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For distant observers stationary black holes are objects existing in the infinite future. This 

stems from asymptotic behaviour of inbound null geodesics at their critical radii. However, 

these objects either exist in a vacuum or are the source of an electromagnetic field if charged. 

By contrast, astrophysical black holes emit radiation [1] and exist in an environment 

containing accreting matter. More realistic models of black holes due to Vaidya [2] exchange 

mass-energy with their environment and consequently these solutions are non-stationary. 

Recently the Vaidya metric was presented in diagonal form [3], and this exposes features that 

may not be apparent in the traditional Eddington-Finkelstein form. One of these features 

appears to be an abrupt change in the direction of gravitational acceleration close to the 

critical radius, leading to a diverging potential barrier halting further collapse. It must be 

noted however, that this may only be a feature of the specific solution considered here, and 

such behaviour may not be generic. The purpose of this letter is to show how this comes 

about, and to suggest that, if true generally, would imply a resolution of the information 

paradox. 

 The Vaidya metric is traditionally represented in the Eddington-Finkelstein form 
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where, given null time variables u or v, z v= −  for an accreting black hole, or z u=  in the 

evaporating case. However, this form of the metric hides important features such as the 

ability of falling particles to reach the horizon in a finite time relative to asymptotic 

observers. This feature is far from apparent in the form of equation (1). Moreover, care must 

be taken to include energy-momentum tensor fields of the surrounding environment, and 

these fields are sufficient to perturb the solution in such a way as to allow inbound null 

geodesics to intersect the critical radius before final evaporation. That freefalling matter close 

to the critical radius is best modelled as null radiation makes equation (1) a natural choice of 

coordinates for this application. 

 However, to elucidate important features of the Vaidya solution we diagonalise 

equation (1). This has the benefit of making the coordinates time-symmetric and more 

meaningful as far as physical measurement is concerned. More recently Berezin et al [3] have 

recast this metric in diagonal form. A diagonal Vaidya metric may be written 
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where 0f  is given by 
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The parameter, α , is accretion or evaporation rate as appropriate, which at any instant 

Berezin at al made linear in the null time variable. This simplifies things by setting 

α ( dm dz= − ) as a constant. It is immediately seen that equation (3) is valid for [ ]0,1 8α ∈ . 

 Inspection of equation (3) shows that space-time is partitioned into four regions 

bounded by three concentric timelike hyper-tubes, whose radii vary with t. Here we label 

these radii as 1 2c
r r r< < . The critical radius, 

c
r , is where the event horizon appears in the 

Schwarzschild solution. The function, 0f , vanishes at 1r  and 2r , and we necessarily see 

divergent time dilation at these points. In the Schwarzschild limit 1 c
r r→  and 2r → ∞ . At 

sufficiently large distance the modelling of accreting matter as null radiation is inaccurate and 

outgoing Hawking-radiation is relatively weak, therefore it is difficult to see the physical 

significance of the zero at 2r . Moreover, the exponent on the corresponding factor in equation 

(3) is small. So we confine our interest to the range ( ) 2, ,  cr R R r< . 

 The radial freefall time, 
F

t∆ , from a specified radius, 1R r>  to 1r  is represented by 
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where ( )( )
1

1 2rrg M t r
−

= − − . In the Schwarzschild limit, this integral is known to diverge. 

Moreover similar freefall times also diverge for Kerr-Newman metrics. However, taking 

( )00 0 , ;g f r t α=  from equation (3) we see convergence because the exponent in the second 

factor 1 1 8 2α+ − < . Therefore an inbound null trajectory will exhibit an inflection point at 

1r  instead of approaching it asymptotically as in stationary cases. Beyond 1r , the null cones 

open out again, allowing inbound null trajectories to reach 
c

r  for t < ∞ . 

 By holding t constant, it is useful to plot 0f  against r to see the relevant features and 

to compare with the Schwarzschild limit ( 0α → ), see figure 1. The most obvious feature is a 

sign change in the gradient seen at 1r , which becomes negative in the interval ( )1,cr r . The 

geodesic equation for a test particle, where 0r
U =  momentarily, gives the radial component 

of four-acceleration as 
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From equation (2) we notice that 
rr

g  (and therefore rrg ) is negative for 
c

r r> . The positive 

gradient of 0f  above 1r  makes r
Uɺ  negative thus representing attraction as expected. The 

change in direction of 0,rf  at 1r  implies gravitational repulsion from the centre in ( )1,cr r  with 

0f  as an effective potential. The question is, does the actual potential diverge at 
c

r ? 

