
1

Neural networks and their application in artificial intelligence
Jan Helm
Technical University Berlin
Email: jan.helm@alumni.tu-berlin.de

Abstract
This paper presents
in Part1 the basic theory of Neural Networks, and based on the standard (global) backpropagation algorithm, it
introduces the local backpropagation algorithm: a layer-recurrent gradient algorithm with layer-specific
target-vector.
Furthermore in Part2 , it presents calculated application examples for global backpropagation networks, local
backpropagation networks and evolving cross-mutated networks.

Contents
Part 1 Neural networks theory
1 Models of computation
2 Basics about Neural Networks
3 Perceptron
4 Feedforward and RBF neural networks
5 Algorithms in neural networks
6 Calculations with FF neural networks
7 Hopfield networks
8 Restricted Boltzmann machines (RBM)
9 Variational Autoencoders
10 Unsupervised Networks
11 Recurrent networks
12 Convolutional networks
13 Reinforcement learning in neural networks (REL)
Part 2 Applications of neural networks
1 Implementation on GPU hardware: Nvidia CUDA
2 Implementation of global backpropagation FF networks with CIFAR data
3 Local backpropagation in serial FF networks
4 Local backpropagation in parallel FF networks
5 Evolving mutation cross-optimized networks
References

2

Part 1 Neural networks theory

1 Models of computation
-Functional computation
Here, operations on primitive functions are used [5].
Set of primitive functions M=

Zero-function
Successor function S(x)=x+1, e.g. S(1)=2

Projection function of a list e.g. U2
3(x1.x2.x3)=x2

Operations composition f12(x)=f1(f2(x)) , minimization u(x1.x2.x3,...,xn)=Min(x1.x2.x3,...,xn)

Example: addition of two numbers, m and n, by the function f(m,n).
where f(x,0) = x , (x,y+1) = S(f(x,y)
e.g. 3+2=f(3,2)=S(S(f(3,0))=5

-Turing machine
The Turing machine consists of a tape serving as the internal memory of the machine, of unlimited size, and a
read/write head which moves along the tape. The Turing machine is described by the state, output and
direction functions. The input on the tape is a sequence of values (0, 1, x), operation symbols (c), and blanks
(B)
We can write (state, input) →(state, write, {L, R, N}) where L,R,N mean Left, Right and No movement,
respectively.
The example [6], the addition 2+3 in the unary format (i.e. a number n is represented by n zeros, + is
represented by c) is performed by the operation
Input 2 + 3 : 0 0 c 0 0 0
Output 5: 0 0 0 0 0
and the corresponding Turing machine is described by the diagram

step-1: Convert 0 into X and goto step-2. If symbol is “c” then convert it into blank(B), move right and goto
step-6.

step-2: Keep ignoring 0’s and move towards right. Ignore “c”, move right and goto step-3.

step-3: Keep ignoring 0’s and move towards right. Convert a blank(B) into 0, move left and goto step-4.

step-4: Keep ignoring 0’s and move towards left. Ignore “c”, move left and goto step-3.

step-5: Keep ignoring 0’s and move towards left. Ignore an X, move left and goto step-1.

step-6: End.

3
-Cellular automaton
A two-dimensional cellular automaton is described by the following diagram [5]

It is comprised of a two-dimensional grid of cells. Each cell can be in one of two states, on or off (dead or
alive). Cells may transition from one state to the other, and become on or off, based on a set of rules.
Example: Conway’s Game of Life
Rules of the Game of Life
Let N be the number of neighbors of a given cell. If N = 0 or 1, cell dies If N = 2, the cell maintains its current
state (status quo)If N = 3, the cell becomes alive If N = 4,5,6,7 or 8, the cell dies.
e.g. transition

→
The example 2+3 → 5 is calculated by the Conway-CA in two steps, where the number n is represented by a
(edge-contiguous) cell with n elements.

where the input (initial first state) is represented by the vertical 2-cell and a vertical 3-cell in touch at a corner

and the output (=third state) is a (contiguous) 5-cell

-von Neumann computer

A von-Neumann-computer consists of CPU (processing unit), memory (containing opcode and data), input-
and output-unit, they connected by control-bus (opcode), data-bus(data) and address-bus (memory address of
current opcode).
The example addition 2+3 → 5 is schematically performed by the sequence

addr= 0 // address is initialized

4
input= + 2 3 // the next program instruction is read
input → memory(addr=0) // and written into memory
CPU memory(addr=0)) → 5 // CPU fetches the instruction opcode(data1, data2) performs instruction
output= 5 // and outputs result
addr = addr+1 // address is counted up

At the end memory-address addr points to the next memory location

-Neural network
structure of a neuron

A neural network is a network of neurons with function f and input vector x=(x1, x2,...,xn) with weights
(w1, w2,...,wn) and the output y=f(w1 x1+ w2 x2.+...+ wn xn) . The weights are adapted in such a way that the
network of m neurons yields the output vector Y=(y1, y2,...,ym) with desired result.

The example addition 2+3 → 5 in a binary (values=(0, 1)) network is carried out by a recursive network with
weights wi=1, i.e. a binary adder circuit z=add(x+y) , one stage addi(xi, yi, oi) consists of a binary adder, which
produces the result bit zi, and a comparator(threshold θ=0) which produces the overflow oi for the net stage

x
i

yi

oi-1

+ z =(x +y+o)mod2i i i i-1

xi

yi

oi-1

>=0 o =(x+y +o)>=0
i i i i-1

5
2 Basics about Neural Networks
Mathematically speaking, a Neural Network (NN) is a network of units (neurons) with several inputs with
weights (real number 0<=xi<=1) and one output with a corresponding output function.
Let the input to a neural network be denoted by x, a real-valued (row) vector of arbitrary dimensionality or
length. As such, x is typically referred to as input, input vector, regressor and sometimes, pattern vector.
Typically, the length of vector x is said to be the number of inputs to the network. Let the network output be
denoted by y


, an approximation of the desired output y, also a real-valued vector having one or more

components, and the number of outputs from the network. Often data sets contain many input-output pairs.
Then x and y denote matrices with one input and one output vector on each row.
Generally, a neural network is a structure involving weighted interconnections among neurons, or units, which
are most often nonlinear scalar transformations, but which can also be linear. The figure below shows an
example of a one-hidden-layer neural network with three inputs, x = {x1, x2, x3} that, along with a unity bias
input, feed each of the two neurons comprising the hidden layer. The two outputs from this layer and a unity
bias are then fed into the single output layer neuron, yielding the scalar output, y


. The layer of neurons is called

hidden since its outputs are not directly seen in the data.

The output is given in the linear case by the following formula

y

 b2

i1

2

wi
2





bi
1

j1

3

wi,j
1

xj






 w1
2
w1,1

1
x1 w1,2

1
x2 w1,3

1
x3 b1

1
  w2

2
w2,1

1
x1 w2,2

1
x2 w2,3

1
x3 b2

1
  b2

or in general y

 g, x , where  is a real-valued vector whose components are the weights of the network,

and g( , x) is the activation function .
Upon assigning design parameters to a chosen network, thus specifying its structure g(·,·), the user can begin to
train it. The goal of training is to find values of the training parameters  so that, for any input x, the network
output y


is a good approximation of the desired output y. Training is carried out via suitable algorithms that tune

the parameters  so that input training data map well to corresponding desired outputs. These algorithms are
iterative in nature, starting at some initial value for the parameter vector  and incrementally updating it to
improve the performance of the network.
Neural networks are used mostly in 3 applications: functional approximation, time series (reproduction of
signals), classification (of patterns, e.g. letters or faces).
Apart from the training parameters  , there are hyperparameters h , which determine the structure (number of
nodes in layers, connection topology, activation function) and the training algorithm (adjusting weights and bias
from the forward or backward neighbour layer error).
The hyperparameters can be adapted to the training goal in evolutionary neural networks , e.g. by genetic
algorithms .

6
3 Perceptron
The simplest neural network is the perceptron [2], which contains a single input layer and an output node [1].
The training instance is of the form (,)X y , where 1(,...)dX x x contains d feature variables , 1(,...)dW w w

are the weights, and y ∈ {−1, +1} is the observed value of the output. The function
1

d

j j
j

W X w x b


  is

computed at the output node. The prediction value for y is :
1

ˆ ()
d

j j
j

y sign w x b


  , i.e. the sign of the output

value, with an additional bias b . The weight vector is updated as follows:
(,)

ˆ' ()
X y S

W W y y X


   , where

the summation runs over a stochastic subset of the training set S, and α is a scaling parameter. The perceptron
performs well in prediction of the output y only when S is separable by a hyperplane.

