.16)

Thus we can find the pure density matrices defined on a space by choosing
random mixed density matrices and cooling them down to find their zero
temperature limits.

The Von Neumann entropy is defined as

S(p) = —Tr plog p = Epy log(pk). (2.17)

Degeneracies complicate the entropy of systems with non Abelian symmetry/[3]
but the Abelian case is straight forward. In the absence of degeneracies, the
pr. are uniquely defined and the entropy is minimized to zero when exactly
one of the p; is one. These are the pure states.

3. Density Matrix Symmetry, non Abelian

Our problem is that of finding the pure density matrix quantum states from a
non Abelian symmetry. Reviewing the situation for Abelian symmetry anal-
ysis of the previous section the pure states can be found by cooling random
states to their zero temperature limit. The result of this are the various ir-
reducible representations of the symmetry. These irreducible representations
are defined by the character table of the group and the Fourier transformation
is a transformation from the coordinate space to these irreducible representa-
tions. So in the non Abelian case, what we are looking for is a generalization
of the Fourier transform.

As far as the generalized Fourier transform goes, in physics the con-
tinuous non Abelian symmetries are better understood than the finite non
Abelian symmetries. So for pedagogical reasons it makes sense to describe
the generalized Fourier transform for SO(3). This will help cement the ideas
we need for the finite symmetries. First let’s discuss an Abelian continuous
symmetry then SO(3).
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For quantum states defined on the unit circle, the symmetry is given by
rotations of the circle by an angle #. These are an Abelian symmetry group so
the solution for the pure states on the circle is defined by a Fourier transform:

O(k) = / () exp(ik) db (3.1)

This converts a wave function that depends on the coordinate 6 into one that
depends on wave number k. The pure states are the wave functions that are
given by a single value of k.

For our first non Abelian symmetry, consider the quantum states defined
on the unit sphere, that is, the points in 3-space that are a distance 1 from
the origin. We will label these points with the usual two angles (6, ¢). The
symmetry is SO(3) and the irreducible representations of the symmetry are
in the form 1 +34+5+ 749+ .... The “1” irrep is a discrete point while the
other irreps are all degenerate.

To put SO(3) into the form of a generalized Fourier transform the irreps
correspond to spherical harmonics Y;™(6, ¢). Thus the spherical harmonics
define a generalized Fourier transform which takes us from (6, ¢) coordinate
space to (I, m) wave number space. Again any wave function that corresponds
to a single value of (I,m) is a pure state. The first eigenfunction equation is

L2Y[(0,6) = UL +1) Y (6, 6) (3.2)

so that Y, is an eigenfunction of the square of total orbital angular momen-
tum L2. The corresponding equation for the m eigenvalue is

L. Y"™(0,¢) = m Y, (0, 9). (3-3)

Thus we see that the m eigenvalue equation requires the specification of a
direction z. Changing the direction will form linear superpositions of the ¥,
with the same [ but different m values. Therfore the spherical harmonics are
degenerate over m. That is, we can make pure states with mixtures of the
same [ but different m. This corresponds with the fact that the SO(3) irreps
3,5,7,9,... are degenerate with degeneracy given by the number of different
m each corresponds to. That is, the 3 irrep is triply degenerate, etc.

So in order to solve the corresponding quantum state problem for a finite
symmetry group we need to find the generalization of the Fourier transform
for a non Abelian finite symmetry. We did this for the Abelian case by using
the character table. This worked because the character tables for an Abelian
symmetry are N x N tables when there are N elements in the group. This
happened because each of the group elements was in its own “conjugacy
class”. Two group elements a and b are in the same conjugacy class when
there is another element ¢ with ac = ¢b. In an Abelian symmetry, one cancels
¢ from this equation and the result is that the conjugacy classes each have a
single element.

