©2021 Leszek Mazurek

e-mail: mr.leszek.mazurek@gmail.com

COLLATZ CONJECTURE - THE PROOF

LESZEK MAZUREK

1. INTRODUCTION

The Collatz conjecture is a well known mathematical problem. It claims that
for every positive integer I, if iterating

-1, for, I, even

N[ =

(1.1) I =
3 -I,+1 for, I, odd

ultimately we get 1.
The purpose of this paper is to prove that the Collatz conjecture is true. The
proof consists of two parts:

Theorem 1.1. If the Collatz conjecture is true for a positive integer Iy, it is
equivalent of the condition that a positive integer n and a sequence of integers
My > Myy_1 > My_o > ... > mq > mg > 0 exists, for which

(1.2) 3"y = 2Mn —2mn-130 _gma—2gl ... gmign=2 _ gmogn—l

Theorem 1.2. For every positive integer Iy, such a positive integer n and
a sequence of integers my, > Mp_1 > Mp_2 > ... > mq > mg > 0 can be found.
Therefore, (by Theorem 1.1) the Collatz conjecture is true.

2. REMARKS AND DEFINITIONS

To understand how the Collatz conjecture works and make it more accessible, we
have to iterate integers in their binary representations. This paper explains when
binary numbers are even or odd, how they are affected by different operations
and examines how they iterate through the Collatz formula. The definitions and
remarks introduced below are used over the course of this paper.

Remark 2.1. An integer is odd when in binary representation its least significant
bit is 1. An integer is even when in binary representation its least significant bit is
0.

Remark 2.2. Every even positive integer can be reduced to the odd positive integer
by recursively dividing it by 2 until the result is odd.
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When Iy, is an even positive integer, 1,44 is an odd positive integer and p is the
number of divisions by 2 required for I.,e, to became the odd integer I,44, then

I
(2.1) (;);n = lodd-

Example 2.3. Reduction of an even integer to an odd integer in binary represen-
tation.

Let I.yen be an even positive integer

Teyen = 20 = 10100p.

Then
Teven 20
2 22
10100,
~ 100,
=101,
=5=Ioqq-

We see that an even positive integer I.,., can be reduced to an odd positive integer
I,q4. In this case 20 is reduced to 5.

Remark 2.4. By multiplying an odd positive integer by 3 and adding 1, we get a
result which is always even

(22) 3-Toga+1=1Icpen-

Example 2.5. Example in binary representation.
Let I,4q be an odd positive integer

Tpgg = 7 = 111,
Then
3oga+1=214+1
= 10101, + 1
= 10110,
=22=1pen-
We see that by multiplying an odd positive integer I,44 by 3 and increasing by 1,

we get an even positive integer Icyen.

Definition 2.6. For any positive integer I, let Isb(I) be the least significant
nonzero bit in the binary representation of 1.

Example 2.7. Binary numbers with their least significant nonzero bits in bold:
1sb(1011010110005) = 10004,

1sb(10010110,) = 10y,
1sb(10110101100,) = 100,,
Ish(1100111;) = 1,
1sb(1101111000,) = 1000y
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Remark 2.8. For every odd positive integer I,4q
(2.3) Isb(I,qq) = 2° = 1.

Example 2.9. We find lsb(I,44) for an odd positive integer I,qq.
For 1,454 = 25 we have

1sb(25) = Isb(11001,) = 2° =1.
Remark 2.10. For every even positive integer Ioyen
(24) le(Ieven) = 2177

where p is a positive integer, and then

Ieven
(2.5) o = Toda,
therefore
(2.6) Teven = 2P 1,44

Example 2.11. We find Isb(Iyen) for an even positive integer Ieyen.
For I.yen = 28 we have

1sb(28) = 1sb(11100,) = 22

and thus
Teyen _ 28

20 1sh(28)

28

22

11100,
100,

= 7= 1I44-

When we divide 28 by 1sb(28) it gives us an odd positive integer 7.

Definition 2.12. For any positive integer I, let msb(I) be the most significant
bit in a binary representation of I.

Example 2.13. Binary numbers with their most significant bits in bold:

msh(101101011000,) = 100000000000y,
msb(10010110,) = 10000000,
msb(10110101100,) = 10000000000,
msb(1100111,) = 1000000,
msb(1101111000,) = 1000000000y,.