The modified weights are originally calculated from the minimization of the loss function 2

(,)

ˆ()
X y S

L y y


 

In order to achieve this, one uses the smoothed gradient of the loss function:
(,)

ˆ()
X y S

L y y X


  

Perceptron with bias

Perceptron and classification
Perceptron is a realization of the data separation problem on the basis of neural networks [7].
Let us consider two sets of n-dimensional vectors X1={x1i, i=1...n} X2={x2i, i=1...n} , which we want to
separate by a hyperplane H={x=(xi) , wt (x-b0)=0} with the direction vector w=(wi) and
the distance-from-origin vector b0 , in such a way that wt x+b>0 for X1 and wt x+b<0 for X2 , where b= wt b0 .
We can reformulate the problem
wt x+b=d , where d=sign(wt x+b) is the signature of x , d=+1 for 1x X , d=-1 for 2x X .

The problem is solvable, if there is such a hyperplane H, for which all vectors in X1 are on one side, and all
vectors in X2 on the other side of H : X1 and X2 are separable.
We re-formulate the problem as an optimization problem for the variable vector w=(wi) and a training set

{(,), 1... }k kT x d k N  of vectors xk and signatures dk :

constraints () 1t
k kd w x b  k=1...N

goal function
1

()
2

tw w w 

optimization in w : 0() ((),)w min w w   for w=w0

After introduction of Lagrange-multipliers α=(αi) for the conditions and the Lagrangian function as goal
function

1
(, ,) (() 1)

2
t t

k k k
k

J w b w w d w x b    
and imposing of extremum equations

(, ,)
0

J w b

w






7
(, ,)

0
J w b

b





we get the dual optimization problem for the variable vector α and the goal function

,

1
()

2
t

k k l k l k l
k k l

Q d d x x     

constraints 0k k
k

d  , 0k  k=1...N

optimization in α : 0() ((),)Q max Q   for α = α 0

In general, there will be vectors in X1 and X2 , which violate the respective condition (misclassification), so we

have to reformulate the problem in order to minimize misclassification () 1t
k k kd w x b   

with slack variable vector ξ=(ξk) , where ξk≥0 and misclassification occurs when ξk>1 .
The goal function becomes:

1
(,)

2
t

k
k

w w w C     , where C is a user-specified parameter

and the primary optimization problem for w and ξ becomes

constraints () 1t
k k kd w x b    k=1...N

optimization in w, ξ : 0 0(,) min((,); ,)w w w     for w=w0 ξ= ξ 0

The dual problems for α becomes with the goal function Q(α)

,

1
()

2
t

k k l k l k l
k k l

Q d d x x     

constraints 0k k
k

d  , 0 k C  k=1...N

optimization in α : 0() ((),)Q max Q   for α = α 0

8
4 Feedforward and RBF neural networks
Feedforward neural networks (FF networks) are the classical classification networks in many practical
applications [2]. They have a learning phase, in which their weights are optimized for a training set

{(,)}S X y of inputs 1(,...)dX x x and outputs y. In the second recognition phase, they sort input vectors X

which are not in S into corresponding pattern classes y, according to the training.
The figure below illustrates a multi-layer FF network with inputs 1,..., nx x and n outputs 1,..., ny y . Each arrow

in the figure symbolizes a parameter in the network. The network is divided into layers. The input layer consists
of just the inputs to the network. Then follows hidden layers, which consists of any number of neurons, or
hidden units placed in parallel. Each neuron performs a weighted summation of the inputs, which then passes a
nonlinear activation function σ, also called the neuron function.

A multi-layer feedforward network with several hidden layers and one output.

Mathematically the functionality of a hidden neuron is described by







j1

n

wjxj bj






where the weights {w1, ..., wn} are symbolized with the arrows feeding into the neuron.
The neurons in the hidden layer of the network in Figure are similar in structure to those of the perceptron,
with the exception that their activation functions can be any differential function. The output of this network is
given by

y  g, x  

i1

nh

wi
2






j1

n

wi,j
1

xj bj,i
1





 b
2

The nonlinrear output function is usually the sigmoid
Sigmoidx 

1

1 ex

Training the network means normally adjusting the weights taking into account the deviations from the output
wi1  wi  x

T i where i is the error vector, wi the weights vector and the learning rate

bi1  bi 
j1

N

ij

The learning rate  is normally chosen to be

 
Maxx  Minx

N

The initial values for wi are normally chosen at random from an appropriate interval. Therefore the resulting
weights can vary slightly after consecutive training sessions.

RBF networks differ from FF-networks in their use of bell-(Gauss)-functions and the distance neuron-input
(radius).
The figure below illustrates an RBF network with inputs x1 ,...,xn and output y


. The arrows in the figure

symbolize parameters in the network. The RBF network consists of one hidden layer of basis functions, or
neurons. At the input of each neuron, the distance between the neuron center and the input vector is calculated.
The output of the neuron is then formed by applying the basis function to this distance. The RBF network
output is formed by a weighted sum of the neuron outputs and the unity bias shown.

9

An RBF network with one output.

The RBF network is often complemented with a linear part. This corresponds to additional direct connections
from the inputs to the output neuron. Mathematically, the RBF network, including a linear part, produces an
output given by

y

 

g, x  
i1

nb

wi
2
ei

2xiwi
12

 wnb1
2

 1x1 ...  nxn

where nb is the number of neurons, each containing a basis function. The parameters of the RBF network

consist of the positions of the basis functions wi
1
, the inverse of the width of the basis functions i , the weights

in output sum wi
2

, and the parameters of the linear part 1,...,n . In most cases of function approximation, it
is advantageous to have the additional linear part but it can be excluded by using the options.

5 Algorithms in neural networks
Backpropagation in multilayer networks [JH] [9]
Backpropagation is an algorithm of weight adaption, which starts with the gradient of loss (error) function at
the output and proceeds layer by layer down to the input layer.
In each layer j the gradient of the output error function is used in respect to the weights of the step-actual
weight wj,ki : backpropagation is a global-minimization algorithm.
-forward propagation of inputs

1

N

k ki i k
i

u w x b


  is the net output with weíghts wki and bias bk and the input vector x


or including bias with xN+1=-1 wN+1,j=bj
1

1

N

k ki i
i

u w x






[9]

where the activation function for all layers is f(u) (usually sigmoid)

 
1

() 1 u
sigf u e

 

so in summary the output vector y


of each output unit is

10

k ki i
i

y f w x
 

  
 


and we use the error function= sum of squared deviations from the k target-output

 
21

ˆ
2

k k
k

E y y  where ˆ
ky is the target-output , yk is the actual output

Every layer j , except the output layer (j=n) feeds its output as the input to the next layer

1, ,j k j ky x 

-backpropagation of weights in output layer [JH]
We calculate the gradient in respect to the weights of the output layer j=n

ˆ() '()k k k i

ki

E
y y f u x

w


  


(index j=n dropped)

W approximate the change in the weight for output layer j between input i and the output k is using the error
gradient, where ε is the learning rate:

ki k i

ki

E
w x

w
 


   


with the delta-vector 


of the output layer

 ˆ'()k k k kf u y y   for the output layer

-backpropagation of weights in general layer j [JH]
We calculate the loss gradient in respect to the weights of the output layer j

,
,

, ,

ˆ() n k
k n k

j ki j ki

yE
y y

w w


  

 

Now we have to find an iterative formula for
1 1

,

,

j k

j k i

y

w




, we get

1

1

,

, ,

,

'()j k

j k j i kk

j k i

y
f u x D

w





, where

1kkD is the Kronecker-delta (=1 if k=k1 , =0 else)

,

, ,

,

'()j k

j k j ki

j i

y
f u w

x





with the iterative formula valid for any layer j

1

1 1 1 1

1 1 1 1 1 1 1

1,, , 1, ,

, , 1, 1,

1, , 1, , 1,

'() '()j kj k j k j i j k

ik j k j kk j k j i
ij k i j i j k i j k j k i

yy y y y
D f u w f u x

w x w x w



 