The smallest non Abelian finite group has size 6; we will use it to show
how to generalize the Fourier transform to non Abelian finite symmetries.
This group is the permutation group on three elements, Ss. It is the same as
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the dihedral group of degree 3, D3. We will use permutation notation, so the
group elements are:

Ss = {[], 123}, [132], [12], [13], [23]}. (3-4)

There are three conjugacy classes, {[ ]}, {[123],[132]} and {[12],[13],[23]} so
there are three irreps and the character table is 3 x 3:

Ss | {11} {(123],(132]} {[12],[13], [23]}
Ay 1 +1 +1

Ay 1 +1 -1 ’
E 2 -1 0

where we’ve borrowed the names for the irreps, Ay, As and E from those
traditionally used for the D3 point group. In the point group notation, F is
used for irreps which are doubly degenerate, and we see that the character
of the identity [] is 2 so that it is indeed doubly degenerate.

To get a generalized Fourier transform, we need to expand the character
table above, Equation (3.5) to 6 x6. It’s obvious how to expand the columns to
6, we simply replace the conjugacy classes with the individual group elements.
This gives an expanded character table:

S3 \ [1 [123] [132] [12] [13] [23]
A [ 1 F1 1 +1 +1 1
Ay |1 41 41 -1 -1 -1°
E|l2 -1 -1 0 0 0

We need to supply three missing rows. Before continuing, it is useful to com-
pute the products of these three irreps:

* ‘ A1 A2 FE
A; |64, O 0
As | 0 642 O

E 0 0 3K

So if we divide A; and As by 6 and E by 3 they will be projection operators.
In general, one gets the projection operators for a non Abelian finite group by
dividing by the group size (in this case 6) and multiplying by the character
of the identity (in this case, 1, 1 and 2).

The entries in a character table are the traces of the given representative
of the symmetry. This is a clue that the missing rows will have zero trace and
can be written as an SU(2) doublet. Examining the table, we see that there is
one missing row that must distinguish between the [123] and [132] elements.
We can use any non zero multiple of [123] —[132], but let’s look ahead a little
and pick a multiple convenient for SU(2). Choosing the multiple as a complex
number « and squaring we find

(a[123] — a[132])?2 = «a?([123]% — [123][132] — [132][123] + [132]?,
= a?(-2+[132] +[123])) = —a®* E '

(3.5)

(3.6)

(3.7)

(3.8)
Now the Pauli spin matrix o, squares to 1 which is a projection operator.
The corresponding projection operator here is E/3 so we can arrange for our
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first new row to correspond to o, by choosing o = i/ V3. Let’s rewrite the
character table with this new row and also adjust the other irreps so that
they are projection operators:

Ss | [] [123] [132] [12] [13]  [23]
A /6 [1/6 +1/6 +1/6 +1/6 +1/6 +1/6
Ay/61/6 +1/6 +1/6 —1/6 —1/6 —1/6 . (3.9)

E/3 |2/3 —1/3 -1/3 0 0 0
o, | 0 i/v3 —i/V/3 0 0 0

The next two rows will arise from differences in [12], [13] and [23]. Choosing
oy = a([12] — [13]) and requiring that o, square to /3 we find oo = 1/v/3 so
we can set o, = ([12] — [13])/v/3 and define o, by o, = i0,0, to obtain

S3/6 | [1 [123]  [132]  [12] [13] [23]
A, /6 [1/6 +1/6 +1/6 +1/6 +1/6 +1/6
Ax/6|1/6 +1/6 +1/6 —1/6 —1/6 —1/6
E/3 |2/3 —-1/3 —1/3 0 0 0 . (3.10)
o, | 0 /3 —i/V3 0 0 0
o, | 0 0 0 1/vV3 —1/V/3 0
o. | 0 0 0 1/3 /3 —2/3

This table defines the “generalized Fourier transform” for the D3 finite sym-
metry group. It tells us that this space supports two singlets, A;/6 and A5 /6,
and an SU(2) doublet with E/6 as the unit matrix. This is a “mixed sym-
metry”.

