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Abstract

This paper presents

in Partl the basic theory of Neural Networks, and based on the standard (global) backpropagation a gorithm, it
introduces the local backpropagation algorithm: alayer-recurrent gradient algorithm with layer-specific
target-vector.

Furthermorein Part2 , it presents cal culated application examples for global backpropagation networks, local
backpropagation networks and evolving cross-mutated networks.
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Part 1 Neural networks theory

1 Models of computation

-Functional computation

Here, operations on primitive functions are used [5].
Set of primitive functions M=

Zero-function Z(x)=0 VzeN
Successor function S(x)=x+1, eg. (1)=2

Projection function of alist  Un(X1, X2, X3, ... Xi, .. Xn) = Xi @, UZ5(X1.X0.X3)=X2
Operations composition f12(x)=f1(f2(x)) , minimization u(X1.X2.X3,...,Xn)=Min(X1.X2.X3,...,Xn)

Example: addition of two numbers, m and n, by the function f(m,n).
where f(x,0) = x , (X,y+1) = S(f(x,y)
e.g. 3+2=1(3,2)=5(S(f(3,0))=5

-Turing machine

The Turing machine consists of atape serving as the interna memory of the machine, of unlimited size, and a
read/write head which moves aong the tape. The Turing machine is described by the state, output and
direction functions. The input on the tape is a sequence of values (0, 1, x), operation symbols (c), and blanks
(B)

We can write (state, input) —(state, write, {L, R, N}) where L,R,N mean Left, Right and No movement,
respectively.

The example [6], the addition 2+3 in the unary format (i.e. anumber nisrepresented by n zeros, + is
represented by c¢) is performed by the operation

Input2+3 : 00c000

Output 5: 00000

and the corresponding Turing machine is described by the diagram

0,0/R 0,0/R 0,0/L

0,0/L

step-1: Convert 0 into X and goto step-2. If symbol is*“c” then convert it into blank(B), move right and goto

step-2: Keep ignoring 0's and move towards right. Ignore “c”, move right and goto step-3.

step-3: Keep ignoring 0's and move towards right. Convert a blank(B) into O, move left and goto step-4.
step-4: Keep ignoring 0's and move towards left. Ignore “c”, move left and goto step-3.

step-5: Keep ignoring 0's and move towards left. Ignore an X, move left and goto step-1.

step-6: End.
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-Céllular automaton
A two-dimensional cellular automaton is described by the following diagram [5]

_Acell
mmw
i
HEE--
""""""""" T Its eight neighbors
| , _
[ - Two-Dimensional grid
L BN e
[ am " Random Pattern of Cells

It is comprised of atwo-dimensional grid of cells. Each cell can bein one of two states, on or off (dead or
alive). Cells may transition from one state to the other, and become on or off, based on a set of rules.
Example: Conway’s Game of Life

Rules of the Game of Life

Let N be the number of neighborsof agiven cell. If N=0or 1, cell diesIf N =2, the cell maintains its current
state (status quo)If N = 3, the cell becomes alive If N =4,5,6,7 or 8, the cell dies.

e.g. transition

—

The example 2+3 — 5 is calculated by the Conway-CA in two steps, where the number n is represented by a
(edge-contiguous) cell with n elements.

1T

where theinput (initial first state) is represented by the vertical 2-cell and avertical 3-cell in touch at a corner

and the output (=third state) is a (contiguous) 5-cell

-von Neumann computer

Control bus

|
] Address bus
5 L 3

A von-Neumann-computer consists of CPU (processing unit), memory (containing opcode and data), input-
and output-unit, they connected by control-bus (opcode), data-bus(data) and address-bus (memory address of
current opcode).

The example addition 2+3 — 5 is schematically performed by the sequence

addr=0 /l addressisinitialized
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input= +23 / the next program instruction is read

input — memory(addr=0) // and written into memory

CPU memory(addr=0)) — 5 /I CPU fetches the instruction opcode(datal, data2) performs instruction
output=5 /l and outputs result

addr = addr+1 Il address is counted up

At the end memory-address addr points to the next memory location

-Neural network
structure of aneuron

flw iz +wox, + . +w,x )

A neural network is a network of neurons with function f and input vector x=(xy, X,...,Xn) With weights
(W1, Wa,...,Wp) and the output y=f(wy Xi+ Wa Xo.+...+ Wy X,) . The weights are adapted in such away that the
network of m neurons yields the output vector Y=y, Ya,...,ym) With desired result.

The example addition 2+3 — 5 in a binary (values=(0, 1) ) network is carried out by a recursive network with
weightsw;=1, i.e. abinary adder circuit z=add( x+y) , one stage addi(X;, yi, 0;) consists of abinary adder, which
produces the result bit z;, and a comparator(threshold 6=0) which produces the overflow o; for the net stage

Yi 0=(x+y,+0_,)>=0
Oiy

X

Yi z=(x+y+0,,)mod2
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2 Basics about Neural Networks

Mathematically speaking, a Neural Network (NN) is anetwork of units (neurons) with several inputs with
weights (real number 0<=x;<=1) and one output with a corresponding output function.

Let the input to a neural network be denoted by x, areal-valued (row) vector of arbitrary dimensionality or
length. As such, x istypically referred to asinput, input vector, regressor and sometimes, pattern vector.
Typicaly, the length of vector x is said to be the number of inputs to the network. Let the network output be
denoted by ¥, an approximation of the desired output y, also area-valued vector having one or more
components, and the number of outputs from the network. Often data sets contain many input-output pairs.
Then x and y denote matrices with one input and one output vector on each row.

Generally, aneura network is a structure involving weighted interconnections among neurons, or units, which
are most often nonlinear scalar transformations, but which can also be linear. The figure below shows an
example of aone-hidden-layer neura network with three inputs, x = { X1, X2, X3} that, along with a unity bias
input, feed each of the two neurons comprising the hidden layer. The two outputs from this layer and a unity
bias are then fed into the single output layer neuron, yielding the scalar output, 5. The layer of neuronsis called
hidden since its outputs are not directly seen in the data

1

1
SN
Xy I
KSEEG/

The output is given in the linear case by the following formula

2 ( 3 )

9:b2 %v\F bt >vqlx

+|:1 Ol\ | +J'=1 J J/l
:V\&o(V\&’1X1+V\&’2X2+V\&’3X3+b%)+V\éo(\AiZL’1X1+V\;ZL’2X2+V\%’3X3+b12')+b2

oringeneral ¥=9( X) wheref isareal-valued vector whose components are the weights of the network,
and g(¢, x) isthe activation function .

Upon assigning design parameters to a chosen network, thus specifying its structure g(-,-), the user can begin to
trainit. The goal of training isto find values of the training parameters § so that, for any input x, the network
output ¥ is agood approximation of the desired output y. Training is carried out via suitable algorithms that tune
the parameters 6 so that input training data map well to corresponding desired outputs. These algorithms are
iterative in nature, starting at some initial value for the parameter vector 8 and incrementally updating it to
improve the performance of the network.

Neura networks are used mostly in 3 applications. functional approximation, time series (reproduction of
signals), classification (of patterns, e.g. letters or faces).

Apart from the training parameters 6 , there are hyperparameters 6y, , which determine the structure (number of
nodesin layers, connection topology, activation function) and the training algorithm (adjusting weights and bias
from the forward or backward neighbour layer error).

The hyperparameters can be adapted to the training goal in evolutionary neural networks, e.g. by genetic
algorithms..
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3 Perceptron
The simplest neural network is the perceptron [2], which contains a single input layer and an output node [1].

Thetraining instance is of the form (X, y), where X =(Xx,...Xx,) containsd feature variables, W = (w,,...w,)

d
aretheweights, and y € {—1, +1} isthe observed value of the output. The function W« X = ZWj X;+bis
j=1

oy

d
computed at the output node. The prediction valueforyis: y= sign(z w;X; +b), i.e. the sign of the output
j=1

value, with an additional bias b . The weight vector isupdated asfollows: W'=W + Z a(y—9y)X ,where

(X.y)es
the summation runs over a stochastic subset of the training set S and a is a scaling parameter. The perceptron
performs well in prediction of the output y only when Sis separable by a hyperplane.
The modified weights are originally calculated from the minimization of the loss function L = z (y-9)°

(X,y)eS

In order to achieve this, one uses the smoothed gradient of the loss function: VL = Z (y=-y)X
(X.y)es

INPUT NODES

OUTPUT NODE

D—

Perceptron with bias

Per ceptron and classification

Perceptron is a realization of the data separation problem on the basis of neural networks [7].

Let us consider two sets of n-dimensional vectors X;={xa;, i=1...n} X,={Xy;, i=1...n} , which we want to
separate by a hyperplane H={x=(x;) , W' (x-bg)=0} with the direction vector w=(w;) and

the distance-from-origin vector by , in such away that w' x+b>0 for X; and w' x+b<0 for X, , where b=w'by .
We can reformulate the problem

w' x+b=d , where d=sign(w' x+b) isthe signature of x , d=+1for xe X,, d=-1for xe X, .

The problem is solvable, if thereis such ahyperplane H, for which all vectorsin X, are on one side, and al
vectorsin X, on the other side of H : X; and X, are separable.

We re-formul ate the problem as an optimization problem for the variable vector w=(w;) and atraining set
T ={(x.,d,),k=1...N} of vectors x and signatures dy :

constraints d, (w'x, +b)>1 k=1..N
goal function d(w) = %vvtw

optimizationinw : ®(w,) = min(d(w),w) for w=wy
After introduction of Lagrange-multipliers o=(a;) for the conditions and the Lagrangian function as goal
function

I(w,b,a) = %W‘w— S (W, +b) 1)
k
and imposing of extremum equations

oJ(w,b,a) 0
ow
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oJ(w,b,a)
ob

we get the dual optimization problem for the variable vector a and the goal function

1 "
Qo) = Zak _Ezakaldkdlxk X
k K

constraints » ¢, d,=0, 20 k=1..N
k

0

optimization in o : Q(a,) = max(Q(«a),a) fora =ayg

In general, there will be vectorsin X; and X, , which violate the respective condition (misclassification), so we
have to reformulate the problem in order to minimize misclassification d, (W'x, +b) >1-¢&,

with slack variable vector E=(&x) , where >0 and misclassification occurs when &>1 .
The goal function becomes:

Dd(w, &) = %W‘w+ szﬁk , Where C is a user-specified parameter
k

and the primary optimization problem for w and § becomes
constraints d, (W'x, +b) >1-¢&, k=1..N
optimization in w, & : ®(W,,&,) = min(®(w,&);w,&) for w=wp &= &g

The dual problems for o becomes with the goal function Q(a)
1
Qo) = Zak _Ezakaldkdlxktxl
k kil
constraints » o, d,=0, 0< ¢, <C k=1..N
k

optimization in o : Q(e,) = max(Q(e), ) fora =ag
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4 Feedforward and RBF neural networks

Feedforward neural networks (FF networks) are the classical classification networks in many practical
applications[2]. They have alearning phase, in which their weights are optimized for atraining set
S={(X,y)} of inputs X =(x,,...X;) and outputsy. In the second recognition phase, they sort input vectors X

which are not in Sinto corresponding pattern classes y, according to the training.