Definition 2.14. For any positive integer I, let N(I) be the number of consec-
utive nonzero bits attached to lsb(I) in the binary representation of I.
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Example 2.15. Binary numbers with consecutive nonzero bits attached to [sb in
bold:

N(1011010110004) = 1,
N(10010110,) = 1,
N(101101111004) = 3,
N(110011,) = 1,
N(111111000,) = 5

Definition 2.16. Let O denote a base odd integer of I and be defined as

1
~Isb(I)’

where I can be an even or odd positive integer.

(2.7)

Example 2.17. Finding a base odd integer.
We check the case for an odd integer

I =9=1001,,
le(I) = le(lOO]_b) = 15,

I
~1sb(1)
~ 1001,
=
= 1001,
=9.

We conclude that for odd integers

(2.8) O=1I

Notice that when I is an odd positive integer, its base odd integer O is equal to I.
Now we check the case for an even integer
I =20 = 10100y,
Isb(I) = lsb(10100;) = 100y,

1

= m
~ 10100,
a 100,
=101,
=5.

To find the base odd integer O for an even integer I, we divide integer I by 2 until
we get an odd result. We do this by dividing I by its least significant nonzero bit
Isb(I).
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3. SIMPLIFICATION OF THE COLLATZ CONJECTURE

Using the above remarks and definitions, standard form of the Collatz conjecture
(1.1) can be substantially simplified. Despite each of the following simplifications
iterating integers in slightly different way, all of them are fully aligned with original
definition and therefore can be used to prove the Collatz conjecture.

Example 3.1. Iteration of the Collatz conjecture (1.1) starting from Iy = 11.

TABLE 1. Original Collatz iterations starting from [y = 11.

n|I,| (In)y |even/odd | p, | (2P"),
011 1011 o
1] 34 | 100010 e 1 10
2|17 | 10001 0
3| 52| 110100 e 2 100
4126 11010 e
5113 1101 0
6 | 40 | 101000 e 3| 1000
7120 | 10100 e
8110 1010 e
91 5 101 o
10| 16 | 10000 e 4|1 10000
11| 8 1000 e
12| 4 100 e
13| 2 10 e
147 1 1 0

In binary notation, division by 2 is simply a shift of the whole number by one
position(bit) to the right. In Table 1, we see it for every even integer. Instead of
multiple divisions by 2, it can be shortened to one operation. We divide by 2P~
where p,, is a positive integer and represents a number of consecutive zeros at the
end of a binary number. Notice that 2P~ is the least significant nonzero bit of an
even integer, defined earlier in Definition 2.6. Merging all single divisions by 2 into
one division by 2P~ we can simplify iterations of the Collatz conjecture to iterations
presented in Table 2.

Formally, this simplification of Collatz conjecture can be define as

217”” for, I, even,
(3.1) L1 =

3 -I,+1 for, I, odd,

where 2P = [sb(1,,) is the least significant nonzero bit of I,,.

Symbol I, is kept as a representation of elements in the series, even if some elements
are omitted in comparison to the original Collatz conjecture proposition (1.1).
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TABLE 2. Collatz iterations with divisions by 2P~.

n|l,| (In)y |evenjodd | p, | (2P"),
0]11 1011 0
1] 34 | 100010 e 1 10
2|17 | 10001 0
3|52 (110100 e 2 100
4113 1101 o
5 | 40 | 101000 e 3| 1000
6| 5 101 o
7116 | 10000 e 4 |1 10000
8| 1 1 0

Since now each even integer is producing odd integer and each odd integer is pro-
ducing even integer, we can consolidate both operations into one. This time, we
process only odd positive integers, so we substitute I,, with O,, using definition
(2.16). We define this simplification of the Collatz conjecture as

3 -0p,+1
(32) Ont1 = T opn ?

where 2P» = [sb(3 - O,, + 1) is the least significant nonzero bit of (3 - O,, + 1).

Notice that (3-O,, +1) is always even, so 2P > 2 for every n. This simplification of
Collatz conjecture results in iterations of odd integers only. To start from an even
integer, we simply reduce it to an odd integer, by dividing it by 2 as many times
as needed to achieve an odd result.

TABLE 3. Collatz iterations simplified to odd integers only.

n| Op | (On)s | efo |30, +1| (30, +1) | pn | (2P7),
0 11| 1011 | o 34 100010 | 1 10
1| 1710001 | o 52 110100 | 2 100
21 13] 1101 | o 40 101000 | 3 1000
3 101 | o 16 10000 | 4 | 10000
4 1 1| o

There is one more simplification we can do.