  

   
  

    


-the algorithm can be summarized [9]

initialize network weights w to random values
learning= true
while learning do
vector of gradients ∇E=0
foreach association from t=1 to t=T do
set input unit states xit=(t-th training vector)
get state of output units ykt

get delta term δkt for each output unit
use output delta terms to get hidden unit delta terms
use delta terms to get vector of weight gradients ∇Et

accumulate gradient ∇E←∇E+∇Et

end
get weight change ∆w=− ε ∇E
update weights w←w+ ∆w
if |∇E|≈0 then set learning=false
end
end

11

ADAM backpropagation [10, 11]
Adam is a variant of the backpropagation algorithm, that is designed specifically for training deep neural
networks. Adam uses a moving weighted average of the actual and the preceding value of the gradient gt and its
square gt.gt and calculates estimator values for both in the formula for the weight update.
In total, Adam achieves much better results than the simple gradient-backpropagation and also in general
outperforms its predecessor algorithm Stochastic Gradient Descent (SGD).
Adam uses in iteration t for the corrected gradient mt the moving weighted average of the gradient gt and
predecessor value mt-1

with fixed parameters β1 , β2 with default values of β1=0.9 and β2=0.999
The estimator values result from the summation of a geometric sum in powers of β1 , β2

With that, the weights update becomes:

, where the scaling parameter η is chosen 0.01...0.1  and 1  prevents the

denominator from becoming zero.
Adam has the following properties [10, 11]:
The actual step size taken by the Adam in each iteration is approximately bounded the scaling parameter η.
The step size of Adam update rule is invariant to the magnitude of the gradient, which is very helpful in areas
with small gradients.
The authors in [11] proved that Adam converges to the global minimum for convex goal functions.

Local backpropagation [JH]
Normal (global) backpropagation minimizes the weights of a layer in respect to the global error function of the
last (output) layer. In biological networks however, a layer reacts only to its neighbor next layer.
Therefore, in this case it is advisable to use a local variant of the backpropagation algorithm.
In order to apply the formula for kiw for every layer, one has to calculate the target values ˆ

iy of a layer from

the target values of the next layer.
-backpropagation of target values
The input values of the layer j are the output values of layer j-1
 

,1, j kj ky x 

so we minimize the error of the layer j :  
2

, ,

1
ˆ

2
j j k j k

k

E y y  in respect to the input ,j ix (and not the weights

,j kiw as before) in order to get the target values

with , , ,

,

ˆ() '()j

j k j k k j ki
kj i

E
y y f u w

x


  


 we have the gradient correction for  

,1, j kj ky x 

, , ,

,

j

j i j k j ki
kj i

E
x w

x
  


   




where , , ,ˆ() '()j k j k j k ky y f u  

so we get for the target value  1,j ky  in first approximation


, ,1, j k j kj ky x x   

-backpropagation of weights
We calculate the gradient in respect to the weights of the j layer

12

, , , ,

,

ˆ() '()j

j k j k j k j i

j ki

E
y y f u x

w


  


, where

, , ,ˆ() '()j k j k j k ky y f u  

The change in the weight for layer j between input i and the output k is using the error gradient, and where ε is
the learning rate is then

, , ,j ki j k j iw x  , where , 1,j k j kx y  is the input of the layer j (= output layer j-1)

Numerical local backpropagation [JH]
The formulas given above are valid for neural networks, which consists of consecutive vector-vector linear
layer with an output function. But realistic nn’s contain usually linear networks with multidimensional matrices
as input-output (e.g. 32x32x3 for color 32-pixel images) and pooling or convolutional layers, which transform
an image layer with a kernel integration. In this case, it is advisable to use numerical differentiation for the
gradient:

,

,

j

j i x

j i

E
x

x



  


where , , ,

, ,

() ()j j j i j i j j i

j i j i

E E x x E x

x x

   


 

,

,

j

j ki w

j ki

E
w

w



  


where , ,

,

() ()j j j ki w j j ki

j ki w

E E w E w

w





  




with x-correction ,j ix for input x , and w-correction ,j kiw for weights w

so in vector notation for gradient
,

: j

x j

j i i

E
E

x

 
     

we get for the original x-vector jx


and the corrected

x-vector ' jx


, where , , ,' j i j i j ix x x   , the approximate relation

 
2

() (')j jx x j j jE E x E x   
 

The algorithm parameters can be adapted for each step so as to reach the approximate corrected energy

(') 0jjE x 


 
2

()jj

x

x j

E x

E
 





, or uniformly for the total energy () ()jj
j

E x E x


2

()
x

x

E x

E
 



and accordingly for w

2

()
w

w

E w

E
 



13
6 Calculations with FF neural networks
Fitting measurement data with feed-forward (FF) neural networks
In the case described here [3], there are 4 components dissolved in water: fv (fructose sugar), sv (vinegar acid),
av (ethylic alcohol), gv (glucose sugar) and 3 measured values: KW (cold elasticity), WW (hot elasticity), LW
(conductivity). The fitting problems amounts to fitting 3 functions of 4 variables simultaneously.
A feedforward network sigmoid type with 10 neurons, 20 training iterations was used.
The result was as follows (RMSE= root of mean squares):

0 2 4 6 8 10 12 14 16 18 20
Iterations

2

4

6

8

10

12

RMSE

mean relative error= 3.6%, the build-up of weights is depicted below:

5 10 15 20

-750

-500

-250

250

500

750

Parameter values versus iterations

The fit delivers an analytic nonlinear expression, which can be used like a normal fit function (a better-behaved
approximation than polynomials, because the functions involved are bounded in the positive region):

286.434
11.9247

10.07303370.727227av0.750932fv0.850967gv0.917168sv


22.711

10.4160580.74665av0.319244fv0.590845gv0.131603sv


,,,

Calculating component concentrations from measurement values
In practice this means the inversion of the measurement: calculate the 4 components from the 3 measured
values. For the problem to be generally solvable, one has to reduce the number of components to 3: then one
has 3 (nonlinear) equations for 3 variables. In the above example, one can e.g. introduce the variables sugar
zv=fv+gv, acid sgv=sv, alcohol av and reformulate the measurement data accordingly (3 values with 3
components). Then one simply exchanges the input and output: one considers the components as functions of
the measurement values and fits the resulting data with a neural network.
First, an approximation with a small feedforward network was tried: 5 neurons, 20 training iterations, 5 trial
sessions:

0 2 4 6 8 10 12 14 16 18 20
Iterations

1

2

3

4

5

6
RMSE

best trial mean relative error= 5.7% (=0.057)

14
all trial mean relative errors: {0.0957865,0.0746036,0.0686699,0.0570039,0.15861}
complete output expression:

314.847
11.0818

1 0.3800530.836313Kw0.31142LW1.77111WW


15.8137

1 0.5491931.16958Kw0.640356LW0.0676694WW


561.065

1 0.1954740.00313543Kw0.000489175LW0.00205271WW


2.25662

1 0.8416381.93511Kw0.522092LW0.000177889WW


3.50584

1 0.09540560.713352Kw0.384836LW0.914091WW
,

1.46466
0.0903424

1  0.3800530.836313Kw0.31142LW1.77111WW


3.15354

1  0.5491931.16958Kw0.640356LW0.0676694WW


1.5761

1 0.1954740.00313543Kw0.000489175LW0.00205271WW


0.71649

1 0.8416381.93511Kw0.522092LW0.000177889WW


1.0765

1 0.09540560.713352Kw0.384836LW0.914091WW
,

390.774
5.59672

1 0.3800530.836313Kw0.31142LW1.77111WW


2.42352

1 0.5491931.16958Kw0.640356LW0.0676694WW


715.846

1 0.1954740.00313543Kw0.000489175LW0.00205271WW


2.73643

1 0.8416381.93511Kw0.522092LW0.000177889WW


3.38759

1 0.09540560.713352Kw0.384836LW0.914091WW


The input start values are chosen at random, therefore the output, too, varies slightly: the better the
approximation (more neurons), the less error and output variation results. In the presented case of 5 neurons
only, the average mean error is 9.0%, its std (standard deviation) = 4.0%, so the trial relative deviation is
44% (!).