The figure below illustrates a multi-layer FF network with inputs x,,..., X, and n outputs y;,..., y, . Each arrow
in the figure symbolizes a parameter in the network. The network is divided into layers. The input layer consists
of just the inputs to the network. Then follows hidden layers, which consists of any number of neurons, or
hidden units placed in parallel. Each neuron performs a weighted summation of the inputs, which then passes a
nonlinear activation function o, also called the neuron function.

1 1 1
% Y o Y G Y %
X2 . . - -
%, Yol JYYo b JY 6

A multi-layer feedforward network with several hidden layers and one output.

Mathematically the functionality of a hidden neuron is described by
n
JZWM+W}
U=l )

where the weights {W, ..., W} are symbolized with the arrows feeding into the neuron.

The neurons in the hidden layer of the network in Figure are similar in structure to those of the perceptron,
with the exception that their activation functions can be any differential function. The output of this network is
given by

i=1 =t
L 1
. . . . . S gmoidX] =
The nonlinrear output function o is usualy the sigmoid 1rex
Training the network means normally adjusting the weights taking into account the deviations from the output
W.a=W+nX & where €i istheerror vector, W the weights vector and ) the learning rate
N
biia=bi +n ) &[]
i
Thelearning rate n is normally chosen to be
_ (Mx[x] -Mnx])
N

Theinitial valuesfor W are normally chosen at random from an appropriate interval. Therefore the resulting
weights can vary dlightly after consecutive training sessions.

RBF networks differ from FF-networks in their use of bell-(Gauss)-functions and the distance neuron-input
(radius).

The figure below illustrates an RBF network with inputs %.,...,* and output ¥. The arrows in the figure
symbolize parameters in the network. The RBF network consists of one hidden layer of basis functions, or
neurons. At the input of each neuron, the distance between the neuron center and the input vector is calculated.
The output of the neuron is then formed by applying the basis function to this distance. The RBF network
output isformed by a weighted sum of the neuron outputs and the unity bias shown.
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An RBF network with one output.

The RBF network is often complemented with alinear part. This corresponds to additional direct connections
from the inputs to the output neuron. Mathematically, the RBF network, including alinear part, produces an
output given by

y (o) =

nb . 2
:ZV\FeﬂZ(XIM‘l) +V\f:,b+l+><1x1+... +Xn Xn
=1

whereny is tHe number of neurons, each containing a basis function. The parameters of the RBF network
consist of the positions of the basis functions w , the inverse of the width of the basis functions 4, the weights

in output sum W , and the parameters of the linear part x1,....xn . In most cases of function approximation, it
is advantageous to have the additional linear part but it can be excluded by using the options.

5 Algorithmsin neural networks

Backpropagation in multilayer networks [JH] [9]

Backpropagation is an algorithm of weight adaption, which starts with the gradient of loss (error) function at
the output and proceeds layer by layer down to the input layer.

In each layer | the gradient of the output error function is used in respect to the weights of the step-actual
weight w;j i : backpropagation is a global-minimization algorithm.

-forward propagation of inputs

N -
U, = Zwki X —b, isthe net output with weights wy; and bias by and the input vector x
i=1
or including bias with Xn+1=-1 Wy+1,=b;
N+1

U, = szi)ﬁ
i=1

Input Hidden Output
layer layer layer

1‘1)—)- Z

rg——hzz

Bias unit Bias unit

[9]

where the activation function for all layersisf(u) (usualy sigmoid)
fo(U) =(1+€")
so in summary the output vector y of each output unit is
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Ye=f (Zwkixij
and we use the error function= sum of squared deviations from the k target-output
E= %Z(yk - yk)2 where ¥, isthetarget-output , Yk isthe actual output
k
Every layer | , except the output layer (j=n) feedsits output as the input to the next layer
Yiak = Xk
-backpropagation of weights in output layer [JH]
We calculate the gradient in respect to the weights of the output layer j=n
OE . , . .
o B %) T(u)x (index j=n dropped)
ki
W approximate the change in the weight for output layer j between input i and the output k is using the error

gradient, where ¢ is the learning rate:

AW, =—¢ 8_E =0, %

ki
with the delta-vector 5 of the output layer
8= f'(u) (9 —Yi) fortheoutput layer
-backpropagation of weightsin general layer | [JH]
We calculate the loss gradient in respect to the weights of the output layer |
aE ayn,k

=—(Y = Yni)
aWj,ki ‘ ‘ aWj,ki

. . . oy
Now we have to find an iterative formula for N , we get
jr K

%: f'(u;) X;; Dy, » Where D,, isthe Kronecker-delta (=1 if k=k; , =0 else)
jki
Zyj"‘ = f'(u,, ) W,,; with theiterative formula valid for any layer |
" AL

j

8yj' K 8)/]- K ayj—]_- oy k ay'—1k
L * D, =L =% — fY(u )w. .. f'(u X. ..
8W Z axj’i aWj,l'klil ik, axj’kl aWj,lyklil ( j,k) j KKy ( ]—l,kl) -1y

jLkip
-the algorithm can be summarized [9]

initialize network weights w to random values
learning= true

while learning do

vector of gradients VE=0

foreach association fromt=1tot=T do

set input unit states xit=(t-th training vector)

get state of output units ykt

get delta term okt for each output unit

use output deltaterms to get hidden unit deltaterms
use deltatermsto get vector of weight gradients VEt
accumulate gradient VE«—VE+VEt

end

get weight change Aw=— ¢ VE

update weights w«—w+ Aw

if VE|=0 then set learning=false

end

end
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ADAM backpropagation [10, 11]
Adam isavariant of the backpropagation algorithm, that is designed specifically for training deep neural
networks. Adam uses a moving weighted average of the actual and the preceding value of the gradient g; and its
sguare g:.gr and calculates estimator values for both in the formulafor the weight update.
In total, Adam achieves much better results than the simple gradient-backpropagation and also in general
outperforms its predecessor agorithm Stochastic Gradient Descent (SGD).
Adam usesiniteration t for the corrected gradient m the moving weighted average of the gradient g; and
predecessor value m.;

mt:ﬁl mt71+(1 _/))1)91

Vt:ﬁzvrfl"'(]-_/jz)gtz
with fixed parameters 51 , 2> with default values of ,=0.9 and 5,=0.999
The estimator values result from the summation of a geometric sum in powers of 5 , 2
m, . 1%

V,=

-4 "T1-4

t

m,=

With that, the weights update becomes:

m,

W,=w,  — ——
t t—1 A

V+e

, Where the scaling parameter # ischosen n =0.01...0.1 and ¢ <<1 preventsthe

denominator from becoming zero.

Adam has the following properties [10, 11]:

The actual step size taken by the Adam in each iteration is approximately bounded the scaling parameter n.
The step size of Adam update ruleisinvariant to the magnitude of the gradient, which is very helpful in areas
with small gradients.

The authorsin [11] proved that Adam converges to the global minimum for convex goal functions.

L ocal backpropagation [JH]

Normal (global) backpropagation minimizes the weights of alayer in respect to the global error function of the
last (output) layer. In biological networks however, alayer reacts only to its neighbor next layer.

Therefore, inthis caseit is advisable to use alocal variant of the backpropagation algorithm.

In order to apply the formulafor Aw, for every layer, one hasto calculate the target values §, of alayer from

the target values of the next layer.
-backpropagation of target values
The input values of the layer j are the output values of layer j-1

yj—1,k = Xjk

so we minimize the error of the layer j : E; =%Z(yj,k —VYix )2 inrespect to theinput x;; (and not the weights
k

w;; asbefore) in order to get the target values
OE. N N
with ax—’ = —Z(ijk =¥, f'(u)w,,; wehavethe gradient correctionfor y,; ,, = X«
ji k
OE.
AXj; = _gyj: = gzk:gj,kwj,ki
where 5j,k = (yj,k - yj,k) f '(uk)
so we get for the target value y, ,, infirst approximation
Yk = X T AXj
-backpropagation of weights
We calculate the gradient in respect to the weights of the  layer
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OE. . !
aWj,Jki = _(yj,k - yj,k) f (uj,k)xj,i , where
5j,k = (yj,k - yj,k) f I(Uk)
The change in the weight for layer j between input i and the output k is using the error gradient, and where € is
the learning rate is then
Aw; ; =&6,,X;; ,Where X;, =y, ,, istheinput of thelayer j (= output layer j-1)

i

Numerical local backpropagation [JH]

The formulas given above are valid for neural networks, which consists of consecutive vector-vector linear
layer with an output function. But realistic nn’s contain usually linear networks with multidimensional matrices
as input-output (e.g. 32x32x3 for color 32-pixel images) and pooling or convolutional layers, which transform
an image layer with akernel integration. In this case, it is advisable to use numerical differentiation for the
gradient:

AX. = —¢ @ where OE, . E,(X;; +A%;;) = E;(x;;)

ji X axj j axj f ij ;
OE, OB, E; (W, +8,)—E (W,
AWj,ki = —gw J Wha'e ] ~ J ( j ki W) j ( j,kl)
8\Nj,ki aWj ki 5w

with x-correction  Ax;; forinput x , and w-correction Aw, ,; for weightsw

OX;

. . . OE. . -
S0 in vector notation for gradient V,E; = (—‘J we get for the original x-vector x; and the corrected
i

x-vector X'; , where X';; =X, +Ax
2 - —
&(V.E;) = E (x))~E,(X})
The algorithm parameters can be adapted for each step so as to reach the approximate corrected energy
Ej (x'j)=0
E;(x)) . .
&, = 5, or uniformly for the total energy E(X) = ZE]-(XJ’)
(V.E)) ]
E(X)
Iv.E[
and accordingly for w
E(w)
v.E[

;i » the approximate relation

X

"
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6 Calculationswith FF neural networks

Fitting measurement data with feed-forward (FF) neural networks

In the case described here [3], there are 4 components dissolved in water: fv (fructose sugar), sv (vinegar acid),
av (ethylic acohoal ), gv (glucose sugar) and 3 measured values: KW (cold el asticity), WW (hot éasticity), LW
(conductivity). The fitting problems amounts to fitting 3 functions of 4 variables simultaneoudly.