When the symmetry is Abelian, the number of elements in the symme-
try group is the same as the number of positions in the coordinate space.
That is, to get to any particular position there is a unique symmetry ele-
ment so they can be put into correspondence. Because of that, we were able
to define the Fourier transform so that it took the coordinate positions to
irreducible representations just as it took the density matrices to irreducible
representations and the symmetry from the density matrix and state vector
calculations were identical. With the non Abelian case the numerical coinci-
dence no longer applies so the “mixed symmetry” is purely a density matrix
symmetry. In the case of Ds, the size of the coordinate space is 6, and the
generalized Fourier transform takes this to density matrices as

6=1%+17 + 22 (3.11)

If the group had been Abelian there would need to be six irreps and the
Fourier transform would have diagonalized them with an equation of 6 =
12 + 12 +12 4+ 12 + 12 + 12. Other non Abelian finite symmetries will also
have sizes that become sums of squares.

Similar calculations can be done for other non Abelian finite symmetry
groups. In each case, we will obtain a generalized Fourier transform that
will tell us the quantum states supported by a space with that symmetry. A
more general problem (and the usual use of point group symmetries) is to
use a point group symmetry to classify properties of a chemical with that
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symmetry. That situation is more complicated in that each irrep may not
appear or may appear multiple times. Since the method we’ve used here
gives each irrep exactly once, it has been used as a convenient method of
finding the possible irreps of a point group.[4]

This author came upon the idea of “mixed symmetry” only after exten-
sive computer calculations. As mentioned in the Abelian section, we can find
the particle content of an algebra by squaring (cooling) from random high
temperature initial states. It was only after solving several non Abelian finite
groups that the group theory described here became evident. The ideas could
then be extended to the finite group of size 144 we propose for the Standard
Model.

To show how the calculational method of finding density matrix particle
content works, let’s apply the method to D3, but use S3 notation. The first
step is to write software that allows multiplication in the complex S5 algebra.
The elements of this algebra are complex 6-vectors where the 6 entries are
indexed by the 6 group elements {[ ], [123], [132], [12], [13], [23]}.

For example, suppose the 6 complex numbers are 2/3,-1/3,—1/3,0,0
and 0. These happen to be the coefficients for E/3 given above in the table of
projection operators given above in Equation (3.10). We use the finite group
elements as the basis for the vector space and write this element as:

P = (2[]—[123] — [132])/3. (3.12)
We can check that this is a projection operator by squaring;:

PZ = (4[)% +[123)% + [132]2 — 2[][123] — 2[123][ ]
—2[][132] — 2[132][ ] + [123][132] + [132][123])/9,
(4[] + [132] + [123] — 2[123] — 2[123] — 2[132] — 2[132] +[]+[])/9,
(6[] — 3[123] — 3[132])/9,

= PE

(3.13)
So the first step is to verify that your computer algebra satisfies the projection
operators. Also verify that they multiply each other to give zero and that the
Pauli spin matrix analogs have the correct commutation relations and square
to PE
In any of these group algebras, the high temperature limit is propor-
tional to the identity. The proportionality constant arranges for the trace
to be 1 and so is the group size N. In the D3 case, the high temperature
limit is [ ]/6. To find the pure states, we will begin with states near the high
temperature limit. To keep the trace 1, we can keep the coefficient of [ ] as
1/6 and choose small random numbers for the remaining 5 coefficients.
Another requirement for a density matrix is that it be Hermitian. For
an element defined by Yayg where a4 are complex coefficients, the Hermitian
requirement is that if gh = 1, then a4 = ‘IL' For the D3 group, this means that
Ap), Apz)s Apg) and Ajppg) are real and that Aj123) is the complex conjugate of

[132]-
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T="T, T =To/2

T ="Ty/4

T =Ty/16

T =Ty/64

FIGURE 1. Beginning with 3000 random density matrices
near the high temperature limit T' = T, we square the den-
sity matrix six times to show the states beginning to converge
to the two singletons A; and Ay, and the SU(2) doublet E.
Of the six degrees of freedom in the Dj3 algebra, we choose
the x and y axes so as to spread A;, As and E apart, and to
show the Bloch sphere for E. Continuing the cooling process,
the final image T' ~ 0 shows the cold temperature limit (pure
states).