A much better accuracy can be reached with 20 neurons, 30 training iterations, 5 trial sessions:

0 5 10 15 20 25 30
Iterations

0

1

2

3

4

5

6

RMSE

5 10 15 20 25 30

-40000

-20000

20000

40000

Parameter values versus iterations

best trial mean relative error= 1.4% (=0.014)
all trial mean relative errors: {0.0195788,0.0142116,0.0197352,0.0201921,0.0162758}
average mean error= 1.80% , std = 0.262%, so rel. deviation=14.6% .
The output formula consists of 20 exponentials (for 20 neurons) for each of the 3 functions, as compared to 5 in
the 5 neurons case (see above).

Training Feedforward NN’s with backpropagation
In a multi-layer NN the gradient of a composition function is computed using the backpropagation algorithm. It
contains two main phases, referred to as the forward and backward phases, respectively. The forward phase is
required to compute the output values and the local derivatives at various nodes, and the backward phase is
required to accumulate the products of these local values over all paths from the node to the output:
1.Forward phase: In this phase, the inputs for a training instance are fed into the neural network. This results in
a forward cascade of computations across the layers, using the current set of weights. The final predicted output
can be compared to that of the training instance and the derivative of the loss function with respect to the output
is computed.
2.Backward phase: The main goal of the backward phase is to learn the gradient of the loss function with
respect to the different weights by using the chain rule of differential calculus. Consider a sequence of hidden
units h1, h2, …, hk followed by output o, with respect to which the loss function L is computed. Furthermore,

assume that the weight of the connection from hidden unit hr to hr+1 is .
Then, in the case that a single path exists from h1 to o, one can derive the gradient of the loss function with
respect to any of these edge weights using the chain rule:

15
In general, there are several paths, so we sum over them:

16
7 Hopfield networks
Hopfield networks [1, 9] are the classical memory networks, which are able to find a similar memorized pattern
when an incomplete or distorted pattern is presented as input.
A Hopfield network is an undirected network, with K units and connections of the form (i, j) . Each connection
(i, j) is undirected, and is associated with a symmetric weight wij=wji . Each neuron i is associated with a binary
state { 1, 1}iy    (in biological terms: firing or non-firing). The associated energy E of a particular

combination of states 1(,...)Ky y y of the Hopfield network can be defined as follows:

,
i i ij i j

i i j

E b y w y y    resp.
,

ij i j
i j

E w y y  with “included” bias

with weights wij and biases bi . The Hopfield network is a state machine, where at time points t=1,2,... the state
values are updated dependending on the weights and the state vector at thre previous time point with the update
rule

,

1 0

1

ij j i
j j ì

i

if w y b
y

otherwise



  


 
 


resp. ,

1 0

1

ij j
j j ì

i

if w y
y

otherwise



 


 
 


with “included” bias

Hopfield networks are trained on a training set 1{(,..,), 1... }i iKX x x i T  of T test vectors, where the weights

wij are set in such a way, that they minimize the energy near the test vectors values for the neurons, the network
is said to ”memorize” the test data. Afterwards, starting with some initial state vector, the network converges to
one of the memorized vectors.

The states of K units can be represented as a column vector

, where a state is +1 or -1
we wish the network to memorize a particular set of values

for T training vectors, we sum the weights for each training vector (learning rule)

the energy of the Hopfield network is

where the energy contributed by unit Ui is

17

The defining property of the Hopfield net energy function E(y) is that its value always decreases (or stays the
same) as the network evolves, i.e. the network converges by learning to a stable state: the final state is a
minimum of E .

The algorithm of the Hopfield network can be summarized

18
8 Restricted Boltzmann machines (RBM)
A RBM is a Boltzmann machine, which has no connections within a layer, so the layers can be stacked [9].
The RBM’s are generative stack neural networks , after a learning phase with defined input and output, they
generate “similar” output from an untrained input (e.g. Van-Gogh-style image from a photograph of New York
skyline).
A RBM is essentially a Hopfield net, but with the addition of hidden layers.
The output of a unit (state) is binary: yi={0, 1}, generated by a threshold from probability P.

A restricted Boltzmann machine (RBM) with four input units and four hidden units.

The output of a unit is  j jy P u where
1

1

K

j ij i
i

u w y




 with the sigmoid probability function P=P(y)

(probabílity of y) with  
1/

1 ju T
P e


  , where T is the temperature.

The RBM has the same energy function as the Hopfield network

Learning in a Boltzmann machine comprises two nested loops.
On each iteration of the inner loop, the correlation between unit states yi and yj is measured under two
conditions:
1 when visible units are set to training vectors (wake phase), which yields the expectation value E[yiyj]Wake;
2 when visible units are random (sleep phase), which yields the expectation value E[yiyj]Sleep.
On each iteration of the outer loop, the weights are adjusted so that after learning E[yiyj]Wake≈E[yiyj]Sleep.

In wake phase, the correlation between the i visible unit’s state and the j hidden unit’s state is

1

1 T

i j it jtwake
t

E v P v P
T 

    
In sleep phase, the correlation between the i visible unit’s state and the j hidden unit’s state is estimated as

1

1 T

i j it jtsleep
t

E PP P P
T 

    
The RBM learning rule with the learning rate ε is:

 ij i j i jwake sleep
w E v P E PP         

The training algorithm of RBM is

Training RBM
foreach iteration do
foreach training vector xt t= 1 to T do
sleep phase: get data vi , Pj for input= xt

set each visible unit state vit = xit

use vt to calculate input ujt to each hidden unit

19
calculate probability Pjt

record wake products vitPjt between connected units
wake phase:get data vi , Pj for random input
initially use hidden state probabilities Pjt from above
foreach k= 1 to N samples do
sample binary hidden states hkt

use hkt to calculate input ukit to each visible unit
probability that i visible unit is on is Pkit

sample binary visible states vkt , use to calculate input ukit to each hidden unit
probability that j hidden unit is on is Pkjt

record sleep products Pkit Pkjt between connected units
end
end

calculate i j wake
E v P  

calculate i j sleep
E PP  

update weights with ijw

end

In the recall phase RBM “recalls” the learned contents from distorted input

Recall RBM
set vector input=x

generate output vector y with  j jy P u

calculate binary output ˆ (,)j jy step y  with the threshold θ

20
9 Variational Autoencoders
Variational autoencoders are basically data-compressors [9].
A variational autoencoder consists of two modules, an encoder and a decoder. The data are a set of T
images{x}={x1,...,xT}. The encoder maps each input xt to a layer of 2J encoder output units, which represent the
values of a small number J of latent variables (e.g. orientation of a face image, expression of a face). Each
latent variable is represented by the mean μ and standard deviation σ of a Gaussian distribution PG(x, μ, σ) of
the corresponding random variable x .
Thus, each encoder output state consists of two J-element vectors μ= (μ1,...,μJ) and σ= (σ1,...,σJ).
A variational autoencoder consists of two modules, an encoder and a decoder, with a “bottleneck” of latent
variables in between.

Simplified schematic of a variational autoencoder, which comprises an encoder and a decoder. The encoder
maps each input image x to several output unit states (z1 and z2), which can be assumed to be equalto the latent
variables for now. The outputs of the encoder act as inputs to the decoder, which produces an approximation x′

of the input image.
The assessed deviation between x and x’ is for the encoder

and for the decoder

, n=2
where Nz is the number of samples, Σx is a n×n-covariance matrix of x, and det(Σx) is its determinant.

Variational autoencoders training algorithm is as follows

21

22
10 Unsupervised Networks
Unsupervised networks are structure-finding networks [1]. They can, for instance, be used to find clusters of
data points, or to find a one-dimensional relation in the data.
An unsupervised network consists of a number of codebook vectors, which constitute cluster centers. The
codebook vectors are of the same dimension as the input space, and their components are the parameters of the
unsupervised network. The codebook vectors are called the neurons of the unsupervised network.
An unsupervised network is trained by adapting the locations of the codebook vectors so that the mean
Euclidian distance between each data point and its closest codebook vector is minimized.
In the training algorithm, the codebook vectors are adapted in a recursive manner, considering one data sample
in each update. There are two basic algorithms:
Standard competitive learning rule
Given N data vectors {xk}, k=1,...,N, in each update, the following steps are performed.
1. k is chosen randomly from a uniform integer distribution between 1 and N, where the whole range is

considered each time this step is executed.
2. The codebook vector closest to xk, called the winning neuron, or the winning codebook vector, is

identified. Its index is indicated by i.
3. The winning codebook vector is changed according to

wi=wi+SL[n] * (xk-wi)
where n is the iteration number.