A feedforward network sigmoid type with 10 neurons, 20 training iterations was used.

The result was as follows (RM SE= root of mean squares):

RVEE

10

N b OO @

0 2 4 6 8 10 12 14 16 18 20
Iterati ons

mean relative error= 3.6%, the build-up of weightsis depicted below:

Paraneter values versus iterations

750 ¢

250 |

-250 F

-500 [

-750 |

Thefit delivers an analytic nonlinear expression, which can be used like a normal fit function (a better-behaved
approximation than polynomials, because the functions involved are bounded in the positive region ):

11. 9247 22.711
1 + 0. 0730337-0. 727227 av-+0. 750932 f v-0. 850967 gv-0. 917168 sv h 1 + 0. 416058-0. 74665 av-0. 319244 f v-0. 590845 gv-0. 131603 sv h

286. 434 -

Calculating component concentrations from measurement values
In practice this means the inversion of the measurement: calculate the 4 components from the 3 measured
values. For the problem to be generally solvable, one has to reduce the number of components to 3: then one
has 3 (nonlinear) equations for 3 variables. In the above example, one can e.g. introduce the variables sugar
zv=fv+gv, acid sgv=sv, alcohol av and reformulate the measurement data accordingly ( 3 valueswith 3
components). Then one simply exchanges the input and output: one considers the components as functions of
the measurement values and fits the resulting data with a neural network.
First, an approximation with a small feedforward network was tried: 5 neurons, 20 training iterations, 5 trial
sessions:

6

RVEE

5

4

0 2 4 6 8 10 12 14 16 18 20
Iterations

best trial mean relative error=5.7% (=0.057)
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all trial mean relative errors. {0.0957865,0.0746036,0.0686699,0.0570039,0.15861}
complete output expression:

11. 0818 15. 8137
{314' 84T+ 1 + 0. 380053+0. 836313 Kn-0. 31142 LWL 77111WV ] . ¢-0. 549193-1. 16958 Kin-0. 640356 LWO. 0676694 WV
561. 065 2. 25662 3. 50584
1 + o-0. 195474+0, O0B13543 K0, 000489175 LWO. 00206271 WV * 1 0. B41638-1. 93511 Kw-0. 522092 LWO. 000L77889WV 1 . o-0. 09540560, 713352 k-0, 384836 LW, SL4001 W'
1. 46466 - 0. 0903424 N 3. 15354 B
’ 1 4 0. 380053:0. 836313 Kw-0. 31142 LWL 77111WV 1 , 0. 549193-1. 16058 K-0. 640356 LWO. 0676694 \WV
1.5761 0. 71649 1. 0765
1 + o-0. 195474+0, 00313543 K0, 000489175 LWO. 00206271 WV~ { 0. 841638-1. 93511 kw-0. 522092 LWO. 000L77889WV * 1 o-0. 09540560, 713352 Kin-O. 384836 LW, 914001 W'
390. 774 - 5. 59672 N 2. 42352 B
’ 1 + 0. 380053:0. 836313 K-0. 31142 LWL 77111WV 1 , o-0. 549193-1. 16958 K-0. 640356 LWO. 0676694 WV

715. 846 2.73643 3. 38759
1 + e-0. 195474.0. 00313543 Kiv-0. 000489175 LWO. 00205271 W - 1 + 0. 841638-1. 93511 Kin-0. 522092 L WO. 000177889 VW - 1 + e-0. 0954056-0. 713352 Kin-0. 384836 LWO. 914091 VW}

The input start values are chosen at random, therefore the output, too, varies sightly: the better the

approximation (more neurons), the less error and output variation results. In the presented case of 5 neurons
only, the average mean error is 9.0%, its std (standard deviation) = 4.0%, so the trial relative deviation is
44% (1).

A much better accuracy can be reached with 20 neurons, 30 training iterations, 5 trial sessions:

RVE Paraneter values versus iterations

o B N W b~ O

0 5 10 15 20 25 30
Iterations

best trial mean relative error= 1.4% (=0.014)

all trial mean relative errors: {0.0195788,0.0142116,0.0197352,0.0201921,0.0162758}
average mean error= 1.80% , std = 0.262%, so rel. deviation=14.6% .

The output formula consists of 20 exponentials (for 20 neurons) for each of the 3 functions, as compared to 5 in
the 5 neurons case (see above).

Training Feedforward NN’swith backpropagation
In amulti-layer NN the gradient of a composition function is computed using the backpropagation algorithm. It
contains two main phases, referred to as the forward and backward phases, respectively. The forward phaseis
required to compute the output values and the local derivatives at various nodes, and the backward phase is
required to accumul ate the products of these local values over al paths from the node to the output:

1.Forward phase: In this phase, the inputs for atraining instance are fed into the neural network. Thisresultsin
aforward cascade of computations across the layers, using the current set of weights. The final predicted output
can be compared to that of the training instance and the derivative of the loss function with respect to the output
is computed.

2.Backward phase: The main goal of the backward phase isto learn the gradient of the loss function with
respect to the different weights by using the chain rule of differential calculus. Consider a sequence of hidden
units hy, 4y, ..., hy followed by output o, with respect to which the loss function L is computed. Furthermore,

. . . . W \
assume that the weight of the connection from hidden unit hy to hyep is 1)

Then, in the case that a single path exists from h; to 0, one can derive the gradient of the loss function with
respect to any of these edge weights using the chain rule:

oL AL |do i‘—'[ Ohis | Oh,
MWam,_, ) " do | ol oh; | Owam,_, n)

i=r

Vrel...k
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In general, there are severa paths, so we sum over them:

_ oL _ dL Z do ﬁ Ohis oh,
g,y Do o L 1 o, W, )

[hrhtpgy sty 0]EP i=r
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7 Hopfield networks

Hopfield networks [1, 9] are the classical memory networks, which are able to find a similar memorized pattern
when an incompl ete or distorted pattern is presented as input.

A Hopfield network is an undirected network, with K units and connections of the form (i, j) . Each connection
(i, j) isundirected, and is associated with a symmetric weight wi=w;; . Each neuroni is associated with a binary
state y, e{-1+1} (in biological terms: firing or non-firing). The associated energy E of a particular

combination of states y =(y,,...y,) of the Hopfield network can be defined as follows:
E=-> by -> wyy, resp. E=-> w,yy, with“included” bias
i i, i,]

with weights w;; and biases b . The Hopfield network is a state machine, where at time pointst=1,2,... the state
values are updated dependending on the weights and the state vector at thre previous time point with the update
rule

+1if D wy, +bh >0 +1if D wy, =0
y = im resp. . = i with“included” bias
—1 otherwise —1 otherwise

Hopfield networks are trained on atraining set X ={(X;,.., X, ),i =1...T} of T test vectors, where the weights

w; are set in such away, that they minimize the energy near the test vectors values for the neurons, the network
issaid to "memorize” the test data. Afterwards, starting with someinitial state vector, the network convergesto
one of the memorized vectors.

A Hopfield network with seven units and (7 x 7 — 7)/2 = 21
weights (bias unit and thresholds not shown).

The states of K units can be represented as a column vector

== i ... i " T. .
Y (W1, ) , Where astateis +1 or -1
we wish the network to memorize a particular set of values
x = (z,...,zx)T".

for T training vectors, we sum the weights for each training vector (learning rule)

T
Ui = EE Lt Lty
t=1

the energy of the Hopfield network is

K K
E(y) = —Z Z Wij YiYs-

i=1 j=i+1
where the energy contributed by unit Uiis
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K
Ei = —yi) wijy;
i—1

The defining property of the Hopfield net energy function E(y) is that its value always decreases (or stays the
same) as the network evolves, i.e. the network converges by learning to a stable state: the final stateisa
minimum of E .

The algorithm of the Hopfield network can be summarized

Hopfield Net: Learning

initialise network weights W to zero

foreach training vector fromt =1 to T do
find weights for the vector x,: Wp = x;x]
update weights W <« W + W,

end

Hopfield Net: Recall

Recall vector x from corrupted vector x’
set network state to y = x’
while stable= false do
set stable to true (can be reset in loop below)
reset the set of unit indices to J ={1,...,K}
foreach k from 1 to number of units K do
choose unit index j from J without replacement
find input to unit j: u; = Z%- Wi i
note current state as yaq = v
get state of unit j: y; = f(u;)
if Y # Yas then

set stable to false
end
end
end
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8 Restricted Boltzmann machines (RBM)

A RBM is aBoltzmann machine, which has no connections within alayer, so the layers can be stacked [9].
The RBM'’s are generative stack neural networks , after alearning phase with defined input and output, they
generate “similar” output from an untrained input (e.g. Van-Gogh-style image from a photograph of New Y ork
skyline).

A RBM isessentialy aHopfield net, but with the addition of hidden layers.

The output of aunit (state) is binary: yi={0, 1}, generated by a threshold from probability P.

p(h|v)

Visible layer v >§ ‘é: ;j :g f ’ Hidden layer h

9

p(v|h)

A restricted Boltzmann machine (RBM) with four input units and four hidden units.
K+1

The output of aunitis 'y, = P(uj) where u; = Zwijyi with the sigmoid probability function P=P(y)
i=1

—u; /T

(probability of y) with P =(1+e" )_1 , where T isthe temperature.
The RBM has the same energy function as the Hopfield network

K K
Ey) = - Z Z Wi YiYj-
=1 j=i+1
Learning in a Boltzmann machine comprises two nested loops.
On each iteration of the inner loop, the correlation between unit states yi and yj is measured under two
conditions:
1 when visible units are set to training vectors (wake phase), which yields the expectation value E[yiyj|wake;
2 when visible units are random (sleep phase), which yields the expectation value E[yiyj] Sesp.
On each iteration of the outer loop, the weights are adjusted so that after learning E[Yiyij]wake<~E[yiyi] Sesp.