With these requirements, a typical Hermitian mixed density state near
the high temperature limit is

o, = [1/6+ ((3+41¢)[123] + (3 — 44)[132] + 2[12] + 3[13] — 4[23])/100. (3.14)

Next we cool this state by repeatedly squaring it and adjusting it so that it’s
trace is again 1. This adjustment is done by dividing by the [ ] coefficient
times 6 so that the adjusted state will have a [] coefficient of 1/6. As we do
this, the state eventually approaches stability. There are three possibilities.
This limit will be either A;/6, A3/6, or will be on the SU(2) Bloch sphere
whose elements are defined by:

pu = (E/3+ ugoy + uyoy +u.0.)/2, (3.15)
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where (g, uy,u;) is a real unit 3-vector and E/3, 05, 0, and o, are taken
from Equation (3.10).

Beginning with a few thousand different random initial conditions, we
get a picture of how mixed density matrices converge to the A; and A, singlets
and the £ SU(2) doublet in Figure (1). To get the nice graph it helps to know
the generalized Fourier transform. It’s also possible, as the author did, to solve
the quantum state problem for an algebra like this one without knowledge of
the generalized Fourier transform. One runs a few thousand initial random
high temperature states to their cold limit and looks for coincidences. Where
there are a lot of identical final states, that is a singlet state. Doublet and
higher states appear as clusters of states on the surface of a region. Doubly
degenerate states will appear as Bloch spheres, that is, as the surfaces of
3-dimensional spheres. Higher SU(N) will be larger dimensional.

It should be clear that the SU(2) doublet in D3 is a candidate for a par-
ticle with an internal SU(2) symmetry. This provides an appropriate interface
for a gauge boson with SU(2) symmetry, and compatible with the relational
principle, it arises from a finite symmetry which does not possess any SU(2)
symmetry. In the next section we will discuss the Standard Model with the
object of fitting it into an appropriate finite symmetry.

When a finite symmetry has a triple degeneracy the associated irrep
(which are labeled “T™ in the literature), similar to the “E” case, will be
the projection operator for the unit matrix of a 3 x 3 density matrix. There
will be eight missing degrees of freedom all with zero trace and they can be
written as the Gell-Mann matrices. Thus the T degeneracies define particles
with internal SU(3) triplet symmetry. Similarly a 4 dimensional degeneracy
will define a particle with the SU(4) fundamental representation, etc. Thus we
can read off the density matrix particle content of a finite group by examining
the characters of unity in their character table.

4. Standard Model as a Mixed Symmetry

The Standard Model symmetry has been measured to be SU(3)xSU(2)xU(1)
with only a small number of the infinite number of representations being
observed. This is in extreme distinction to the case we expect with true Lie
Group symmetries. For example, SO(3) is the symmetry for orbital angular
momentum. There are an infinite number of representations of size 1, 3, 5, ...
and there does not appear to be a limit to how many of these we can observe
in the lab.

Why then does the Standard Model restrict itself to only a few rep-
resentations? Our proposal is that the Standard Model symmetry is not a
Lie group symmetry appropriate to state vectors, but is instead a “mixed
symmetry” that we can derive from a finite non Abelian group, in fact, a
point group. Then the reason that the Standard Model has been fit into a
Lie Group symmetry is sometimes expressed as “if the only tool you have is
a hammer, all your problems will appear to you as nails.”
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We will be treating the mass interaction separately here, so that we will
be eventually concerned with modifications of the Pauli spin matrices and the
Weyl equation rather than the gamma matrices and the Dirac equation. This
is more compatible with the SU(3)xSU(2)xU(1) representations assigned to
the elementary fermions. And for the moment we will be concerned only with
the fermions of the first generation. For that generation the representation
assignments are:

SU(3) SU@2) + Iy, Yw/2
v | 1 2+1/2 —1/2
VR 1 1 0
er | 1 2-1/2 ~1/2
er| 1 1 —1 (4.1)
ur | 3 2+1/2 +1/3
dp | 3 2-1/2 +1/2
up | 3 1 +2/3
dr| 3 1 ~1/3

where the SU(2) entry 2 — 1/2 for the left handed electron indicates its the
—1/2 member of an SU(2) doublet and the Yy /2 entries are half the U(1)
weak hypercharge values. In order to account for massive neutrinos, we’ve
added a right handed neutrino. For the SU(2) singlets, Iy, is zero and the
electric charge is Iy, + Yy /2.