4. The described steps are repeated N times in each iteration.
where SL[n] is the StepLength function

SOM or Kohonen’s algorithm
Given N data vectors {xk}, k=1,...N, in each update, the following steps are performed.
1. k is chosen randomly from a uniform integer distribution between 1 and N, where the whole range is

considered each time this step is executed.
2. The codebook vector closest to xk, called the winning neuron, or the winning codebook vector, is

identified. Its index is indicated by {iwin,jwin}.
3. All the codebook vectors are changed according to

where n is the iteration number and {c1,c2} is the center position of the neighbor matrix,
4. The described steps are repeated N times in each iteration.

where SL[n] is the StepLength function and NS[n] is the NeighborStrength function, NM is the neighbor matrix
dictating which codebook vectors are neighbors. The neighbor matrix NM should have its minimum at its center
element {c1,c2}, so that the winning neuron update is most pronounced. One iteration of the stochastic
algorithm (that is, n incremented by 1), consists of N updates via equation in step 3.

23
11 Recurrent networks
Recurrent networks are used for learning of time series, e.g. for next word prediction in text analysis [2]. They
are used mainly for text analysis and word prediction, and can even “compose”, i.e. generate texts according to
the learning samples like Shakespearean speech.
Elman network

An Elman network consists of ni input units 1(,...)
inX x x , and no output units 1(,...)

onY y y . There is a

moving frame of p units, which are mapped onto p hidden layer units 1(,...)pH h h in every time step.

The algorithm for Elman network is

where σ is the activation function, usually sigmoid=1/(1+Exp(-x)) , Wh and Uh is a (p,ni) matrix, bh and by are
bias vectors, Wy is a (p,no) matrix .
Jordan network
is an alternative model, where in addition the output vector instead of the hidden layer is mapped onto the
hidden layer

24
12 Convolutional networks
Convolutional neural networks (CNN [1]) work on grid-structured inputs with strong spatial dependencies in
local regions of the grid, i.e. they are image-classification networks. The name is derived from their function of
filtering, which is in most cases a mathematical discrete convolution (i.e. discrete integration with a local kernel
function like a gaussian kernel). Taking 3 basic colors into account, the 2-dimensional filter kernel becomes 3-
dimensional with depth=3 .
The CNN contains several hidden layers, each performing a certain function e.g. edge detection, where the

convolutional operations for a kernel with parameters from the layer q to the layer (q+1) are
defined as follows:

where we have Lq positions along the height and Bq positions along the width of the image.
The general structure of a CNN is:

The detection operations are divided into basic filters e.g. a rectangle detection runs as follows:

The weights in the filter are adapted by backpropagation via convolution of loss (=deviation) function gradient
from layer (q+1) to layer q .

25
13 Reinforcement learning in neural networks (REL)
In reinforcement learning, we have an agent (neural network being in a particular state si at a discrete time
point ti) that interacts with the environment with the use of actions [1, 9]. For example, the player is the agent
in a video game, and moving the joystick in a certain direction in a video game is an action. These actions
change the environment and lead to a new state si+1 . The environment gives the agent rewards, depending on
how well the goals of the learning application are being met. A particular episode of this process is a finite
sequence of actions, states, and rewards:

Examples are video games, robot locomotion, self-driving cars.

An agent uses the current state of the environment to generate an action at, which changes the state of the
environment tost+1 and usually elicits an immediate reward Rt+1.

The state transitions st→st+1 happen with probabilities , which depend only on st and st+1 , not on
the previous states: such a random process is called Markov process.
A Markov decision process is defined in terms of the state s, the action a, the reward r, and the transition

probabilities , the underlying process in reinforcement learning is assumed to be a Markov process.

Important quantities
•An episode is a complete sequence of states (like a game of chess).
•The policy π specifies the probability of choosing each of a set of possible actions{at}, given the current state
st at time t.
•The reward signal Rt+1 is an immediate reward for the current state st, which usually results from the action just
taken.
•The return Gt is the cumulative total reward acquired from time t+ 1 to the end of an episode.
•The state-value function v(st) is the expected return based on the current state st, that is, the return Gt averaged
over all instances of the state st. The estimate of v(st) is V(st).
•The action-value function qπ(st,at) defines the expected return based on the current state st and the action at

specified by the policy π. The estimate of qπ(st,at) is Q(st,at).
•The eligibility trace is a scalar parameter that indicates how often each state has been visited. Each state has its
own eligibility trace, which is given a boost every time that state is visited, before decaying exponentially
thereafter at a rate determined by the trace-decay parameter λ.
•Temporal discounting means that immediate rewards are valued more than future rewards; it is determined by
the parameter γ, which affects the state-value and action-value functions.
•The temporal difference error or TD error is the difference between the value v(st) and the estimated value
V(st)

The most important equation in REL is the Bellmann equation

The Bellman equation says that the value v(st) of the state st equals the expected sum of the immediate reward
Rt+1 and the discounted return γvπ(st+1) of the next state st+1.
A good learning algorithm for REL is Q-learning

26

Here greedy policy means choosing an action so that it maximizes the estimated return

ε-greedy policy adds a random-action with probability ε .

27

Part 2 Applications of neural networks

1 Implementation on GPU hardware: Nvidia CUDA
([3] test CUDA)
Currently, the most advanced parallel hardware implementation of neural networks runs on parallel graphic
processors (GPU) of graphic interface hardware. In this area, CUDA-C-interface of Nvidia is a de-facto
standard.
In the following, the theory of Nvidia GPU hardware and its actual implementation in C and in Mathematica is
described.
In the context of neural networks, the GPU’s can be considered as an array of (32 bit) floating-point arithmetic
units with dedicated shared(fast) memory, constant memory and normal (slow) memory.. For example, the
graphic card Nvidia Quadro RTX4000 contains 2034 GPU-kernels located in 36 multiprocessors (64 kernels
per multiprocessor), shared (fast) memory 49kB/block, constant memory 65kB/block, total normal GPU
memory 8.5GB.
The GPU-subroutines are programmed in C++ via Nvidia C-compiler and CUDA-library and the code is
executed via drivers in parallel on GPU-processes (threads). Subroutine parameters are vectors or matrices (2-
dimensional vectors) or matrix-vectors (3-dimensional vectors) passes as pointers (addresses), and the vector
length, and the result is stored in another vector pointer. The length is subdivided into one- or two- or three-
dimensional blocks (of threads), with maximum number of 1024 threads in a block. For instance, a subroutine
for vector(4096) with matrix(4096x4096) multiplication could have block length Lb=1024, i.e. 1024 threads
work in parallel on
32-chunks of the vector and 32x32-chunks of the matrix. The threads execute the code asynchronously, and in
the code only the current block index (blkIdx.x, blkIdx.y) and the current thread index
(threadIdx.x, threadIdx.y) within the block are known at execution time, so intermediate storage is a dedicated
vector, normally in external global memory, which is accessed via those indices.

Kernel architecture [13]: every multiprocessor manages 64 kernels with dedicated shared memory

Memory architecture [13]

28

Software architecture [13]: the NVCC-compiler generates CPU-code for the host CPU, and PTX-code for the
GPU-hardware

Neural network applications in this paper are programmed and executed under Mathematica, so the high-level
code generation and execution runs via Mathematica C-compiler and the Mathematica CUDA-Link [14], where
the Mathematica allocates and frees the GPU-memory, copies the CPU-host parameter memory to the GPU
memory and back, and in-between passes control to the NVCC-compiler and CUDA-drivers

whereas the low-level code generation and execution runs via NVCC-compiler and CUDA-drivers

Mathematica uses built-in CUDA image-processing subroutines like CUDAImageConvolve (image filtering)

------------------------> [14]

and supports parallel GPU-processing for ADAM-backpropagation FF-networks via built-in functions
NetChain, NetGraph for network generation
NetTrain, NetMeasurement for network training and testing
which gives an acceleration factor of 30 compared to pure CPU-processing [3].