In wake phase, the correlation between the i visible unit’s state and the | hidden unit’s state is

1 T
E[Vipj:lwake - ?;V'tplt

In sleep phase, thé correlation between the i visible unit’s state and the j hidden unit’s state is estimated as

1 T
E[PP | =T 2P
The RBM learning rule with the learning rate € is:

aw, =2(E[vR ], ~E[RR],,,)
Thetraining agorithm of RBM is

Training RBM

foreach iteration do

foreach training vector xt=1to T do

sleep phase: get datav; , P; for input= x;

set each visible unit state vi¢ = Xt

use v; to calculate input u;; to each hidden unit
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calculate probability P

record wake products vi;P;; between connected units
wake phase:get datav; , P; for random input

initially use hidden state probabilities P;; from above
foreach k=1to N samplesdo

sample binary hidden states hy;

use hy to calculate input uy; to each visible unit
probability that i visible unit is on is Py

sample binary visible states v , use to calculate input uy; to each hidden unit
probability that j hidden unit isonis Pyt

record sleep products Py Py;: between connected units
end

end

caculate E[vP, |
caculate E[RP, pr
update weights with Aw;
end

In the recall phase RBM “recals’ the learned contents from distorted input

Recall RBM
set vector input=x

generate output vector ywith y; =P(u,)
calculate binary output ¥, = step(y,,0) with the threshold 6



20

9 Variational Autoencoders

Variational autoencoders are basically data-compressors[9].

A variational autoencoder consists of two modules, an encoder and adecoder. Thedataareaset of T
images{ x} ={ xa,...,X1} . The encoder maps each input x; to a layer of 2J encoder output units, which represent the
values of asmall number J of latent variables (e.g. orientation of aface image, expression of aface). Each
latent variable is represented by the mean u and standard deviation o of a Gaussian distribution Pg(X, x, o) of
the corresponding random variable x .

Thus, each encoder output state consists of two J-element vectors u= (uy,...,;3) and o= (oy,...,03).

A variational autoencoder consists of two modules, an encoder and a decoder, with a“bottleneck” of latent
variablesin between.

Encoder Decoder
& network network &
o :—J vt ] EI e, :.— i." :
e R = ¥ - (e DR
e |%|
]
input = x : output =x'
1
Encoder Latent variables Decoder

Simplified schematic of avariational autoencoder, which comprises an encoder and a decoder. The encoder
maps each input image x to several output unit states (z; and z;), which can be assumed to be equalto the latent
variables for now. The outputs of the encoder act as inputs to the decoder, which produces an approximation x:
of the input image.

The assessed deviation between x and X’ isfor the encoder

.
L™ = % Z(l +logaj, — a3y — pij,),
and for the decoc;e_r 1
: 1 & .
S LB
¢ = —log((2m)" dct(Ex))lﬁ, =2

where N; is the number of samples, X is a nxn-covariance matrix of x, and det(Xy) is its determinant.

Variationa autoencoders training agorithm is as follows
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Training a Variational Autoencoder

set dimensionality J of latent space z
initialise weight vector w to random values
set number N, of z samples per input vector
set learning rate ¢

foreach learning iteration do

end

foreach batch of Tyaten training vectors {x} do
set L = 0 and gradient vector VL = 0
foreach training vector x; fromt =1 to Tyaien do

Encoder
given an input x;, the encoder outputs are g, and o
the encoder regularisation term is Ly"¢

Decoder
set Ldec =0
foreach sample i from 1 to N, do
obtain sample z;; from q(z|x;) = N(p,, o)
use z; to obtain decoder output x;,
reconstruction term: L
accumulate mean: L{e = L8 + Ldec/(2N,)
end
Estimate L, and its gradient
L= L;le{'. + Lfnc
Vi = VL™= 4+ VL&
accumulate L and gradient for this batch
L=L+L
VL=VL+ VL,

end
Update weights

w=w-+ecVL
end
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10 Unsupervised Networks
Unsupervised networks are structure-finding networks [1]. They can, for instance, be used to find clusters of
data points, or to find a one-dimensional relation in the data.
An unsupervised network consists of a number of codebook vectors, which constitute cluster centers. The
codebook vectors are of the same dimension as the input space, and their components are the parameters of the
unsupervised network. The codebook vectors are called the neurons of the unsupervised network.
An unsupervised network is trained by adapting the locations of the codebook vectors so that the mean
Euclidian distance between each data point and its closest codebook vector is minimized.
In the training algorithm, the codebook vectors are adapted in a recursive manner, considering one data sample
in each update. There are two basic agorithms:
Standard competitivelearning rule
Given N datavectors {x«}, k=1,...,N, in each update, the following steps are performed.

1. kischosen randomly from a uniform integer distribution between 1 and N, where the whole rangeis
considered each time this step is executed.

2. The codebook vector closest to X, called the winning neuron, or the winning codebook vector, is
identified. Itsindex isindicated by i.

3. The winning codebook vector is changed according to
Wi=w;+SL[Nn] * (Xk-W;)

where n isthe iteration number.

4. The described steps are repeated N times in each iteration.

where 3[n] isthe StepLength function

SOM or Kohonen’salgorithm

Given N datavectors{x«}, k=1,...N, in each update, the following steps are performed.

1. kischosen randomly from a uniform integer distribution between 1 and N, where the whole rangeis
considered each time this step is executed.

2. The codebook vector closest to X, called the winning neuron, or the winning codebook vector, is
identified. Itsindex isindicated by {iwin,jwin}-

3. All the codebook vectors are changed according to

Wi,q = Wi, g+ S5L[n] +Exp[-N5[n] »NM[[c1 - dlwin+ 1, Cz - Juin+ 3111 * (k- wyi, 4]

where n isthe iteration number and {c1,C,} isthe center position of the neighbor matrix,

4. The described steps are repeated N times in each iteration.
where S[n] isthe StepLength function and N n] is the NeighborStrength function, NM is the neighbor matrix
dictating which codebook vectors are neighbors. The neighbor matrix NM should have its minimum at its center
element {¢,;,c;}, so that the winning neuron update is most pronounced. One iteration of the stochastic
algorithm (that is, nincremented by 1), consists of N updates via equation in step 3.
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11 Recurrent networks

Recurrent networks are used for learning of time series, e.g. for next word prediction in text analysis[2]. They
are used mainly for text analysis and word prediction, and can even “compose’, i.e. generate texts according to
the learning samples like Shakespearean speech.

Elman network

An Elman network consists of n; input units X = (X;,...X, ) , ad no output units Y =(y;,...y, ) . Thereisa
moving frame of p units, which are mapped onto p hidden layer units H = (h,,...h,) in every time step.
The algorithm for EIman network is

hy = on(Whzy + Uphi—1 + by)

y = oy (Wyhs + by)
where ¢ is the activation function, usually sigmoid=21/(1+Exp(-X)) , W» and Uy isa (p,n;) matrix, b, and by are
bias vectors, W, is a (p,no) matrix .
Jordan network

is an aternative model, where in addition the output vector instead of the hidden layer is mapped onto the
hidden layer

hi = on(Whzy + Upyi-1 + b)
yt — a'y(wuh: + bf;‘)
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12 Convolutional networks
Convolutiona neura networks (CNN [1]) work on grid-structured inputs with strong spatial dependenciesin
local regions of the grid, i.e. they are image-classification networks. The name is derived from their function of
filtering, which isin most cases a mathematical discrete convolution (i.e. discrete integration with alocal kernel
function like a gaussian kernel). Taking 3 basic colors into account, the 2-dimensional filter kernel becomes 3-
dimensional with depth=3 .

The CNN contains several hidden layers, each performing a certain function e.g. edge detection, where the

F xF_ xd

q

convolutional operations for akernel with
defined as follows:

¢ parameters from the layer g to the layer (g+1) are

Vie(l...,Ly—F;+1}
u,a+]J WP @) Yie{l...By—-F;+1)}
IHJ Z Zs ]ZR I rsR 1+r 1,j+s-1.k Vpell_,_d:,l] '
where we have Lq positions along the height and By, positions aong the width of the image.
The general structure of aCNN is:

CONVOLUTION OPERATIONS

C1
2 s
=] = 5, :
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[

SUBSAMPLING OPERATIONS

The detection operations are divided into basic filters e.g. a rectangle detection runs as follows:

HORIZONTAL

111 EDGES DETECTED
0|00 |—
Al

FILTER NEXT LAYER FILTER

| I (VISUALIZATION I:l
UNINTERPRETABLE

10| RECTANGLE
MAGE o~ 1|0 |a|l— . | | P

1/0|-1 VERTICAL EDGES

FILTER DETECTED

The weightsin the filter are adapted by backpropagation via convolution of loss (=deviation) function gradient
from layer (gq+1) to layer q.
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13 Reinforcement learning in neural networks (REL)
In reinforcement learning, we have an agent (neural network being in a particular state s at a discrete time
point t; ) that interacts with the environment with the use of actions[1, 9]. For example, the player is the agent
in avideo game, and moving the joystick in acertain direction in avideo game is an action. These actions
change the environment and lead to a new state s+1 . The environment gives the agent rewards, depending on
how well the goals of the learning application are being met. A particular episode of this processis afinite
seguence of actions, states, and rewards:

SooloS1a ) ... Sy ... Spdphy
Examples are video games, robot locomotion, self-driving cars.

-

Agent

State s;41 Reward R; Action a;

Environment R—

"

An agent uses the current state of the environment to generate an action a, which changes the state of the
environment tos+1 and usually elicits an immediate reward Ri+1.

The state transitions s—sw1  happen with probabilities ¥ (8t41 |3f)‘, which depend only on s and .1, not on
the previous states: such arandom processis called Markov process.
A Markov decision process is defined in terms of the state s, the action a, the reward r, and the transition

probabilities ¥ (se+1]s0). , the underlying process in reinforcement learning is assumed to be a Markov process.

I mportant quantities

*An episode is a complete sequence of states (like agame of chess).

*The policy 7 specifies the probability of choosing each of a set of possible actions{at}, given the current state
s at timet.

*Thereward signa Rt+1isan immediate reward for the current state s, which usually results from the action just
taken.

*Thereturn Gtisthe cumulative total reward acquired from time t+ 1 to the end of an episode.

*The state-value function v(s) is the expected return based on the current state s, that is, the return Gt averaged
over all instances of the state .. The estimate of v(s) isV(s).

*The action-value function gx(s,a&) defines the expected return based on the current state st and the action a
specified by the policy m. The estimate of gr(S,&) IS Q(s,&).

*The dligibility traceis a scalar parameter that indicates how often each state has been visited. Each state hasiits
own dligibility trace, which is given aboost every time that state is visited, before decaying exponentially
thereafter at a rate determined by the trace-decay parameter A.

*Tempora discounting means that immediate rewards are valued more than future rewards; it is determined by
the parameter y, which affects the state-value and action-value functions.