The above table would be difficult to fit to the mixed symmetry of a
finite group as the left-handed quarks are triplets under SU(3) and doublets
under SU(2). Since the internal symmetries found in the previous section
depend on the character of the identity, only the triplet or the doublet could
be had in a single state, not both. This sort of problem has never stopped
a theoretical physicist before; our solution will be to note that SU(2) is not
a perfect symmetry as would be derived from a perfect point symmetry, but
instead is approached only in the high temperature limit. So we can expect
to see states arrive as pairs with some similarities between the SU(2) weak
doublets but not as actual doublets. It’s also likely that a complete list will
include some dark matter states. These will be singlets under SU(3) and
SU(2) and have zero Yy /2.

With the SU(2) adjustment, we are looking for a point group symmetry
which has four singlets and four triplet degeneracies. Only one such point
group exists. It is the octahedral group of size 48. It consists of all the “90
degree” rotations in SO(3). That is, each of these rotations map the axes
to + axes, half as proper the other half as improper rotations. In addition
to four singlets and four triplets, there are also two doublets which we will
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assign to the left and right handed dark matter. The character table is:

Oh E 02 03 Cg C4 ) Oh SG 54 gd
Hand: |L L L | L L R R R|R R
Ev/O: |E E E|O O|E E E|O O
Size: 1 3 8 6 6 1 3 8 6 6
Ay 1 +1 +1|+1 +1|+1 +1 +1|4+1 +1
Az 1 +1 -1|-1 +1|+1 -1 +1|+4+1 -1
E, |2 -1 0[]0 +2[+2 0 -1[+2 0 (42)
Ty |3 0 —1|+41 —1[+3 41 0 | -1 —1° '
Ty 3 0 +#1}-1 1|43 -1 0 |—-1 +1
Aqy 1 41 +1}(+1 +1}j -1 -1 —-1|-1 -1
Ay |1 41 —1|—-1 41| -1 +1 —-1|-1 +1
E, |2 -1 0]0 +2|-2 0 +1|-2 o0
Ty 3 0 —-1j+41 -1} -3 -1 0 |+1 +1
Ts,, 3 0 +#1}-1 —-1|-3 +1 0 |+1 -1

In the above, of the ten columns, the five on the left are proper rotations (i.e.
left handed) while the five on the right are improper or right handed. Each
of these five are split into a set of 3 even and two odd, as labeled. The “Size”
is the number of elements in that conjugacy class.

There are various ways of assigning the irreps to the known elemen-
tary fermions. Dark matter is clearly E, and F,, and its differences with the
other states makes it clear why it is dark. Dark matter has an SU(2) inter-
nal symmetry which suggests an analogy to the SU(3) internal symmetry of
quarks so that we can call them “duarks”. There should be a “dark gluon”
or “duon” that will follow an SU(2) triplet symmetry. Dark quark colors will
correspond to spin-up and spin-down in spin-1/2 SU(2) but since they are
dark we propose calling them “doom” and “gloom”, also appropriate for the
present Covid19 pandemic. In analogy with quarks, a duark and antiduark
may combine to form a “deson”. Since there will be no decay by electroweak
processes, they are likely to be stable. Two duarks of different dark colors
may combine to form a “daryon”.[5]

The Standard Model has three generations. To account for these in
density matrix form we need to have three times as many group elements.
There is only one group with three elements and it is Abelian so increasing our
symmetry group by it will simply triple the number of states. This increases
the size of our group from the octahedral group Oy, to the tripled octahedral
group O3 of size N = 48 x 3 = 144.