The process introduced below differs from the original Collatz proposition, however,
it produces the same results. To distinguish it from the above explanations, symbol
A, is used as an element of the iterations.

Starting from any positive integer Ay, we do not need to constantly divide by 2P~.
To keep this process aligned with the orginal Collatz conjecture, instead of always
adding 1, we have to add the least significant nonzero bit of A,,. By this, we allow
A, to increase, ultimately reaching, instead of 1, integer in the form of 2P, where p
is a positive integer.
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TABLE 4. Improved Collatz conjecture - iterations without divisions.
n| A, (Ao 34, (BAW), | pn | (2P7), | 3A, +2Pn | (3A, +2Pn), | O,
0 11 1011 33 100001 0 1 34 100010 | 17
1 34 100010 102 1100110 1 10 104 1101000 | 13
2 104 1101000 312 100111000 3 1000 320 101000000 5
3 320 101000000 960 | 1111000000 6 1000000 1024 10000000000 1
4 | 1024 | 10000000000

Notice that corresponding odd integers are still present in such iterations in column
O,, in Table 4. They are also visible in column (3A4,, + 2P ), in bold, but for each

iteration they are multiplied by constantly increasing powers of 2.

Formal definition of this improved Collatz conjecture is presented below.

Definition 3.2. For any positive integer Ag if iterating
An—i—l =34, + le(An)a

where [sb(A,,) is the least significant nonzero bit of A4, ultimately we get A,, = 2P,
where p is positive integer.

(3.3)

This way we have two equivalent methods of iterating the Collatz conjecture.
The first one, proposed in (3.2), is a simplified version of (1.1) that only skips
all even numbers and, as original, finally reaches 1. The second one, without any
divisions by 2, proposed in (3.3), ultimately reaches 2P, where p is a positive integer.
In this case, the result in binary representation is just 1 followed by the sequence of
zeros. Each of these two methods have exactly the same number of steps
as they are strictly connected.

Example 3.3. In Table 5, we see a comparison of iterations through both methods
side by side; without divisions (3.3) as A,, and with divisions (3.2) as O, starting

from 11.

TABLE 5. Equivalence of Collatz iterations without divisions A,
and with divisions O,, starting from 11.

n| A, (An)b On (On)b
0 11 1011 | 11 1011
1 34 100010 | 17 | 10001
2 104 1101000 | 13| 1101
3| 320 101000000 5 101
4 11024 | 10000000000 1 1
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Example 3.4. In Table 6, we see a comparison of iterations through both methods
side by side; without divisions (3.3) as A4,, and with divisions (3.2) as O,, starting
from 57.

TABLE 6. Equivalence of Collatz iterations without divisions A,
and with divisions O,, starting from 57.

n An (An)b On (On)b
0 57 111001 | 57| 111001
1 172 10101100 | 43 | 101011
2 520 1000001000 | 65 | 1000001
3 1568 11000100000 | 49 | 110001
4 4736 1001010000000 | 37 | 100101
5 14336 11100000000000 7 111
6 45056 1011000000000000 | 11 1011
7| 139264 100010000000000000 | 17 10001
8 | 425984 1101000000000000000 | 13 1101
9 | 1310720 101000000000000000000 ) 101
10 | 4194304 | 10000000000000000000000 1 1

Example 3.5. Relations between A, O, lsb(A,) and msb(A,,) are shown in the

example below:
Anp
—_—~
O,

—
1001010000000
——
Isb(Ay)
msb(Ay,)

A, is the entire integer, all bits in binary notation,

O,, is the odd base of A,,, which are only bits between first and last nonzero bits,
lsb(A,,) is the least significant nonzero bit of A,, in the form of 27,

msb(A,,) is the most significant bit of A,, in the form of 29,

where p, q are positive integers.

4. ELABORATION ON IMPROVED COLLATZ CONJECTURE

Considering iterations of A, through the improved Collatz conjecture proposed
in (3.3) a very interesting feature can be seen. The least significant nonzero bit
lsb(A,,) is almost always just a small fraction of A,,. Therefore, the most significant
bit msb(A,) tends to grow with coeflicient on average close to 3 with each iteration.
Using the improved Collatz conjecture

A1 = 3A, +1sb(Ay),
we usually get

Isb(A,)

(4.1) 0

~ 0,
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therefore, we can say that on average
(4.2) msb(An+1) = 3-msb(A,).