*The temporal difference error or TD error is the difference between the value v(s) and the estimated value
V(s)

The most important equation in REL isthe Bellmann equation

v (s) = Ex|[Rip1 + 90" (s141)]se = 3.

The Bellman equation says that the value v(s) of the state s equals the expected sum of the immediate reward
Rt+1and the discounted return yvz(S+1) of the next state s+1.
A good learning algorithm for REL is Q-learning
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-Learning
set Q(s7,a) = 0, where sp is the terminal state in an episode

foreach episode do

initialise state s;

while state s; is not a terminal state do

choose action a; from () using e-greedy policy

take action a;

get new state 8,41 and observe reward Ry,

get optimal action for state s,41: aj,, = argmax, Q(s,41,a)
use Q(s¢41,a;, ) to update the action-value function:
Q(51,a¢) — Q(5150¢) + €[Rey1 +7YQ(Se41,07 1) — Q(5¢, ay)]
St & Sty

end

end

Here greedy policy means choosing an action so that it maximizes the estimated return

afyy = argmax Q(sey1,a)

i

e-greedy policy adds a random-action with probability € .
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Part 2 Applications of neural networks

1 Implementation on GPU hardware: Nvidia CUDA

([3] test CUDA)

Currently, the most advanced paralel hardware implementation of neural networks runs on parallel graphic
processors (GPU) of graphic interface hardware. In this area, CUDA-C-interface of Nvidiais a de-facto
standard.

In the following, the theory of Nvidia GPU hardware and its actual implementation in C and in Mathematicais
described.

In the context of neural networks, the GPU’ s can be considered as an array of (32 bit) floating-point arithmetic
units with dedicated shared(fast) memory, constant memory and normal (slow) memory.. For example, the
graphic card Nvidia Quadro RTX4000 contains 2034 GPU-kernels located in 36 multiprocessors (64 kernels
per multiprocessor), shared (fast) memory 49kB/block, constant memory 65kB/block, total normal GPU
memory 8.5GB.

The GPU-subroutines are programmed in C++ via Nvidia C-compiler and CUDA-library and the codeis
executed viadriversin paralel on GPU-processes (threads). Subroutine parameters are vectors or matrices (2-
dimensional vectors) or matrix-vectors (3-dimensional vectors) passes as pointers (addresses), and the vector
length, and the result is stored in another vector pointer. The length is subdivided into one- or two- or three-
dimensional blocks (of threads), with maximum number of 1024 threads in a block. For instance, a subroutine
for vector(4096) with matrix(4096x4096) multiplication could have block length L,=1024, i.e. 1024 threads
work in paralel on

32-chunks of the vector and 32x32-chunks of the matrix. The threads execute the code asynchronously, and in
the code only the current block index (blkldx.x, blkldx.y) and the current thread index

(threadldx.x, threadldx.y) within the block are known at execution time, so intermediate storage is a dedicated
vector, normally in external global memory, which is accessed via those indices.

Multiprocessor

Processors

Kernel architecture [13]: every multiprocessor manages 64 kernels with dedicated shared memory

Device

Multiprocessor

Multiprocessor

Multiprocessor

Chipset Global Registers
Memory
Shared Memory

Memory architecture [13]
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Application

CUDA Optimized Libraries: Integrated CPU + GPU @ CPU Code

math.h, FFT, BLAS, ... C Source Code

NVIDIA C Compiler

for Compaing B1X) CPU Host Code PTX to Target e
Compiler

CUDA

Driver Profiler Standard C Compiler

Target code

Software architecture [13]: the NV CC-compiler generates CPU-code for the host CPU, and PTX-code for the
GPU-hardware

Neural network applications in this paper are programmed and executed under Mathematica, so the high-level
code generation and execution runs via Mathematica C-compiler and the Mathematica CUDA-Link [14], where
the Mathematica alocates and frees the GPU-memory, copies the CPU-host parameter memory to the GPU
memory and back, and in-between passes control to the NV CC-compiler and CUDA-drivers

Program & Optimize

Test
{CUDA Kernel Code) &

Prototype

whereas the low-level code generation and execution runs via NV CC-compiler and CUDA-drivers

GPU Memory & Thread Management

Allocate Copy CPU Configure Launch
GPU Memaory Memory to GPU Threads Threads

:;1; Copy GPU Synchronize CUDA Kernel
Memory to CPU Threads Code

Memory

.

M athematica uses built-in CUDA image-processing subroutines like CUDAImageConvolve (image filtering)

8 [14]

and supports parallel GPU-processing for ADAM-backpropagation FF-networks via built-in functions
NetChain, NetGraph for network generation

NetTrain, NetMeasurement for network training and testing

which gives an acceleration factor of 30 compared to pure CPU-processing [3].

An example of Mathematica-based user-programmed CUDA-code is vector-matrix product [3]
matDotV (invector.matrix -> outvector)
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code =

__global__ woid matDotV(Real t « y, Real t « x; Real t « z, mint N){
extern __device__ Real_t cache[64+1024-10247 ;
int tidx = threadIdx.x+ blockIdx.xsblockDim.x;
int row = blockIdx.y = blockDim.y + threadIdx.y;

int cacheIndex = threadIdx.x ;

Real t temp=0;

while {tidx<N} {
temp+=y[row + N + tidx]+x[tidx];
tidx +=blockDim.x=gridDim.x;

cache [ cacheIndex row = NJ=temp;
__syncthreads () ;
int i=blockDim.x/2;
while{i! =@} {
if (cacheIndex<i)
cache [ cacheIndex row + N]+=cache[cacheIndex+ row = N +1];
__syncthreads (};

i/=2;3

if {cacheIndex==8)
z[blockIdx.x row = N]=cache[cacheIndex row = NIj

dotMatV = CUDAFunctionload[code, "matDotV", {{_Real, _, "Input™},

{_Realy, _, "Input™}, {_Real, , "Output"}, Integer}, {32, 32}, "ShellCommandFunction" - Print]

with the actual call dotMatV(invector A, matrix B, outvector C1, length listSze=4096) :

res = dotMatV[A, B, (1, listSize];

In the above example, two-dimensional parallel threads of 32x32=1024 threads are used, where threadldx.x and
threadldx.y are the thread indices within a 2-dimensionsl block, where blkldx.x and blkldx.y are the block
indices, and the external array cacheis used for intermediate memory storage. The results for block-wise scalar
product are stored in consecutive locations in the result vector C1 .

However, since at every subroutine call the (huge) CPU-host parameter memory is copied to GPU memory and
back, there is no significant acceleration for neural network applications when using this subroutine. In order to
use the whole power of parallel GPU-hardware, one has to program the entire network algorithm in CUDA-C
code, which is atime-consuming task. Therefore, in this paper the user-programmed local backpropagation was
executed in paralel CPU-code with N=12 CPU kernels, whereas the built-in global propagation was executed
using the CUDA-link with N=1024 GPU kernels, which is much faster.

2 Implementation of backpropagation FF networkswith CIFAR data
([3] Example network classification 2-out CIFAR-100 different NN's)

Training database CIFAR-100

CIFAR-100 is a standard training database for neural networks. It is an rgb 32x32 pixels image database with
50000 records. It isused in the following as training and as test database. A dataset consists of an image,
“Labe” i.e. index of category (e.g. “food containers’) (ic=1...20), and “SubLabel” i.e. index of sub-category
(e.g. “bottle”) (is=1...5) .

The networks are trained on CIFAR for Label and SubLabel simultaneously.

Example: arandom sample of 5 elements
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o

Image Label SublLabel
l'.-.i.-:l large man-made outdoor things castle
* food containers bottle
-y . .

@  non-insect invertebrates lobster
?:.‘,!" large natural cutdoor scenes cloud
- household furniture chair

Types of networks

In a performance test with global ADAM-backpropagation , we use 4 types of networks with varying number of
layers: convolution, recurrent, linear-pooling and simple linear.

Layers are positioned in series in groups consisting of one or two number-reducing layers and one element-wise
function (in general a Ramp or a Sigmoid function). Number-reducing means that the number of output nodes
should be in general smaller than the number of the input nodes, so that the final output matches the vector of
20 Label indices, resp. 100 SubL abel indices.

Convolution-pool network consists of convolution layers (moving average with a specifiable kernel), grouped
with pooling layers (moving mean or max over a specified sub-block), and element-wise output function (here
Ramp, i.e. positive(x) ), inthis example with 2 convolution layers and one output linear layer.

s &
. | e e 3o N
e
s [

Input Port
mage image
Output Ports
Sublabel class
Label class
1t MetChain

Input array | size: 3x32x32

ConvelutionLayer  array [ size: 2022828
2 Ramp array | size: 20x28x28
3 PoolingLayer array | size: 20x14x14
4 ConvolutionLayer array [ size: 301010
5 Ramp array | size: 0x10x10
& Poolinglayer array | size: 30x5x3
7 FlattenLayer vector [ size: 1250
2 LinearLayer vector | size: 500
% Ramp vector | size: 500

Output vector | size: 500

4 in| W - T F W - . -

Input Port
nput image
Qutput Port

Cutput vector (size: 100
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Recurrent-pool network consists of (recurrent) GatedRecurrentLayer’s, grouped with pooling and linear
layers, and element-wise output function (here Ramp), ), in this example with 2 recurrent layers and one output
linear layer.

s r W W = °
Image g ._. :. EFE Label
&
e Sub j=’=|
. blabe
Input Port
Image: image
Output Ports
Sublabel class
Label: class
1:  MetChain
Input array | size: 3x32x32)
| LinearLayer  array|size: 20=28x28)
2 Ramp array | size! 20x=28x28)
3 Poolinglayer array(size: 20=14x14)
4 LinearLayer  array|size: 30=10:10)
5 Ramp array | size: 30=10=10)
& Poolinglayer array(size: 30253
7 FlattenLayer  wector(size: 1250)
2 LinearLayer  wector(size: 500)
%2 Ramp vector | size: 500)
Cutput vector | size: 500)
. Foo R V% F W) Ry _/ OO
Input Port
Input: image
Output Port

Output: vector(size: 100)
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Linear-pool network consists of linear layers, grouped with pooling layers, and element-wise output function
(here Ramp), in this example with 2 linear layers and one output linear layer.