 



 

 
Figure 1: Graph of ( )0 , ;f r t α  from equation (3) (solid line). The dashed line is the 

corresponding graph in the Schwarzschild case ( 0α = ). The vertical dotted line marks 

the position of the critical radius, 
c

r . a 0.06α = , b  0.02α = . 

 

 The best way to answer this is to consider the Hamiltonian for a low mass particle of 

intrinsic mass µ  in a general gravitational field. Here we start by representing the intrinsic 

mass in terms of four-momentum, 
a

p , in a general space-time: this is given by 2 a

a
p pµ = . 

The derivation is as follows; decomposing the right hand side into temporal and spatial 

components we have 
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Solving the quadratic for the Hamiltonian, 0H p= , gives 
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Now considering only the radial component of momentum in a diagonal metric, the 

Hamiltonian becomes 
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As 
c

r r→ , 00 0g →  for 0µ >  therefore H → ∞ . For 0µ = , we have 0rrg →  implying that 

0rp →  as 
c

r r→ . For material particles ( 0µ > ) and photons ( 0µ = ) this indicates a 

divergent potential barrier at the critical radius. 

 For a realistic black hole that has reached equilibrium with its environment, the 

interval 1 c
r r−  is very small, most likely less than a Planck length. The potential barrier is 

therefore harder than during the initial collapse phase when the accretion rate is high, and all 

the mass of a star is yet to be consumed. But even there, the energy required to reach the 

increasing critical radius still diverges in the spherically symmetric case. If this is correct then 

what are the implications? Most significant, if this mechanism extends to asymmetric 

collapse, it is an immediate resolution of the information paradox. It appears that a void 

forms in a collapsing star with all the consumed matter being squeezed onto its inner surface. 

Inside this surface, at ( )cr r t= , there would be no matter present.  

 However, this is where we need to be cautious. If there is no mass-energy flux at 
c

r  

then the Vaidya solution is not valid, and this would limit the otherwise divergent potential, 

and allow material to leak across the boundary and enter the void. At present it is difficult to 

calculate the proportion of material crossing this boundary. If the total mass entering the void 

is low enough to have a negligible effect then it may be attracted back towards the potential 

minimum at 1r . Other mechanisms for leakage may also include quantum tunnelling, 

particularly if momenta are reduced to levels where associated wavelengths are comparable 

to 
c

r .  

 That said there is the possibility that initially inbound material would bounce back 

across the potential minimum and oscillate back and forth in a damped fashion, though such 

turbulence is likely to be short lived [4]. During periods when the system is in equilibrium, 

mass-energy influx and outgoing Hawking radiation are at a minimum. When this minimum 

approaches zero, we are back to the Schwarzschild solution. Taking a pragmatic view, all we 

know about black holes is outside the critical radius. So, notwithstanding all of the consistent 

mathematical models of black hole interiors, they remain in the realms of speculation. An 

object with all its mass concentrated at its critical radius instead of a central singularity 

would, to an outside observer, appear similar to any black hole satisfying more traditional 

models. In this idealized model, the main attractor is not a central (or a ring) singularity at 



0r = , but a sphere at or just outside the critical radius. When the system approaches the 

Schwarzschild limit, the potential barrier is replaced by the asymptotic behaviour of inbound 

null geodesics at 
c

r .  

 Apart from an extended version of this work [5] the author is currently unaware of a 

similar model being proposed elsewhere or if so, whether it has been rigorously tested in the 

theoretical arena. Unless what is being suggested here is mistaken then it is tempting to 

propose the following conjecture 

 

Conjecture: Given a spacelike Cauchy hypersurface, S, with no regions of radius, R, 

containing mass, ( )( )2 21
02

4M R a Q πε> + +  for specific angular momentum, a, and charge, 

Q, then the laws of physics combine to prevent such regions forming to the future of S. 

 

In other words, if no fully formed black holes exist at present then none can form in the 

future. 

If this is correct then it raises questions as to whether it can be tested. If true then most 

of the consumed material is confined to a uniform layer just above the critical radius with a 

thickness of no more than a few Planck lengths. Moreover it is possible that some scattered 

photons can be emitted normal to this surface and escape to infinity. Whether such photons 

carry information characterising this layer is an open question. If detectable, the image of a 

black hole would appear with a relatively bright spot in the centre of the image. Initial steps 

toward imaging black holes have already been taken with the Event Horizon Telescope 

(EHT) [6-8], but these observations are to date, in their infancy. It is hoped that similar 

observations in the future, employing some descendent of the EHT, possibly with a much 

larger baseline, would make this kind of testing possible. 
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