An example of Mathematica-based user-programmed CUDA-code is vector-matrix product [3]
matDotV(invector.matrix -> outvector)

29

with the actual call dotMatV(invector A, matrix B, outvector C1, length listSize=4096) :

In the above example, two-dimensional parallel threads of 32x32=1024 threads are used, where threadIdx.x and
threadIdx.y are the thread indices within a 2-dimensionsl block, where blkIdx.x and blkIdx.y are the block
indices, and the external array cache is used for intermediate memory storage. The results for block-wise scalar
product are stored in consecutive locations in the result vector C1 .

However, since at every subroutine call the (huge) CPU-host parameter memory is copied to GPU memory and
back, there is no significant acceleration for neural network applications when using this subroutine. In order to
use the whole power of parallel GPU-hardware, one has to program the entire network algorithm in CUDA-C
code, which is a time-consuming task. Therefore, in this paper the user-programmed local backpropagation was
executed in parallel CPU-code with N=12 CPU kernels, whereas the built-in global propagation was executed
using the CUDA-link with N=1024 GPU kernels, which is much faster.

2 Implementation of backpropagation FF networks with CIFAR data
([3] Example network classification 2-out CIFAR-100 different NN's)

Training database CIFAR-100
CIFAR-100 is a standard training database for neural networks. It is an rgb 32x32 pixels image database with
50000 records. It is used in the following as training and as test database. A dataset consists of an image,
“Label” i.e. index of category (e.g. “food containers”) (ic=1…20), and “SubLabel” i.e. index of sub-category
(e.g. “bottle”) (is=1…5) .
The networks are trained on CIFAR for Label and SubLabel simultaneously.

Example: a random sample of 5 elements

30

Types of networks
In a performance test with global ADAM-backpropagation , we use 4 types of networks with varying number of
layers: convolution, recurrent, linear-pooling and simple linear.
Layers are positioned in series in groups consisting of one or two number-reducing layers and one element-wise
function (in general a Ramp or a Sigmoid function). Number-reducing means that the number of output nodes
should be in general smaller than the number of the input nodes, so that the final output matches the vector of
20 Label indices, resp. 100 SubLabel indices.

Convolution-pool network consists of convolution layers (moving average with a specifiable kernel), grouped
with pooling layers (moving mean or max over a specified sub-block), and element-wise output function (here
Ramp, i.e. positive(x)), in this example with 2 convolution layers and one output linear layer.

31
Recurrent-pool network consists of (recurrent) GatedRecurrentLayer’s, grouped with pooling and linear
layers, and element-wise output function (here Ramp),), in this example with 2 recurrent layers and one output
linear layer.

32
Linear-pool network consists of linear layers, grouped with pooling layers, and element-wise output function
(here Ramp), in this example with 2 linear layers and one output linear layer.

33
Linear (simple) network consists of linear layers, and element-wise output function (here Ramp), in this
example with 6 linear layers and one output linear layer.

34
Training and recognition rate
Now, 9 networks are trained on CIFAR-100 and their recognition rate on the same database is tested:
2-convolpool, 3-convolpool, 2-recurpool, 3-recurpool, 2-linpool, 3-linpool, 4-linpool, 6-linear, 7-linear .
The training diagramm for 2-linpool looks like that:

The training lasted 1.6 min on GPU’s (and approximately 30 min on CPU), it ran in 10 iterations (rounds), and
the final loss=error-vector-norm (sqrt(square sum)) was reduced from total 8. to total 4.82 , 2.9 for Label,
1.91 for SubLabel .
The recognition rate on the database was as follows:

One could assume that the recognition rate increases with the number of layers, but this is not the case in this
application. From the results, we can draw the following conclusions:
-convolution nets have the best performance, and the optimal number of layers is 2
-recurrent nets have a sharp peak at 3 layers (afterward, the rate decreases), where the performance is excellent
-linear and lin-pool networks have the best performance at 2 layers, and the performance decreases slowly until
it reaches the untrained-value at 7 layers: (1/20, 1/100) is the recognition expectation value without training.

Structure-gradient algorithm
[3] gradient-optimized network linnet3p
An interesting question is, whether one can change the structure, i.e. the dimensional node numbers of a layer,
so that the total loss decreases, and eventually find the optimal structure in this sense.
We applied the gradient-method in respect to the dimensional node numbers, reducing the loss in each step.
Basically, the method works, but progress is slow, and so is the change of the dimensional node numbers.
Here are the results of this structure-gradient algorithm for the net 3-lin-pool:

35

progress of the structure-gradient algorithm

and corresponding structures in the format
lin1, lin2, lin3, pool1, pool2, pool3 :

There is a slow increase in dimensional node numbers in the first linear layer, elsewhere there is only
fluctuation, the total loss was reduced from 6.46 to 6.07 in 13 steps, which is very inefficient.

36
3 Local backpropagation in serial FF networks
[3] manual backprop goal-output minimization linlayer-output parallel subclass linnet2 Ident,
ytk4={0,1},adapted indiv. eta, symbolic derivative backprop parallel in datasets , 10 training-drecords

In this chapter, the subject is the implementation of the local backpropagation algorithm described in chapter
1.5.

The local backpropagation minimizes the output deviation  
2

, ,

1
ˆ

2
j j k j k

k

E y y  of the layer-j output ,j iy

from the target vector ,ˆ j iy by adaptation of the weights ,j kiw , but it does this for every layer , not only for the

last, as the global propagation does. In order to do this, it back-propagates the target values ,ˆ j iy , not only the

weights, to the layer below. Therefore the local backpropagation is a truly layer-iterative algorithm, where each
step uses only local data from the next higher layer, and not from the last layer, like the global propagation
does. In addition, the ADAM variant is used for the weight correction kiw , like in the case of global

backpropagation in the preceding chapter.

The network and the variables
The initial network netls2N0 is a 2-lin-pool network with 2 linear-pool layers and the preliminary output linear
layer (1) plus the sub-label linear layer (2) and the sub-label output function (3), the input is the pixel data
array of the image data, and the final output is the sub-label index is , the label index of CIFAR-100 is omitted
in this implementation. The network weights are initialized at start with gaussian random values in interval [-1,
+1] .

The overall structure of the network netls2N0 is

with the linear layers (1), (4), (8), (10), pooling layers (3), (6), output functions identity (2), (5), (9), output
function (11) is prob(is) , where is=1,…100 . The function gives ideally prob=1 for the correct sub-label index
and prob=0 for the all others, in a trained network the “answer” of the network to the input data is the highest
prob in the Output-vector.
We have 4 lin-layers here, so we have also 4 weight arrays with corresponding 4 bias-vectors and dimensions:
(wwlinlayer1, bwlinlayer1), dim(wwlinlayer1)={15680,3072}

37
(wwlinlayer2, bwlinlayer2), dim(wwlinlayer2)= {5000,3920}
(wwlinlayer3, bwlinlayer3), dim(wwlinlayer3)= {500,1250}
(wwlinlayer4, bwlinlayer4), dim(wwlinlayer4)= {100,500}
where (wwlinlayer4, bwlinlayer4) corresponds to the last linear layer (10), and the target vector of the final
vector Output is the final vector of the current training data-record n: ytk4fA[n] , where
ytk4fA[n, i]=1 for i=is[n], ytk4fA[n, i]=0 for other i (here is[n] is the sub-label index in the training data-
record n, which is to be trained).
So in total ytk4fA is an array of dimension (Ntrain , 100), where Ntrain is the number of training data records.
In the first run we set Ntrain=10: we use at first 10 data records for training, which is very small compared to
the total of Ntrain(CIFAR)=50000.

The algorithm
The algorithm runs in 4 steps
-step1
(wwlinlayer4, bwlinlayer4) is modified by ADAM-gradient to minimize the deviation of Output from the
target vector ytk4fA[n] for all data records n=1…Ntrain
The target vector ytk3fA for the lin-layer3 (8) is calculated ..
-step2
(wwlinlayer3, bwlinlayer3) is modified by ADAM-gradient to minimize the deviation of output-function(9)
from the target vector ytk3fA[n] for all data records n=1…Ntrain
The target vector ytk2fA for the lin-layer2 (4) is calculated .
-step3
(wwlinlayer2, bwlinlayer2) is modified by ADAM-gradient to minimize the deviation of output-function(5)
from the target vector ytk2fA[n] for all data records n=1…Ntrain
The target vector ytk1fA for the lin-layer1 (1) is calculated .
-step4
(wwlinlayer1, bwlinlayer1) is modified by ADAM-gradient to minimize the deviation of output-function(2)
from the target vector ytk1fA[n] for all data records n=1…Ntrain
There is no target vector calculation, as lin-layer1 is the innermost layer.