I e e [
I“':‘;e L ._.. = E_E L:—:el
rd < 0
= o
Z?G Sublabel
Input Port
Image: image
Output Ports
Sublabel: class
Label: class
1:  NetChain
Input array | size: 3x32x32
| LinearLayer  array|size:
2 Ramp array [ size: 2
3 Poolinglayer array(size
4 LinearLayer  array(size: 30x10x10)
5 Ramp array | size: 30x10x10)
& Poolinglayer array|(size: 30=5=5)
7 FlattenLayer  wector|size: 1250)
2 LinearLayer  wvector|size: 300)
% Ramp vector | size: 300)
Output vector [ size: 300)
aas sam aas aan [
I-:v' & ' Ellj s — Eij F & ' i T ::v::u;
1 2 3 4 5 ; 7 5 5 10 11
Input Port
Input: image
Output Port

Output: vector (size: 100)
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Linear (simple) network consists of linear layers, and element-wise output function (here Ramp), in this
example with 6 linear layers and one output linear layer.

N E s san = -
Image : . : ._. :_. E;e Label
i o
E:.'.' SublLabel

Input Port
Image: image
Output Ports
Sublabel: class
Label: class
1:  MetChain

Input array | size: 3x32x
1 LinearLayer  array(size: 2
2 Ramp array [ size: 2
3 Poolinglayer array (size: 20x74x14)
4 LinearLayer  array (size: 30x12x12)
5 Ramp array [size: 30=12x12)
& Poolinglayer array (size: 50«628)
7 LinearLayer  array (size: 100=8x8)
2 Ramp array | size: 100x=8x8)
9 Poolinglayer array (size: 100s=d=4)
10 LinearLayer  array | size: S00=2=d)
11 Ramp array [ size: 300x2x2)
12 Poolinglayer array |size: 500=1=1)
13 FlattenLayer wector(size: 300)
14 LinearLayer  wector(size: 300)
15 Ramp vector [ size: 500

Output vector [ size: 500

o lnpel Et‘ s Et‘ s qt' s qt' F st s % .
Input Port
Input: image
Output Port

Output: vector [ size: 100



34
Training and recognition rate
Now, 9 networks are trained on CIFAR-100 and their recognition rate on the same database is tested:
2-convolpool, 3-convolpool, 2-recurpool, 3-recurpool, 2-linpool, 3-linpooal, 4-linpool, 6-linear, 7-linear .
The training diagramm for 2-linpool looks like that:

MetTrain Results

3
3
=
i
]
n
|
o
i
3
]
3
3

Thetraining lasted 1.6 min on GPU’s (and approximately 30 min on CPU), it ran in 10 iterations (rounds), and
the final loss=error-vector-norm (sgrt(square sum)) was reduced from total 8. to total 4.82, 2.9 for Label,

1.91 for SubLabdl .

The recognition rate on the database was as follows:

2-convol-pool {@.78594° ,e.72230},

3-convol-pool {@.5465  ,@.46768 },

recur-pool {0.198040,0.097740},

recur-pool {@.95524,8.8904},

lin-pool {@.4252,0.30342},

lin-pool {©.41282,0.28076},

lin {0©.39066,0.25894},

lin {@.33308,0.19332},

lin {@.85,0.01}

One could assume that the recognition rate increases with the number of layers, but thisis not the casein this
application. From the results, we can draw the following conclusions:

-convolution nets have the best performance, and the optimal number of layersis 2

-recurrent nets have a sharp peak at 3 layers (afterward, the rate decreases), where the performance is excellent
-linear and lin-pool networks have the best performance at 2 layers, and the performance decreases slowly until
it reaches the untrained-value at 7 layers: (1/20, 1/100) is the recognition expectation value without training.

N R W RN WN

Structure-gradient algorithm

[3] gradient-optimized network linnet3p

An interesting question is, whether one can change the structure, i.e. the dimensional node numbers of alayer,
so that the total loss decreases, and eventually find the optimal structure in this sense.

We applied the gradient-method in respect to the dimensional node numbers, reducing the loss in each step.
Basically, the method works, but progressis slow, and so is the change of the dimensional node numbers.
Here are the results of this structure-gradient algorithm for the net 3-lin-pool:



Image - Label

Sublabel

1:  MetChain

Input array | size: 3x32x32)
1 LinearLayer  array(size: 20=28x28)
2 Ramp array [ size: 20x28x28)
3 Poolinglayer array(size: 20=14x14)
4 LinearLayer  array(size: 30x12x12)

5 Ramp array (size: 30=12x12)
& Poolinglayer array(size: 50=6+6)

T LinearLayer  array(size: 100=10=10)
2 Ramp array | size: 100=10=10)
2 Poolinglayer array|size: 100=53=5)

10 FlattenLayer  wector(size: 2500)
11 LinearLayer vector [ size: 300)
12 Ramp vector | size: 500)

Output vector | size: 500)
progress of the structure-gradient algorithm
linnet3p ({0.41668,0.29884 }, {0.262",0.1348}, loss 6.15,
stepl gr linnet3p {@©.2858,08.1686}, {0©.206,0.8884}, loss 6.46,
stepl mstep linnet3p {@.31636 ,@.1901}, {@©.2744  ,0.1236}, loss 6.19,
step2 mstep linnet3p {@.4296,@.3@628 )}, {©.25 ,@.1156}, loss 6.327,
step3 mstep linnet3p {@.43904 ,0.31048 }, {0©.2388 ,0.1176}, loss 6.38,
step4 mstep linnet3p {@.413e6 ,0.2880}, {©.2924",0.1552 }, loss 6.07,
step5 mstep gr=e linnet3p {©.443e,0.322027}, {©.3e52,0.1560}, loss 6.13,
stepé mstep linnet3p {@.45218,0.33414"}, {©.2976" ,0.1580}, loss 5.92,
step7 mstep linnet3p {©.43326 ,0.312487}, {©.3084 ,0.1589}, loss 6.9,
step8 mstep linnet3p {©.43326 ,0.31248"}, {©.2920,0.1416}, loss 6.65,
step9 mstep linnet3p {©.43326 ,0.31248"}, {©.2756,0.12840}, loss 6.26,
steple mstep linnet3p {©.42256,0.296520}, {©.242 ,0.1416}, loss 6.18,
stepll mstep linnet3p {©.41946,@.2925"}, {©.2772°,0.1216}, loss 6.26,
stepl2 mstep linnet3p {0©.43798,0.31884}, {©.2776,0.1548}, loss 6.19,
stepl3 mstep linnet3p {©.39776 ,0.2800)}, {€.2748,0.1356}, loss 6.07,

and corresponding structures in the format
I|n1 [in2, 1in3, pool1, pool2, pool3 :

{20,28,28),{50,12,12},{100,10,10} 35 ({252,522}, {2525252)3{2,252,2}}}5{{{20,28,28},{50,12,12},{99,10,10}},{{2,2,2,2},{25252,2},{252,252}}1},
{21,28,29},{50,12,12}, {98,10,10} }, { {252,252}, {2,2,2,2},{2,2,2,2}}},{{{22,27,30},{51,13,13},{97,10,10} } , { {2,2,2,2}, {252,252}, {2,252,2} } }»
{{{22,26,30},{51,13,13},{97,10,10} } , { {222,252}, {2,2,2,2},{2,2,2,2} }},{{{22,26,30},{51,13,13},{98,10,10} },{{2,2,2,2},{2,2,2,3},{2,2,2,2}}},
({{22,26,30},{51,13,13}, {98,10,10} } , { {252,242}, {2,2,2,3}5{2,242,2} } },{{{23,26,30},{51,13,13},{98,10,10} },{{253,2,2},{252,2,3},{2,2,2,2} }},
{{{23,26,30},{51,12,13},{99,10,10} } ,{{23332,2}3{252,2,3},{3,2,2,2}}1,1{{ '23,26,38},{51,12,13},-:99,19,19}],-: {23332,2),{252,2,3),{3,2,2,2}11},
{{{23,26,30},{51,12,13}, {180,10,18} },{ 2323},2223],3222]}}, {23,27,30},{51,12,13},{99,10,10} },{{3,3,2,3)}5{252,2,3},{352,2,2}1},
{{{23,27,30},{51,13,13},{99,10,10} } , { {333,231 3{252,2,3},3{35232,2}}33{{{23,27,30},{51,13,13},{99,10,10} },{{452,2,33,{2,2,2,3},{2,2,2,2}}}1}

Thereisaslow increase in dimensiona node numbersin the first linear layer, elsewhere thereis only
fluctuation, the total loss was reduced from 6.46 to 6.07 in 13 steps, which is very inefficient.
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3 Local backpropagation in serial FF networks

[3] manual backprop goal-output minimization linlayer-output parallel subclass linnet2 Ident,

ytk4={ 0,1} ,adapted indiv. eta, symbolic derivative backprop parallel in datasets, 10 training-drecords

In this chapter, the subject is the implementation of the local backpropagation algorithm described in chapter
15

Thelocal backpropagation minimizes the output deviation E; = %Z(ym ~Yix )2 of the layer-j output 'y,
k

from the target vector y;; by adaptation of the weights w, ,; , but it doesthis for every layer , not only for the
last, as the global propagation does. In order to do this, it back-propagates the target values Y, , not only the

weights, to the layer below. Therefore the local backpropagation is atruly layer-iterative algorithm, where each
step uses only local data from the next higher layer, and not from the last layer, like the globa propagation
does. In addition, the ADAM variant is used for the weight correction Aw,, , likein the case of global

backpropagation in the preceding chapter.

Thenetwork and thevariables

Theinitial network netls2NO is a 2-lin-pool network with 2 linear-pool layers and the preliminary output linear
layer (1) plusthe sub-label linear layer (2) and the sub-label output function (3), the input is the pixel data
array of the image data, and the final output is the sub-label index is, the label index of CIFAR-100 is omitted
in thisimplementation. The network weights are initialized at start with gaussian random valuesin interval [-1,
+1] .

Input Port
datz array | size: 32x32x3
Qutput Port
vector [ size: 100
1:  MetChain
Input array | size: 32x32x3
LinearLayer  array|size: 20=28x28
2 ox array | sizer 20x28:21
3 Poolinglayer array(size: 20=14x74
4 LinearLayer  array (size: 30=10x10
3ox array | sizer 50=10x1(
Poolinglayer array | size: 30=5=5
FlattenLayer  wvector(size: 1250
LinearLayer  wector(size: 500
X vector [ size: 500
Cutput vector size: 300

The overall structure of the network netls2NO is

.J___..-' E-D I.l.l ...____..-' F-D F l.lll .-'-i__.-' I.I.l E

Input Port
nput array [size: 32x32x3
OQutput Port
Cutput vector [ size: 100

with the linear layers (1), (4), (8), (10), pooling layers (3), (6), output functions identity (2), (5), (9), output

function (11) is prob(is) , whereis=1,...100 . The function givesideally prob=1 for the correct sub-label index

and prob=0 for the all others, in atrained network the “answer” of the network to the input data is the highest
prob in the Output-vector.