Small deviations from this rule can be observed, when interactions with other bits
of lower significance occur (especially when O,, is small), which can temporarily
make this coefficient slightly higher.

On the other hand, the least significant bit [sb(A,,), being a part of A,, is each
time multiplied by 3 and additionally increased by adding (sb(A,,). Therefore, the
least significant bit of A,, tends to grow with coefficient on average close to 4 with
each iteration.

When iterating
(4.3) Apy1 =3A, +1sb(A,)
on average, we have
Isb(Apt1) = 3 1sb(Ay) + Isb(Ay)

~4-1sb(Ay).
A deviation from this rule can occur through interactions with other bits of A,.
The coefficient can be temporary much higher than 4, when a sequence of bits in
the form of ”...10101010101” appears at the end of O,, which is a part of A, (see
Figure 2 for Ap). In this case, we can observe a rapid shortening of A,,. This coef-
ficient can also be temporarily smaller, when a sequence of consecutive 1’s appears

at the end of O,,. In this case, this coefficient is temporarily equal 2, until number
of 1’s is reduced one by one in the following iterations (compare Table 9).

(4.4)

Even if both described dependencies can be temporarily disturbed, eventually in
a large number of iterations they become very evident. As a result of their in-
teractions, the distance between the most significant bit msb(A4,,) and the least
significant nonzero bit Isb(A,,) gets shortened.

Notice that a difference in lengths between msb(A,) and lsb(A,,) represents the
length of O, in bits.

We see
(4.5) msb(A,) —lsb(A,) — 0, as n — oo,

and
(4.6) msb(A4,) / lsb(An) — 1, as n — oo.
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Example 4.1. Comparison of growth trends between the most significant bit
msb(A,) and the least significant nonzero bit Isb(A,,).

FIGURE 1. Comparison of growth trends between msb(A,) and
Isb(A,,) starting from 57.

n An (An)h ()n (()n)b
0 57 A11001 | 57 [ 111001
1 172 10101400 | 43| 101011
2 520 1000061000 | 65 | 1000001
3 1568 1000100000 | 49 [ 110001
4 4736 001010000000 | 37 [ 100101
5] 14336 /11¥00000000000 | 7 111
6| 45056 A011000000000000 | 11 1011
7| 139264 #06010000000000000 | 17 [ 10001
8| 425984 /101000000000000000 | 13 1101
9 | 1310720 | #01000000000000000000 [ 5 101
10 [ 4194304 | £0000000000000000000000 | 1 1
S
S /@
Ny
Ry
&

FIGURE 2. Comparison of growth trends between msb(A,) and
Isb(Ay). Special case when A, contains a sequence of bits

7...10101017.

n An (An)b On (On)b
0] 1877 1101010101 [ 1877 | 11101010101
1[ 5632 /1011000000000 | 11 1011
2| 17408 A00010600000000 [ 17 10001
3] 53248  /1101600000000000 | 13 1101
41163840 | 404000000000000000 5 101
5 [ 524288 | £0000000000000000000 1 1
\%O\Q

N

NSl
0
&

When initial integer Ay is very big, on average

msb(Apt1)

4. _— =
(47) msb(A,) 5
and on average
(4.8) Lsb(An+1) =4,

Isb(A,,)
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we can propose a formula to estimate the number of iterations required to reach
O,, = 1, which means A,, = 2P, where p is a positive integer.

When using binary numbers, we know that each position represents a power of 2.
Multiplication by 3 extends the length of a number by

(4.9) logy(3) = 1.584963.

By continuous multiplication of a binary number by 3, its length increases on av-
erage by 1.584963 bits(positions) per operation.

We check how fast the least significant bit Isb(A,,) increases its length, we have
(4.10) log,(4) = 2.

We see that by continuous multiplication of the least significant nonzero bit by 4,
its length increases on average by 2 bits(positions) per operation. We calculate how
fast lsb(A,,) approaches msb(A,,).

‘We have
(4.11) 2 — 1.584963 = 0.415037,

thus lsb(A,,) is on average 0.415037 bits(positions) closer to msb(A,,) per iteration.
Note that a number of needed iterations can be bigger, when at the end of Ay we
have a sequence of consecutive 1’s ”7...1111111”, or it can be dramatically smaller,
when at the end we have a sequence of alternating 0 and 1 ”...01010101”.