The universe is not made out of symmetry, instead whatever the uni-
verse is made out of happens to possess certain symmetries. So an attractive
problem is to find a physical object that happens to possess the symmetry
we’ve described by a mixed symmetry. For example, orbital angular momen-
tum defines a pattern of irreducible representations of sizes 1, 3, 5, 7, ... and
from this we can suppose that it arises from an SO(3) symmetry. We then
look for a physical model with SO(3) symmetry and conclude that orbital
angular momentum might be described by a system with SO(3) symmetry.
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This suggests looking for powers of a real vector r and after some trials we
find the Schroedinger equation for the hydrogen atom. We will now illustrate
a similar process with a finite symmetry group.

The Standard Model arises from a finite group of size 144 which will be
too large for a reasonable example. So instead, let us write down a modifica-
tion of the Pauli spin matrices that will possess D3 symmetry. What we are
looking for are equations that can be rewritten so that there are two singlets
A; and As, and one doublet E. Of course we could simply write down that
result but it would not at all be convincing; it’s what was done with the
Standard Model already, in its arbitrary choice of irreducible representations
of SU(3)xSU(2)xU(1). So instead, the underlying physical system will have
D3 symmetry and we will use the D3 generalized Fourier transform to rewrite
its equations into A1, As, E form.

The relational interpretation of quantum mechanics explains the EPR
paradox as a consequence of what observers know about a quantum system
and not a matter of a state that is physically entangled. This suggests that
to understand the nature of quantum states we do not need to spend effort
on understanding how quantum mechanics treats states with two or more
electrons. Instead, we need to understand single particle quantum mechanics;
the important issue is the difference between an electron and a quark, not
the difference between one electron and two electrons. Besides, two electron
states are already well understood. So we will be concerned with quantum
states where each different fermion appears zero or once. The reader can think
of this as the “quantum information theory” version of particle physics.

The wave equation for left or right handed fermions is the Weyl equation:

"0y Y = (120 £ 0,0, + 0,40y £ 0.0,)1, (4.3)

with the plus signs taken for the left handed particles while minus signs are for
the right handed. To convert this into an equation for N different fermions,
we could add a superscript k& to the wave function v, where k = 1,2,..N
defines N different fermions. In order for a single Weyl equation to support
different fermions, we will also have to apply the same superscript to the
Pauli spin matrices o#. Having done this, we can arrange for the NV fermions
to have whatever symmetry relationship we’d like but this is not compatible
with the principle of linear superposition and irreducible representations of
symmetry.

To actually derive a mixed symmetry we need to begin with a more
complicated set of equations. We can do this by arranging for the Pauli spin
matrices to couple with the wave functions 1. So let’s use g as a superscript
for the Pauli spin matrices and h as a superscript for the wave function:

at99," (4.4)

Since g and h can each run over the N elements of the finite group, this gives
us N? terms. To arrange for a coupling with the finite group we can sum
these using the finite group product. That is, two of these terms, one with g
and h, the other with ¢’ and A/, will be added together if gh = ¢g'h/.
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For example, since [ ][23] = [23] = [123][13], we’ll be adding those terms
together as in:

o#119,p123 4 1231 4 113], (4.5)

So there are 62 = 36 such terms and we’ll be combining them into six equa-

tions. Each of these six equations involves all six 19, that is, they are coupled.

In case this has not been sufficiently clear, let’s write out the first of these

6 coupled equations for the D3 symmetry, the one that gives an overall [ ]
group element:

0 = orllgyll +onl12slg, 152 4 Gui132y 40123
o2, 2] 4 gulislg 18] 4 gul2slg 23]

That’s a long line. To make it shorter, let’s leave off the p and 9. We will
add these back in when we’re done. So the 6 coupled equations are:
0 = ollypl] 4 [1231p[182] y ;[1320)123] | 512112 | [18]018] 4 (23] (23]
0 = ollopl123] | G231 [1 | 5[1821[132] | 5[12])(28] 4 5 [18]012] 4 [28]018]
0 = ol 1182 | 511231 (123] | (182011 4 5[12118] 4 5[18],)028] 4 (28] p012]
0 = olloplt2l 1 G123 (23] | 51321 18) 4 (12011 4 5[13],)128] 4 [28]p[182]
0 = ol g3l 4 1123151121 4 5[1320[23) 4 5[12][132] 4 G131 4 5[23)[128]
0 = ol1(23) 4 o123 (18] | s182]012] 4 [121(123] | 5[18][182] | (281501,
(4.7)
Our task is to uncouple these equations using the generalized Fourier trans-
form.