We have 4 lin-layers here, so we have also 4 weight arrays with corresponding 4 bias-vectors and dimensions:
(wwlinlayer1, bwlinlayerl), dim(wwlinlayer1)={15680,3072}
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(wwlinlayer2, bwlinlayer2), dim(wwlinlayer2)= {5000,3920}

(wwlinlayer3, bwlinlayer3), dim(wwilinlayer3)= {500,1250}

(wwlinlayer4, bwlinlayer4), dim(wwlinlayer4)= {100,500}
where (wwlinlayer4, bwlinlayer4) corresponds to the last linear layer (10), and the target vector of the final
vector Output isthe final vector of the current training data-record n: ytkafA[n] , where
ytkdfAl n, i] =1 for i=ig[n], ytk4fA[n, i]=0 for otheri (hereig[n] isthe sub-label index in the training data-
record n, which isto be trained).
So in total ytkafA isan array of dimension (Ntrain, 100), where Ntrain is the number of training data records.
In the first run we set Ntrain=10: we use at first 10 data records for training, which is very small compared to
the total of Ntrain(CIFAR)=50000.

Thealgorithm
The algorithm runsin 4 steps
-stepl
(wwlinlayer4, bwlinlayer4) is modified by ADAM-gradient to minimize the deviation of Output from the
target vector ytk4fA[n] for all datarecords n=1...Ntrain
Thetarget vector ytk3fA for the lin-layer3 (8) is calculated ..
-step2
(wwlinlayer3, bwlinlayer3) is modified by ADAM-gradient to minimize the deviation of output-function(9)
from the target vector ytk3fA[n] for al datarecordsn=1...Ntrain
Thetarget vector ytk2fA for the lin-layer2 (4) iscalculated .
-step3
(wwlinlayer2, bwlinlayer2) is modified by ADAM-gradient to minimize the deviation of output-function(5)
from the target vector ytk2fA[n] for al datarecordsn=1...Ntrain
Thetarget vector ytk1fA for the lin-layerl (1) iscalculated .
-steps
(wwlinlayer1, bwlinlayerl) is modified by ADAM-gradient to minimize the deviation of output-function(2)
from the target vector ytk1fA[n] for al datarecordsn=1...Ntrain
There is no target vector calculation, as lin-layerl isthe innermost layer.

Timing and memory

The algorithm is run with 12 kernels in parallel, the total time for 4 stepsis about 8000s, and the memory
requirement 23GB/kernel, because of the huge size of the weight arrays: wwlinlayer2 in step3 has 19.6 10°
elements, wwiinlayer1 in step4 has 48.16 10° elements. The execution time increases linearly in Ntrain, but the
increase in memory is alittle below linear: mem=190GB/kernel for Ntrain=100.

The timing with 12 parallel kernels and memory is given in the following table

step time (S) memory (GB/kernel)
1 5, 2.4/loop

2 47, 18/loop

3 1700, 600/Ioop

4 6300, 1450/Ioop 23

Results

The most important result is of course the recognition rate of the resulting network netls2DO0 on the trained
dataset trainingDatarD and on whole database CIFAR

mtrained(netls2DO0, trainingDatarD)= 0.9

mtrained(netls2D0,CIFAR)= 0.02

For comparison, we train the initial (random weights) network netls2NO with the normal (global) ADAM-
backpropagation on the trained dataset to the network trained(netls2NO, trainingDatarD) and on CIFAR to the
network trained(netls2NO, CIFAR) and for the original network netls2NO and measure the recognition rate
mtrained(trained(netls2NO, trainingDatar D), trainingDatar D)=0.4

mtrained(trained(netls2NO, trainingDatar D), CIFAR)=0.0111

mtrained(trained(netls2NO, CIFAR), trainingDatar D)=0.1

mtrained(trained(netls2NO, CIFAR), CIFAR)=0.11902
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mtrained(netls2NO, trainingDatarD)=0.1
mtrained(netls2NO, CIFAR)=0.013

We have the following conclusions

-the recognition rate mtrained on the trained dataset is 0.9 for the local backprop, and only 0.4 for the global
backprop, so the local backprop is better by thefactor 2.25.

-on the whole database CIFAR the local backprop achieves mtrained=0.02 and the global backprop achieves
mtrained=0.0111 , where the random rate is of course 1/100=0.01, so also here the local backprop is better by
the factor almost 2.

-the CIFAR-trained global-prop network trained(netls2NO, CIFAR) achieves on CIFAR amoderate rate of
mtrained=0.11902 , where the random rate is 1/10=0.1

Values and histograms of the weights
For the local-backprop result network netls2D0 we get the following values for the weights and the target
Vectors

name max min mean mean(abs)
wwlinlayer4 0.334528 -0.40843 -0.000285342 0.0404414
wwlinlayer3 0.148006 -0.135242 0.0000531141 0.0225776
wwlinlayer2 0.0866414 -0.0841181 -3.65985* 10° 0.0127423
wwlinlayerl 0.101447 -0.101818 1.97439*10° 0.0143918
bwlinlayerd 2.00836 -0.17522 0.0862463 0.280228
bwlinlayer3 0.0703841 -0.085721 -0.00117297 0.0204053
bwlinlayer2 0.0645067 -0.0715514 -0.0000113144 0.0127455
bwlinlayerl 0.077166 -0.0706738 -3.06135*10° 0.0153956
ytk4fA 1. 0 0.01 0.01
ytk3fA 1.01385 -1.2154 -0.0136743 0.254063
ytk2fA 0.614329 -0.643174 -0.00230229 0.103551
ytk1fA 1.25602 -1.28643 0.00256237 0.193817

From this table result some interesting properties

-weights and biases 1...3 have values typically around +-0.01, for wwlinlayer4 it is +-0.04, for bwlinlayer4 it

is+-0.3

-target vectors 1...3 value range is O-symmetric, it is approximately [-1,1] for target vector 1 and 3, itis

approximately [-0.6,0.6] for target vector 2
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Finally, we can compare value histograms of the weights for the networks
trained(netls2NO, CIFAR) , trained(netls2NO, trainingDatarD) , netls2DO0 , netls2NO

wwilinlayerl
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WWwW
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linlayerd
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-the value distribution for the CIFAR-trained network is much more “slim” than the others: the training
concentrates the weights more around zero
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-for the wwlinlayer4 we observe the same for the second diagram glob-backprop trained(netls2NO,
trainingDatar D) and loc-backprop trained netls2DO0 : the latter is“slimmer” , apparently better trained.

The comparison of the histograms for the target vectors ytk4fA, ytk3fA, ytk2fA, ytk1fA of the local-backprop

result network netls2DO is:
1000

150 ¢
800

600 100 ¢

400
50+
200

0.2 04 06 08 1

0 0
-06 -04 -02 0 0.2 04 06 -1 -05 0 05 1

Here we can see, as mentioned above, that the target vector values are 0-symmetric. Furthermore, the
distribution for target2 and target1 is much “slimmer” than for target3. The target4 (outermost) values are 0 and
1, so the histogram is trivial.

Resultsfor different sizes of training data sets

For Ntrain=10 we have the recognition rates stated above
mtrained(netls2DO0, trainingDatarD)= 0.9
mtrained(netls2D0,CIFAR)= 0.02

mtrained(trained(netls2NO, trainingDatar D), trainingDatar D)=0.4
mtrained(trained(netls2NO, trainingDatar D), CIFAR)=0.0111
mtrained(trained(netls2NO, CIFAR), trainingDatarD)=0.1
mtrained(trained(netls2NO, CIFAR), CIFAR)=0.11902
mtrained(netls2NO, trainingDatarD)=0.1

mtrained(netls2NO, CIFAR)=0.013

For Ntrain=50 we get

mtrained(netls2DO, trainingDatarD)= 0.18
mtrained(netls2D0,CIFAR)= 0.01526

mtrai ned(trained(netls2NO, trainingDatar D), trainingDatar D)=0.06
mtrai ned(trained(netls2NO, trainingDatar D), CIFAR)=0.01
mtrained(trained(netls2NO, CIFAR), trainingDatarD)=0.14
mtrained(trained(netls2NO, CIFAR), CIFAR)=0.194
mtrained(netls2NO, trainingDatar D)=0.

mtrained(netls2NO, CIFAR)=0.0079
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For Ntrain=100 we get

mtrained(netls2DO, trainingDatarD)= 0.07
mtrained(netls2D0,CIFAR)= 0.01206

mtrai ned(trained(netls2NO, trainingDatarD), trainingDatar D)=0.11
mtrained(trained(netls2NO, trainingDatar D), CIFAR)=0.0157
mtrained(trained(netls2NO, CIFAR), trainingDatar D)=0.13
mtrained(trained(netls2NO, CIFAR), CIFAR)=0.1308
mtrained(netls2NO, trainingDatarD)=0.1

mtrained(netls2NO, CIFAR)=0.00974

We conclude from these data that

-the results for local backprop deteriorate with larger training dataset trainingDatarD, it may be the
consequence of decreasing convergence speed, as the target vector arrays become ever larger

-the rate for the CIFAR-trained glob-backprop network is approximately equal on CIFAR and training data set,
as expected

-the rate for the CIFAR-trained glob-backprop network on CIFAR isaround 0.13, largely independent of the
test dataset

-the rate for the glob-backprop network trained on trainingDatarD also decreases at first with the size of the
training dataset
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4 Local backpropagation in parallel FF networks

[3] manual backprop goal-output minimization linlayer-output parallel subclass linnet2 Ident,
ytk4={ 0,1} ,adapted indiv. eta, symbolic derivative backprop parale in datasets, paralel NN
Ndata==5x(Ntrain==10 training-drecords)

Calculation of local backprop networks in Mathematica without GPU support is, even with parallel CPU
kernels, time consuming, and, more importantly, has increasing memory requirements.

Therefore it isimportant to find a viable alternative, and such an alternative isto train an array of serial
networks on small datasets, and to connect their outputsin parallel. This happens aso in the brain during
higher-level perception processing [15].