Example 4.2. Starting from Ag, which is 20000 bits long, we can predict how many
times we have to iterate, through the improved version of the Collatz conjecture
(3.3), until we finally reach O,, = 1 (which means A,, = 2P, where p is a positive
integer). To approximate a number of iterations, we have to divide the length of
Ap in bits by 0.415037, in this case

20000
(4.12) Gaisg; ~ 48188,

Exact number of required operations depends on detailed structure of bits in a
particular initial integer. However, for big initial integers that do not end with
consecutive 1’s or alternating sequences of 0 and 1, exact number of iterations
should be very close to an estimated one. In practice, starting from Ag, which was
created as randomly generated 20000 bits, the exact number of operations needed
to reach 1 was 48043, which is only around 0.3% different from the estimated one.

On Figure 3, we see how length of O,,, in number of bits, decreases when iterating
initial integer Aq consisting of 20000 random bits.

Length of O,, is the difference in bits between the length of msb(A,,) and the length
of Isb(A,) and decreases with almost perfect accuracy (see Figure 3). However,
when we look closer at first 1000 iterations on Figure 4, we see local fluctuations.
It is even more visible on Figure 5, where only first 100 iterations are presented.

Above elaboration, together with analysis of ending sequences of 1’s, ”...111111”
described in Section 7 of this work, can be enough to proof the Collatz conjecture,
however it is not used for this purpose in this work. It is only presented for better
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understanding how integers are processed iterating through the Collatz formula and
what we can observe when analyzing their binary representations.

F1cURE 3. Decrease of O,, length for 20000 bits long initial A

20000
18000
16000
14000
12000
10000

8000

6000

Length of On in bits

4000

2000

5001 10001 15001 20001 25001 30001 35001 40001 45001

FI1GURE 4. Decrease of O, length for 20000 bits long initial Ag
(first 1000 iterations).

20000
19850
13800
19850
19800

19750

Length of On in bits

15700

19650

19600 -~
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FIGURE 5. Decrease of O, length for 20000 bits long initial Ag
(first 100 iterations).

20003

9983

Length of On in bits

5. PROOF OF THEOREM 1.1

Proof. For any positive integer Iy, we find its base odd integer using (2.7) and it is

Iy

5.1 Oy = .

(5.1) O 1sb(Io)

Value of Isb(ly) is in the form of 27, where p > 0 and p = 0 when I is odd, thus
Iy

(5.2) Op = 2

where p > 0.

We iterate this odd positive integer Op through simplified Collatz conjecture
presented in equation (3.2). We have

300+1
3—3 2%9 * +1
3 22;2 +1

3 P.ni._g +]-
(5.3) 2 =1,

and O, is odd for every n, so (30,, + 1) is always even, therefore

(5.4) D0y P1, P2y ooy Pn—2sPn—1 = 1.
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Equation (5.3) can be also presented like this

(5.5) ((((((300 Pl 1) ot 1) —t 1) ) s + 1> =1

By performing simple algebraic transformations we get

3”00 — (2p7L712p7L722p1L73... 21712170) — (210717221%73“. 21712170)30_

(5'6) _ (2%73”. 201 2po) 3l ... _9p19Po3n—3 _ 9pogn—2 _ gn-—1

Now, we can substitute Op from (5.2)

3n% — (2p71_12pn_22pn—3._. 2p12po) _ (2pn—22pn—3'" 21712170) 30 _ .
_ (2pn73.“ 2p12po) 3l ... _9P19Pogn—3 _ 9pogn—2 _ 371717

and multiply both sides by 2P

3"[0 — (2?71—12Pn—22pn—3... 21’121’021’) — (2pn—22pn—3.“ 2P12P02P) 30 — ..
— (2Pn=s,., 2P12P0QP) 31 ... 9P19PogP3n=3 _ 9pogp3n—2 _ gp3n—1
We substitute the following:
QPn—19Pn—29Pn=3  9P19P0QP — QMn
QPn—29Pn—3  9QP19POYP — 2”%717

9QPn—3  9QP19P0OP — 2mn72’

(5.7)
9QP19PoYP — 2m27

9PoOP — 27VL17

2P = 2mo,

where all PosP1,P25 -y Pn—25Pn—1 > 1 and p > 0.