The A; and A, irreps of Equation (3.9) are the same except they differ
in the signs of the [12], [13] and [23] components. So we can combine the
two into the same calculation with the plus signs accounting for A; and the
minus signs for Ay. Leaving off the overall factor of 1/6, the 6 equations are
transformed into:

0 = ollpl] 4 o128l yp1s2 | 5[1821(128] | G[120002] 4 [18]008] | [28]p023]
tollypliasl | G128 l] 4 11820182 | 5[12](23] | 5[13],)12] 4 [28]013]

(4.6)

tollyplisa]l | s8] 23) | 50182101 4 5(121(8] | 5[13],)[28] 4 [28]012]
tollypli2) 4 1123] 23] 4 511820 18) 4 G201 4 5[13]128] 4 [28]p0132]
ollpsl 4 o28)2 4 o[182] 23] 4 51205182 4 G811 4 [23][123]
ollyp23) 4 o 1128]08] 4 G [182] 12 4 G 12)5[123] 4 5 [18][182] 4 [28]p0],

(4.8)
This doesn’t appear to be much of a simplification but it factors. Bringing
the p and 0 back we have the Weyl equations for the A; and As irreps:

0 = (Uu[] 4 ok123] o Gul132] 4 Fu[12] 4 Se(13] 4 Ju[23])
Oy (U] 4 p1123] 1 qp[132) £ o [12) o) [13]  4)[23])

There are four more generalized Fourier components, that for £, o,, o, and
0,. The process is similar and we recommend it to the reader as an exercise.
The pure SU(2) density matrix states are then found by choosing a real
unit 3-vector (uy,uy, u,) and computing (E/3 + uyo, +uyoy +u,0,)/2. The
result has an internal SU(2) symmetry similar to the color SU(3) symmetry
of the quarks. That is, under the relational interpretation, color SU(3) is a

(4.9)
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symmetry of quark interactions so all we need for a single quark is for it to
have the right “socket” for the interaction, that is, something to couple to.

5. Speculations

This paper has discussed the symmetry of the fundamental fermion states
and has not covered their gauge interactions. We presume that papers on
the subject will follow, not necessarily by this author. But if this theory is
a better way of understanding the Standard Model symmetry, what does it
say about the nature of space and time?

A point group symmetry depends on space only, so the first conclusion
is that special relativity is only a low temperature, long wavelength approxi-
mation. The octahedral group implies cubic axes so that in addition to losing
special relativity we even lose the apparent SO(3) symmetry of space alone.
There are already some clues in the literature that this might be the case,
for example Iwo Bialynicki-Birula showed how to put the Weyl equation on
a cubic lattice with quantum cellular automata.[6]

One of the major problems with modeling fermions on a lattice is
“fermion doubling” where one finds twice as many fermions for each dimen-
sion. In the case of the Pauli spin matrices and the Weyl equation there are
three doublings so the number of fermions increases by a factor of 8. These
doublings are caused by spatial transformations that invert the z, y and z
axes and as such are included in the ocathedral point group. Thus we can
suppose that this paper gives a solution to the fermion doubling problem
when one makes it even worse by also allowing right angle rotations.

If space-time really is a cubic lattice, in addition to effects at very small
distances there might also be effects in the long distance limit, or even in
black holes. No firm evidence exists at the moment.

6. Conclusion

Of course the author has received assistance from many physicists. Of partic-
ular note are his advisors in the physics program at Washington State Uni-
versity, Michael Forbes, Sukanta Bose and Fred Gittes. Their interest and
encouragement was critical to maintaining the long effort required here. And
that long effort was too long by two or three years as WSU has a limitation
on how long one can take to write a thesis. The author thanks his advisors
for continuing to assist after that time ran out. The author hopes that the
university will find a way of making an exception and that this paper will be
considered as a partial fulfilment of the PhD degree in physics at WSU.
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