Timing and memory
The algorithm is run with 12 kernels in parallel, the total time for 4 steps is about 8000s, and the memory
requirement 23GB/kernel, because of the huge size of the weight arrays: wwlinlayer2 in step3 has 19.6 106

elements, wwlinlayer1 in step4 has 48.16 106 elements. The execution time increases linearly in Ntrain, but the
increase in memory is a little below linear: mem=190GB/kernel for Ntrain=100.

The timing with 12 parallel kernels and memory is given in the following table
step time (s) memory (GB/kernel)
1 5, 2.4/loop
2 47, 18/loop
3 1700, 600/loop
4 6300, 1450/loop 23

Results
The most important result is of course the recognition rate of the resulting network netls2D0 on the trained
dataset trainingDatarD and on whole database CIFAR
mtrained(netls2D0, trainingDatarD)= 0.9
mtrained(netls2D0,CIFAR)= 0.02
For comparison, we train the initial (random weights) network netls2N0 with the normal (global) ADAM-
backpropagation on the trained dataset to the network trained(netls2N0, trainingDatarD) and on CIFAR to the
network trained(netls2N0, CIFAR) and for the original network netls2N0 and measure the recognition rate
mtrained(trained(netls2N0, trainingDatarD), trainingDatarD)=0.4
mtrained(trained(netls2N0, trainingDatarD), CIFAR)=0.0111
mtrained(trained(netls2N0, CIFAR), trainingDatarD)=0.1
mtrained(trained(netls2N0, CIFAR), CIFAR)=0.11902

38
mtrained(netls2N0, trainingDatarD)=0.1
mtrained(netls2N0, CIFAR)=0.013

We have the following conclusions
-the recognition rate mtrained on the trained dataset is 0.9 for the local backprop, and only 0.4 for the global
backprop, so the local backprop is better by the factor 2.25 .
-on the whole database CIFAR the local backprop achieves mtrained=0.02 and the global backprop achieves
mtrained=0.0111 , where the random rate is of course 1/100=0.01, so also here the local backprop is better by
the factor almost 2.
-the CIFAR-trained global-prop network trained(netls2N0, CIFAR) achieves on CIFAR a moderate rate of
mtrained=0.11902 , where the random rate is 1/10=0.1

Values and histograms of the weights
For the local-backprop result network netls2D0 we get the following values for the weights and the target
vectors
name max min mean mean(abs)
wwlinlayer4 0.334528 -0.40843 -0.000285342 0.0404414
wwlinlayer3 0.148006 -0.135242 0.0000531141 0.0225776
wwlinlayer2 0.0866414 -0.0841181 -3.65985*10-6 0.0127423
wwlinlayer1 0.101447 -0.101818 1.97439*10-6 0.0143918
bwlinlayer4 2.00836 -0.17522 0.0862463 0.280228
bwlinlayer3 0.0703841 -0.085721 -0.00117297 0.0204053
bwlinlayer2 0.0645067 -0.0715514 -0.0000113144 0.0127455
bwlinlayer1 0.077166 -0.0706738 -3.06135*10-6 0.0153956
ytk4fA 1. 0 0.01 0.01
ytk3fA 1.01385 -1.2154 -0.0136743 0.254063
ytk2fA 0.614329 -0.643174 -0.00230229 0.103551
ytk1fA 1.25602 -1.28643 0.00256237 0.193817

From this table result some interesting properties
-weights and biases 1…3 have values typically around +-0.01, for wwlinlayer4 it is +-0.04, for bwlinlayer4 it
is +-0.3
-target vectors 1…3 value range is 0-symmetric, it is approximately [-1,1] for target vector 1 and 3, it is
approximately [-0.6,0.6] for target vector 2

39
Finally, we can compare value histograms of the weights for the networks
trained(netls2N0, CIFAR) , trained(netls2N0, trainingDatarD) , netls2D0 , netls2N0

wwlinlayer1

0.15 0.1 0.05 0 0.05 0.1 0.15
0

10000

20000

30000

40000

0.05 0 0.05 0.1
0

5000

10000

15000

20000

25000

0.05 0 0.05 0.1
0

5000

10000

15000

20000

25000

0.05 0 0.05 0.1
0

5000

10000

15000

20000

25000

wwlinlayer4

0.15 0.1 0.05 0 0.05
0

200

400

600

800

1000

1200

1400

0.1 0 0.1
0

200

400

600

800

0.2 0 0.2
0

200

400

600

800

1000

0.1 0 0.1
0

200

400

600

800

We see that
-the value distribution for the CIFAR-trained network is much more “slim” than the others: the training
concentrates the weights more around zero

40
-for the wwlinlayer4 we observe the same for the second diagram glob-backprop trained(netls2N0,
trainingDatarD) and loc-backprop trained netls2D0 : the latter is “slimmer” , apparently better trained.

The comparison of the histograms for the target vectors ytk4fA, ytk3fA, ytk2fA, ytk1fA of the local-backprop
result network netls2D0 is:

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1 0.5 0 0.5 1
0

50

100

150

0.6 0.4 0.2 0 0.2 0.4 0.6
0

200

400

600

800

1 0.5 0 0.5 1
0

500

1000

1500

Here we can see, as mentioned above, that the target vector values are 0-symmetric. Furthermore, the
distribution for target2 and target1 is much “slimmer” than for target3. The target4 (outermost) values are 0 and
1, so the histogram is trivial.

Results for different sizes of training data sets
For Ntrain=10 we have the recognition rates stated above
mtrained(netls2D0, trainingDatarD)= 0.9
mtrained(netls2D0,CIFAR)= 0.02
mtrained(trained(netls2N0, trainingDatarD), trainingDatarD)=0.4
mtrained(trained(netls2N0, trainingDatarD), CIFAR)=0.0111
mtrained(trained(netls2N0, CIFAR), trainingDatarD)=0.1
mtrained(trained(netls2N0, CIFAR), CIFAR)=0.11902
mtrained(netls2N0, trainingDatarD)=0.1
mtrained(netls2N0, CIFAR)=0.013

For Ntrain=50 we get
mtrained(netls2D0, trainingDatarD)= 0.18
mtrained(netls2D0,CIFAR)= 0.01526
mtrained(trained(netls2N0, trainingDatarD), trainingDatarD)=0.06
mtrained(trained(netls2N0, trainingDatarD), CIFAR)=0.01
mtrained(trained(netls2N0, CIFAR), trainingDatarD)=0.14
mtrained(trained(netls2N0, CIFAR), CIFAR)=0.194
mtrained(netls2N0, trainingDatarD)=0.
mtrained(netls2N0, CIFAR)=0.0079

41

For Ntrain=100 we get
mtrained(netls2D0, trainingDatarD)= 0.07
mtrained(netls2D0,CIFAR)= 0.01206
mtrained(trained(netls2N0, trainingDatarD), trainingDatarD)=0.11
mtrained(trained(netls2N0, trainingDatarD), CIFAR)=0.0157
mtrained(trained(netls2N0, CIFAR), trainingDatarD)=0.13
mtrained(trained(netls2N0, CIFAR), CIFAR)=0.1308
mtrained(netls2N0, trainingDatarD)=0.1
mtrained(netls2N0, CIFAR)=0.00974

We conclude from these data that
-the results for local backprop deteriorate with larger training dataset trainingDatarD, it may be the
consequence of decreasing convergence speed, as the target vector arrays become ever larger
-the rate for the CIFAR-trained glob-backprop network is approximately equal on CIFAR and training data set,
as expected
-the rate for the CIFAR-trained glob-backprop network on CIFAR is around 0.13 , largely independent of the
test dataset
-the rate for the glob-backprop network trained on trainingDatarD also decreases at first with the size of the
training dataset

42
4 Local backpropagation in parallel FF networks
[3] manual backprop goal-output minimization linlayer-output parallel subclass linnet2 Ident,
ytk4={0,1},adapted indiv. eta, symbolic derivative backprop parallel in datasets , parallel NN
Ndata==5x(Ntrain==10 training-drecords)

Calculation of local backprop networks in Mathematica without GPU support is, even with parallel CPU
kernels, time consuming, and, more importantly, has increasing memory requirements.
Therefore it is important to find a viable alternative, and such an alternative is to train an array of serial
networks on small datasets, and to connect their outputs in parallel. This happens also in the brain during
higher-level perception processing [15].
Based on this, we present here parallel network with 5 trained networks
parallel(trained(netls2N0 , trainingDatarDA[i]), i=1…Ndata) ,
where Ndata=5 , so we have in total a network trained on 5x10=50 datasets , combined from 5 networks
connected with Maximum-function:

…

Timing and memory
The algorithm is run with 12 kernels in parallel, the total time for 1 dataset is about 800s, for 5 datasets
time=4100s, and the memory requirement 12GB/kernel.