We finally have
(5.8) 3"y = 2mn —2mn-130 _gma-23l ... gmign=2 _ gmogn-—1

where m,, > m,_1 > Mmp_2 > ... > my > mg > 0 and mg can eventually be 0,
when I is odd.
O
6. PROCEDURE

We consider the following procedure.
Procedure 1.

Step 1. Take any positive integer Ag and define By = 0, Cy = Isb(Ap) (the least
significant nonzero bit of Ag in its binary representation). Let our initial equation
be

(61) AO = AO — BO .
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Step 2. Multiply both sides of equation by 3
(6.2) 34y = 34y — 3Bqy.

Step 3. On the right side of equation we add Cy to A and B sections
(63) 34, = (3A0 + C()) — (3Bo + Co)

This is still a valid equation because By = 0 and Cy elements cancel each other.

Step 4. We name A and B sections as A; and By, so we have

(6.4) 3'4y = Ay — B,
where

(6.5) Ay =340 + Cy,
(6.6) B; =3By + Cy,
and

(6.7) Co = lsb(Ap).

Step 5. By repeating steps 2 to 4, we get universal equations for iteration n

(6.8) 3"Ayg = A, — B,,
where

(6.9) A, = 3A,_1 +Cph_1,
(6.10) B, = 3B,_1+C,_1,
(6.11) Cpn_1= lsb(A,_1).

By definition, C),_; is the least significant nonzero bit of A, _1, so

(6.12) 0<Chq < Ay,
thus
(6.13) 3A,_1 < A,, <4A,_1.

Notice that for every iteration n

(6.14) A, > B,,

(6.15) A, > 34,1,
(6.16) B, > 3B,_1,
(6.17) Cn > 2C,_1,

we can continue this procedure forever.
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Remark 6.1. When increasing index from n to n 4+ 1 and calculating

An+1 = 3An + Cn

we have
Isb(Ay,) = Cy,
also
Isb(34,,) = Ch,
but
Isb(3A,, + Cy) = Cpga,
therefore

Cn—i—l > 2Cn .

General rule for increase of C,, when iterating Procedure 1 is
(6.18) Cny1=27-Cp,

where p is a positive integer.

Note that minimal possible change of C), as n increases is

(6.19) Chor = 2-Ch.

Example 6.2. Minimal change of C,.
We check how C,, increases starting from 3. For the initial value A,, = 3 we have

C, = Isb(A,,) = Isb(3) = 1sb(11;) = 2° = 1.
We see that in the next iteration it is
Cry1 = Isb(3A, + C,,) = 1sb(10) = 1sb(1010,) = 2* = 2.
In this case the change of C), is minimal
Cni1 =2'C,,.

Example 6.3. Non-minimal change of C,.
Now we check how C,, increases starting from 5. For the initial value A, = 5 we
have

C,, = Isb(A,,) = Isb(5) = Isb(101;) = 2° = 1.
We see that in the next iteration it is
Cpy1 = I1sb(3A,, + C,,) = 1sb(16) = 1sb(10000,) = 2* = 16.
In this case the change of C), is non-minimal

Cn+1 == 24Cn
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7. SERIES OF THE CONSECUTIVE MINIMAL CHANGES OF C,

Remark 7.1. When iterating through Procedure 1, we see that the number of con-
secutive minimal changes of C,, (when C,; = 2C),) is limited by the number of
consecutive nonzero bits attached to lsb(A,,) in binary representation of A,. This
dependency can be formulated as follows.

The number of consecutive minimal changes of C,, is equal to N(A,,),
the number of consecutive nonzero bits attached to lsb(A,) in A, (see
Definition 2.14).

In case when there are no nonzero bits attached to lsb(A,), we have Cp,11 > 2C,
(see Table 7 for A3 and A4, where we have corresponding 4 and 4 in the column
Cpn+1/Cy). The number of consecutive minimal changes of C,, in example below
(number of 2’s in C,,11/C}) is equal to N(Ayp).

Example 7.2. In this case N(A4g) = 3, thus the number of consecutive minimal
changes of C,, is 3.