Based on this, we present here parallel network with 5 trained networks

parallel(trained(netls2NO , trainingDatarDA[1]), i=1...Ndata) ,

where Ndata=5 , so we have in total a network trained on 5x10=50 datasets , combined from 5 networks
connected with Maximum-function:

E“D .l.l. -"#I’l E'D F .l.l. --"’lf '.'.' ?

\
-0 /

Timing and memory
The algorithm is run with 12 kernelsin parallel, the total time for 1 dataset is about 800s, for 5 datasets
time=4100s, and the memory requirement 12GB/kernel.

Max

Results

The recognition rate of the resulting par allel network netls2DO0 on the trained dataset trainingDatarD and on
whole database CIFAR is

mtrained(netls2DO, trainingDatar D)= 0.2

mtrained(netls2D0,CIFAR)= 0.03

The recognition rate of the global-backprop-trained network trained(netls2NO, trainingDatarD) and the
network trained(netls2NO, CIFAR) , and for the original network netls2NO is

mtrai ned(trained(netls2NO, trainingDatar D), trainingDatar D)=0.06

mtrained(trained(netls2NO, trainingDatarD), CIFAR)=0.012

mtrained(trained(netls2NO, CIFAR), trainingDatar D)=0.08

mtrained(trained(netls2NO, CIFAR), CIFAR)=0.104

mtrained(netls2NO, trainingDatar D)=0.02

mtrained(netls2NO, CIFAR)=0.018

whereas the random recognition rate on 50 data recordsis 1/50=0.02

in comparison, with serial networ k on Ntrain=50 we get (see above)
mtrained(netls2DO, trainingDatar D)= 0.18
mtrained(netls2D0,CIFAR)= 0.01526

mtrai ned(trained(netls2NO, trainingDatar D), trainingDatar D)=0.06
mtrained(trained(netls2NO, trainingDatar D), CIFAR)=0.01

mtrai ned(trained(netls2NO, CIFAR), trainingDatar D)=0.14
mtrained(trained(netls2NO, CIFAR), CIFAR)=0.194
mtrained(netls2NO, trainingDatar D)=0.

mtrained(netls2NO, CIFAR)=0.0079

We have the following conclusions

-the recognition rate mtrained on the trained dataset is 0.2 for the local backprop, and 0.06 for the global
backprop, so the local backprop is better by the factor 3.3

-the recognition rate mtrained for the serial network with 50 data records are very similar:

on the trained dataset it is 0.18 for the local backprop, and 0.06 for the global backprop



43

-on the whole database CIFAR the local backprop achieves mtrained=0.03 and the global backprop achieves
mtrained=0.02

-the CIFAR-trained global-prop network trained(netls2NO, CIFAR) achieves on CIFAR mtrained=0.104 and
on trainingDatarD it achieves 0.08, which is better than netls2D0 by the factor 1.3

5 Evolving mutation cr oss-optimized networks
[3] mutation-cross-optimized evolving network classification 2-out CIFAR-100

We present here several scenarios of evolving population of structure-changing networks. The changes proceed
by modification of (integer) layer structure parameters,

LinearLayer[{ 20,28,28}] has three output dimensions as 3 structure parameters. the output is 20x28x28 array
PoolingLayer[{ 2,2} { 2,2} ] has the kernel size 2x2 and the kernel offset 2x2 as 4 structure parameters
ConvolutionLayer[{ 20,5,5,0,0} ] has the output dimension3 (= number of output matrices) and the kernel size
5x5 and kernel padding size 0x0 as 5 structure parameters

In every generation there is afixed number of agents Nagent=15 , from which the best Nbest=5 are selected by
recognition rate after training on CIFAR.

These best agent mutate randomly by +1 or £2 in structure parameters with the probability Nmut=2 (from
Nagent) and then enter the new generation by genetic “ crossing” pairwise agent A[K] with agent A[k-1], A[k-
2], ...

(layer(A[K],1), layer(A[k-1],2), layer(A[K],3), layer(A[k-1],4),...)

The genetic crossing of 5 agents produces 10 “crossed” agents c(A[5],A[4]), c(A[5],A[3]), ..., c(A[2],A[1])

In this way the new generation with again 15 agentsis produced

G[n+1]={best agents= A[1],...A[5]} & {crossed agents= c(A[5],A[4]), c(A[5],A[3]), ..., c(A[2],A[1]) }

Scenariol:

[3] scenariol: 9x3-lin-pool, 6x2-lin-pool, mut=2/15
Generation G1={9xLin2, 6xLin3}

Lin2 = 2 linear-pool layers

Lin3= 3 linear-pool layers

Mean recognition rates for the 2 layers are
mtrainedl®=0.837 mtrainedl1=0.036;

weighted mean wmean=0.0366

and the results for the first 5 generations:

sAmitrainedl={0.8338,0.634,0.036,0.0364,0.0366,0.0366,0.0366,0.0368,0.0368, _-'/__;C. 342,0.1648,0.185,8.188,0.204}
sAmltrainedl={©.8356,0.0358,0.0364,0.0368,0.0368,0.0372,0.0372,0.0372,0.085,0.1228,0.176,0.1814,0.1836,0.1924,0.1992}
sAmltrainedl={0.08338,0. L553;C.C51;C.C5-’—2;C.C512;L.LJ 8,08.8358,0.0358,0.107,0.1174,0.165,6.1982,0.1988,0.209,0.2116}
Amitrainedl={®.0348,0.8356,0.8356,0.0358,0.0358,0.0366,0.0376,0.8376,0.1732,0.1794,0.186,0.1992,0.2038,0.2042,0.2044}
sAmltrainedl={©.833,06.034,0.0342,0.0346,0.635,0.0835,0.8356,0.0356,0.084,0.13,0.1682,0.1684,0.1732,0.1924,0.1952}

The maximum rate achieved is about 0.2, and the mean best rate (of the 5 best) is stagnating after the third

generation (5 best =0.17), the mean rate has not increased significantly (mean(G1)= 0.0877867, mean(G5)=
0.09256)

Scenarioz2:

[3] scenario2: 9x3-lin-pool, 6x(2-lin-pool-pool), mut=2/15

Generation G1={ 3xLin3, 2xLin2poolpool}

Lin3=3 linear-pool layers

Lin2pool pool= 2 linear-pool-pool layers

Mean recognition rates for the 2 layers are
mtrainedl®=0.1318 mtrainedl2=0.0368;

weighted mean wmean= 0.0938

and the results for the first 5 generations
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sAmitrainedl={@.034,0.035,0.036,0.0362,0.037,0.0414,0.1182,0.1206,0.1696,0.1748,0.1888,0.1904,0. 2018}
sAmitrainedl={@.0324,0.8332,0.035,0.035,0.035,0.0362,0.1288,0.1354,0.1372,0.1398,0.1476,0.1494,0.1668,0.1988,0. 2096}
sAmitrainedl={0.0346,0.0356,0.0362,0.0374,0.09962,0.1308,0.153,0.153,0.1532,0.1798,0.1824,0.1886,0.2108 )
sAmitrainedl={0.0336,0.0342,0.035,0.036,0.1124,0.1352,0.1372,0.1462,0.1512,0.1882,0.1904,0.1944,0.199,0.2008,0.2302
sAmitrainedl={0.0344,0.0358,0.0396,0.1558,0.172,0.1838,0. 185,0.1854,0.189,0.1928,0.194,0.2002,0.2012,0.209,0. 2206 )

The maximum rate achieved is about 0.2, and the mean performance is better after 5 generations (11 best
~0.18, mean(G1)= 0.106446, mean(G5)= 0.159907)

Scenario3:

[3] scenario3: 7x(3-lin-pooal), 7x(2-lin-poal), 1x(2-conv-pool) , mut=2/15
Generation G1={ 7xLin3, 7xLin2, 1xConv2}

Lin2 = 2 linear-pool layers

Lin3= 3 linear-pool layers

Conv2= 2convolution-pool layers

Mean recognition rates for the 3 layers are

mtrainedl®=0.1318 mtrainedl1=0.036 mtrained3=0.7664;

weighted mean wmean=0.18779

and the results for the first 5 generations
sAmitrainedl={@.034,0.034,0.034,0.0342,0.0352,0.1082,0.2056,0.2164,0.2302,0.2314,0.4694,0.6746,0.9052,0.9088,0.9216 )
sAmitrainedl={@.5308,0.5376,0.5622,0.6472,0.6734,0.6884,0.7112,0.7394,0.7492,0.901,0.9118,0.9184,0.9186,0.9188,0.9214)}
simitrainedl={0.3972,0.6042,0.6492,0.6764,0.7216,0.724,0.7744,0.8434,0.8792,0.888,0.8902,0.895,0.9034,0.9114,0.9114)
sAmitrainedl={0.521,0.547,0.6246,0.6438,0.681,0.6848,0.709,0.7392,0.8726,0.89,0.9022,0.9134,0.9136,0.9314,0.9354}
sAmitrainedl={0.5996,0.638,0.6836,0.7142,0.724,0.8726,0.897,0.9078,0.9086,0.91,0.917,0.9184,0.9248,0.9276,0.9376}

The maximum rate achieved is about 0.9, and the mean performance is much better after 5 generations
(mean(G1)= 0.336187, mean(G5)= 0.832053), the best 10 achieve about 0.9

Scenario4:

[3] scenario4: 15x(3-lin-pool)

Generation G1={ 15xLin3}

Lin3= 3 linear-pool layers

Mean recognition rates for the 1 layer are
mtrainedl®=0.1318;

and the results for the first 5 generations
sAmitrainedl={0.0376,0.0382,0.0382,0.0388,0.0388,0.114,0.1588,0.1804,0.2,0.218}
sAmitrainedl={©.0338,0.0344,0.0362,0.0362,0.0362,0.0754,0.081,0.1056,0.195,0.2014}
sAmitrainedl={0.0346,0.0348,0.0354,0.036,0.0362,0.0538,0.0558,0.1098,0.1706,0.1802 )
sAmltrainedl={0.8352,0.0364,0.0372,0.0792,0.1074,0.1906}
sAmitrainedl={0.0376,0.038,0.038,0.038,0.0384,0.0812,0.083,0.0988,0.1358,0.14)

The final maximum rate achieved is about 0.1, and the mean performance has decreased (mean(G1)= 0.10628,
mean(G5)= 0.07288), performance has deteriorated after 5 generations

We draw the following (preliminary) conclusions

-the final mean rate depends on the weighted mean (wmean) of theinitial rates

-there is athreshold for wmean, where the mean rate increases until all agents have approximately the same,
larger rate

-the threshold is approximately wmean/wmin=3, where wmin=minimum initial rate
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