Results
The recognition rate of the resulting parallel network netls2D0 on the trained dataset trainingDatarD and on
whole database CIFAR is
mtrained(netls2D0, trainingDatarD)= 0.2
mtrained(netls2D0,CIFAR)= 0.03
The recognition rate of the global-backprop-trained network trained(netls2N0, trainingDatarD) and the
network trained(netls2N0, CIFAR) , and for the original network netls2N0 is
mtrained(trained(netls2N0, trainingDatarD), trainingDatarD)=0.06
mtrained(trained(netls2N0, trainingDatarD), CIFAR)=0.012
mtrained(trained(netls2N0, CIFAR), trainingDatarD)=0.08
mtrained(trained(netls2N0, CIFAR), CIFAR)=0.104
mtrained(netls2N0, trainingDatarD)=0.02
mtrained(netls2N0, CIFAR)=0.018
whereas the random recognition rate on 50 data records is 1/50=0.02

in comparison, with serial network on Ntrain=50 we get (see above)
mtrained(netls2D0, trainingDatarD)= 0.18
mtrained(netls2D0,CIFAR)= 0.01526
mtrained(trained(netls2N0, trainingDatarD), trainingDatarD)=0.06
mtrained(trained(netls2N0, trainingDatarD), CIFAR)=0.01
mtrained(trained(netls2N0, CIFAR), trainingDatarD)=0.14
mtrained(trained(netls2N0, CIFAR), CIFAR)=0.194
mtrained(netls2N0, trainingDatarD)=0.
mtrained(netls2N0, CIFAR)=0.0079

We have the following conclusions
-the recognition rate mtrained on the trained dataset is 0.2 for the local backprop, and 0.06 for the global
backprop, so the local backprop is better by the factor 3.3
-the recognition rate mtrained for the serial network with 50 data records are very similar:
on the trained dataset it is 0.18 for the local backprop, and 0.06 for the global backprop

Max

43
-on the whole database CIFAR the local backprop achieves mtrained=0.03 and the global backprop achieves
mtrained=0.02
-the CIFAR-trained global-prop network trained(netls2N0, CIFAR) achieves on CIFAR mtrained=0.104 and
on trainingDatarD it achieves 0.08, which is better than netls2D0 by the factor 1.3

5 Evolving mutation cross-optimized networks
[3] mutation-cross-optimized evolving network classification 2-out CIFAR-100

We present here several scenarios of evolving population of structure-changing networks. The changes proceed
by modification of (integer) layer structure parameters,
LinearLayer[{20,28,28}] has three output dimensions as 3 structure parameters: the output is 20x28x28 array
PoolingLayer[{2,2},{2,2}] has the kernel size 2x2 and the kernel offset 2x2 as 4 structure parameters
ConvolutionLayer[{20,5,5,0,0}] has the output dimension3 (= number of output matrices) and the kernel size
5x5 and kernel padding size 0x0 as 5 structure parameters

In every generation there is a fixed number of agents Nagent=15 , from which the best Nbest=5 are selected by
recognition rate after training on CIFAR.
These best agent mutate randomly by ±1 or ±2 in structure parameters with the probability Nmut=2 (from
Nagent) and then enter the new generation by genetic “crossing” pairwise agent A[k] with agent A[k-1], A[k-
2], …
(layer(A[k],1), layer(A[k-1],2), layer(A[k],3), layer(A[k-1],4),…)
The genetic crossing of 5 agents produces 10 “crossed” agents c(A[5],A[4]), c(A[5],A[3]), …, c(A[2],A[1])
In this way the new generation with again 15 agents is produced
G[n+1]={best agents= A[1],…A[5]} & {crossed agents= c(A[5],A[4]), c(A[5],A[3]), …, c(A[2],A[1]) }

Scenario1:
[3] scenario1: 9x3-lin-pool, 6x2-lin-pool, mut=2/15
Generation G1={9xLin2, 6xLin3}
Lin2 = 2 linear-pool layers
Lin3= 3 linear-pool layers
Mean recognition rates for the 2 layers are

weighted mean wmean=0.0366
and the results for the first 5 generations:

The maximum rate achieved is about 0.2, and the mean best rate (of the 5 best) is stagnating after the third
generation (5 best ≈0.17), the mean rate has not increased significantly (mean(G1)= 0.0877867, mean(G5)=
0.09256)

Scenario2:
[3] scenario2: 9x3-lin-pool, 6x(2-lin-pool-pool), mut=2/15
Generation G1={3xLin3, 2xLin2poolpool}
Lin3=3 linear-pool layers
Lin2poolpool= 2 linear-pool-pool layers
Mean recognition rates for the 2 layers are

weighted mean wmean= 0.0938
and the results for the first 5 generations

44

The maximum rate achieved is about 0.2, and the mean performance is better after 5 generations (11 best
≈0.18, mean(G1)= 0.106446, mean(G5)= 0.159907)

Scenario3:
[3] scenario3: 7x(3-lin-pool), 7x(2-lin-pool), 1x(2-conv-pool) , mut=2/15
Generation G1={7xLin3, 7xLin2, 1xConv2}
Lin2 = 2 linear-pool layers
Lin3= 3 linear-pool layers
Conv2= 2convolution-pool layers
Mean recognition rates for the 3 layers are

weighted mean wmean=0.18779
and the results for the first 5 generations

The maximum rate achieved is about 0.9, and the mean performance is much better after 5 generations
(mean(G1)= 0.336187, mean(G5)= 0.832053), the best 10 achieve about 0.9

Scenario4:
[3] scenario4: 15x(3-lin-pool)
Generation G1={15xLin3}
Lin3= 3 linear-pool layers
Mean recognition rates for the 1 layer are

and the results for the first 5 generations

The final maximum rate achieved is about 0.1, and the mean performance has decreased (mean(G1)= 0.10628,
mean(G5)= 0.07288), performance has deteriorated after 5 generations

We draw the following (preliminary) conclusions
-the final mean rate depends on the weighted mean (wmean) of the initial rates
-there is a threshold for wmean, where the mean rate increases until all agents have approximately the same,
larger rate
-the threshold is approximately wmean/wmin=3, where wmin=minimum initial rate

45
References
[1] C. Aggarwal, Neural Networks and Deep Learning, Springer 2018
[2] J.A. Freeman, Simulating neural networks with Mathematica, Addison-Wesley 1994
[3] Mathematica-notebook NeuralNetworks.nb, www.janhelm-works.de
[4] R. Zemel et al., Neural networks, lecture University of Toronto, 2016
[5] S. Lucci, Artificial Neural Networks Lecture Notes, Brooklyn University, 2008
[6] www.geeksforgeeks.org
[7] S. Haykin, Neural networks and learning machines, Pearson Education, 2009
[8] M. Maynard, Neural networks, Maynard 2020
[9] J. Stone, Artificial Intelligence Engines, Sebtel Press, 2020
[10] Vitaly Bushaev, towardsdatascience.com, 10/2018
[11] D. P. Kingma, Jimmy Lei Ba., Adam : A method for stochastic optimization, arXiv:1412.6980, 2014
[12] CUDA C++ programing guide, Nvidia, 2021
[13] Getting started with CUDA, Nvidia, 2008
[14] CUDA programming within Mathematica, Wolfram, 2011
[15] M. Sigman S. Dehaene, Brain mechanisms of serial and parallel processing, J. of Neuroscience, 07/2008

