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Abstract

A new definition of quantum-mechanical momentum is proposed which
yields novel nonlinear generalisations of Schrödinger and Klein-Gordon
equations.
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1 Introduction

It is the received wisdom that Planck-Einstein-de Broglie law1 pν = ~kν
belongs to the era of ‘old quantum mechanics’ and that in the realm of
quantum mechanics the right (and more fundamental) perspective is to
solve the Schrödinger equation for any case at hand. Although from an
instrumentalist point of view this perspective has been quite successful, in
this paper we advocate another perspective which will prove to be more
fruitful with regard to the foundational questions of quantum mechanics.
Our perspective is that quantum mechanics is basically all about pν = ~kν .
To adopt such perspective we need to first scrutinise our understanding of
its essential ingredient kν . By any rigorous mathematical definition2 it is
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1The metric signature (+,−,−,−) is used everywhere in this paper. Greek indices run
over 0 to 3 (four dimensions) while Latin indices run over 1 to 3 (three dimensions of the
Euclidean space).

2For example, an entity φ which satisfies the wave equation

∂2φ

∂t2
= v2∇2φ,
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required that a wave be defined as a field3 on spacetime which satisfies a
certain equation, without any explicit reference to its four-wavevector. On
the other hand, according to our perspective pν = ~kν is a fundamental
law of nature and appearance of kν in such a law suggests that we must en-
force all waves to acquire a mathematically well-defined four-wavevector.
Consequently we must find a definition for the four-wavevector of a wave
ψ in terms of the ψ itself, we shall call this process harmonisation.

2 Harmonisation

Considering the simplest case of a complex harmonic wave4,

ψ(xµ) = e−ikµx
µ

if we apply the gradient operator to both sides we have,

∂µψ = −ikµψ

we realise that there are two possibilites for harmonisation:

1. Operatorial approach, k̂µ := i∂µ

2. Logarithmic approach5, kµ := i
∂µψ

ψ
= i∂µ(logψ)

The logarithmic approach will be proved to yield a non-linear generalisa-
tion which reduces to the Schrödinger equation if ∇ · k = 0. Note that
the role of the special form of the wavefunction considered here is only a
mere test function; it can be objected that as we have started from this
particular form of wavefunction our results would cease generality. This
objection exists and deserves reflexion, and it can be as well raised about
orthodox quantum mechanics itself. So our position is that ‘if it works
with orthodox quantum mechanics, there is no reason why it must not
with a generalisation’.

3 Non-linear theory

We apply the Planck-Einstein-de Broglie law pµ = ~kµ to the logarithmic
approach to get

p = −i~∇(logψ) and E = i~ ∂
∂t

(logψ) (1)

where v is the speed of propagation of the wave. Or, an entity φ which satisfies the Schrödinger
equation.

3We only consider scalar fields in this paper. Sufficient conditions of smoothness are also
assumed implicitly.

4Note that this is not the most general harmonic wave one can write. Moreover notice
that in these definitions only forward-in-time waves are considered. It is not clear whether
this preference of time direction affects the theory in a decisive manner.

5By log the principal values of the complex logarithm function is meant. Equivalently
ψ 6= 0.
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Substituting (1) in the law of conservation of energy6

E =
p · p
2m

+ V,

yields

i~ ∂
∂t

logψ = − ~2

2m
(∇ logψ)2 + V (2)

To get the Schrödinger equation, notice that (2) is equivalent to

i~∂ψ
∂t

= − ~2

2m

|∇ψ|2

ψ
+ V ψ (3)

which differs from the Schrödinger equation only by the term

|∇ψ|2

ψ
,

which we now show only in the special case where k is a solenoidal field,
is equal to the corresponding term in Schrödinger equation.

∇ · k = 0 (4)

=⇒ ∇ · (∇ψ
ψ

) = 0

=⇒ ψ∇2ψ − |∇ψ|2

ψ2
= 0

for ψ 6= 0 therefore
|∇ψ|2

ψ
= ∇2ψ (5)

In other words, Schrödinger equation is a special case of a non-linear the-
ory. We can now manifestly see how linearity arises from non-linearity,
and how an eigenvalue problem which is the representative of quantum
discreteness is only an approximation to a non-linear but continuous re-
ality. In this light the superposition ‘principle’ is only an approximate
feature of nature and has a limited domain of applicability.
To attain generality, therefore, we must consider ∇ · k 6= 0. If we re-
call from orthodox quantum mechanics[2] that via the conservation of
probability current, Schrödinger equation is associated with an incom-
pressible ‘fluid’ of probability (without source/sinks), ∇ · k 6= 0 means
that the new equation (3) includes also generation/destruction of prob-
abilities, and thus might be able to give an account of the continuity of
application of a complete quantum theory, i.e. it might be able to include
particles, perhaps as solitons.
This understanding is in harmony with our understanding of orthodox
quantum mechanics in terms of mutually exclusive processes of unitary
evolution versus reduction7, for Schrödinger equation by assumption can-
not describe particles and this shortcoming in orthodox quantum mechan-
ics is overlooked by resorting to the superficial notion of the ‘collapse’ of

6Similar to the familiar derivation of the Schrödinger equation using conservation of energy.
7U-process and R-process à la Penrose.
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the wavefunction, in which after each measurement probabilities are reset
to evolve again according to Schrödinger equation.
The observation in which an eigenvalue problem arises from a more gen-
eral nonlinear problem is worthy of emphasis. As a simple example
consider how Helmholtz equation

∇2φ = −k2φ

can be an approximation to the following nonlinear equation

∇2 log φ = −k2,

For the LHS is,

∇2 log φ = ∇ · (∇φ
φ

) =
1

φ
∇2φ− |∇φ|

2

φ2

which must be equal to −k2, therefore

∇2φ− |∇φ|
2

φ
= −k2φ

If we use the approximation

|∇φ|2

φ
≈ 0

reduces to the Helmholtz equation. Therefore it is conceivable for eigen-
values of the theory of quantum mechanics to be approximations and/or
special cases to more general nonlinear equations.

4 Non-linear generalisation of Klein-Gordon
equation

The logarithmic definition of momentum can be readily substituted in
E2 = p2c2 +m2c4 to yield

1

c2
(
∂ψ

∂t
)2 − |∇ψ|2 + (

mc

~
)2ψ2 = 0 (6)

which can also be written as

−〈∂µψ, ∂
µψ〉

ψ2
= (

mc

~
)2

Similar to the case for non-relativistic equation (3), this equation as well is
reduced to the Klein-Gordon equation by the (now-relativistic) condition

∂µp
µ = ∂µk

µ = 0 (7)

=⇒ ψ�ψ − 〈∂µψ, ∂µψ〉
ψ2

= 0

=⇒ 〈∂µψ, ∂
µψ〉

ψ2
=

�ψ
ψ

�ψ
ψ

= −(
mc

~
)2 =⇒

(
� + (

mc

~
)2
)
ψ = 0
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