TABLE 7. Relation between N(A,), the number of consecutive
nonzero bits attached to lsb(A,), and the number of consecutive
minimal changes of C,.

n A, N(A,) 34, Cn Cps1/Cr
0 101111, | 3 10001101, 1, 2

1 10001110, | 2 110101010, 10, 2

2 110101100, | 1 10100000100, 100, 2

3 10100001000, 111100011000, 1000,

4| 111100100000, 1011010100000, | 100000,

5 | 10110110000000, | 1 | 1000100010000000, | 10000000y,

Example 7.3. In this case N(Ag) = 2, thus the number of consecutive minimal
changes of C}, is 2.

TABLE 8. Relation between how many times % =2 and N(4,).

n A, N(A,) 34, Cn Crrt/Chr
0 1110, 2 101010, 10, 2

1 101100, 1 100001004 100, 2

2 | 10001000, 110011000, 1000,

3 110100000 10011100000 100000y

4 [ 10100000000, | 1 | 111100000000, | 100000000,

Remark 7.4. Notice that as we iterate and n — oo, each time N(A,,) decreases to
0, gets new value and decreases to 0 again and so on ... (compare Example 7.6).
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Remark 7.5. Notice that for every iteration n, for which N(A,) = 0, we have
C7L+1/Cn > 2.

Example 7.6. We check initial iterations of number 27 (11011) using the Proce-
dure 1. In Table 9, we see how N(A,,) decreases to 0. When N(A,,) is greater than
0, C, has minimal change (Cp,+1 = 2C,,). When N(A4,,) reaches 0, change of C,, is
not minimal (Cy41 > 2C,,).

TABLE 9. N(A,,) decreases to 0 in series, as n — oo.

n A, NA) [ Coir/Cn
0 11011 | 1 2
1 1010010 | O 4
2 11111000 4 2
3 1011110000 3 2
4 100011100000 2 2
5 1101011000000 1 2
6 101000010000000 0 4
7 1111001000000000 | O 4
8 101101100000000000 1 2
9 10001001000000000000 0 4

10 110011100000000000000 | 2 2

11 10011011000000000000000 | 1 2

12 111010010000000000000000 | O 4

13 10101111000000000000000000 3 2

14 1000001110000000000000000000 2 2

15 11000101100000000000000000000 1 2

16 | 1001010001000000000000000000000 0

Remark 7.7. As explained above, minimal change of C,, requires a series of 1’s at
the end of O,,, which decreases with each iteration. To achieve constantly minimal
change of C), we need an infinitely long series of 1’s. For every integer, such series is
always limited, therefore inevitably after sequence of minimal changes of C),,where
Chr+1 = 2C,,, we have bigger change, where C, 11 > 2C,.

8. SERIES OF B,

We check how B, grows, assuming Cy = 1 and constantly minimal change
of C,, which is

(81) C"r7,<|»1 = 20n7

for every n.
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TABLE 10. Change of B,, with n — oo, when C), 11 = 2C,,.

n B, Ch 3B, +C,

0 020 20
1 20 [ of 3120 4 21
2 3120 2T | 22 3220 4 3TaT 1 22
3 3220 4 3121 122 | 23 3320 43221 1 3122 4 23
4 3320 1 3221 1 3122 1 23 | 27 3120 4 33217 13222 3123 1 27
513120 4+ 3327 4+ 3292 1 3123 1 27 [ 25 | 3520 4 3927 4 3392 4 3293 1 3791 1 95

From Table 10, we get the following formula
(82) B, =3""1.2043""2.21 4 3n=3.22 1 | 4 3l.2n"2 4 30.9m—1

assuming a minimal change of C,

(83) C’n+1 = 2Cn7
and
(8.4) Co=2°=1.

As explained earlier (Remark 7.7), as n — oo, Cp41 can not always equal 2C,, so
we check how B,, grows when bigger change of C,, occurs every so often.

TABLE 11. Change of B,,, as n — oo, when C), 1 does not always

equal 2C),.
n Bn Cn Cn+1/cn
0 0] 20 2T
1 20 of 21
2 3120 421 | 22 22
3 3220 1 3T9T 1 92| 24 21
4 3320 3221 13122 1 24| 2° 23
5 3420 1 3321 1 3292 1 3194 4 95 [ 28 22
6 3°20 4 3121 1 3322 43224 - 3125 + 28 | 210 21
7 3620 1 3521 1 3922 1 3327 1 3225 3128 1 210 [ 211
8 3720 + 3621 + 3522 + 3424 + 3325 + 3228 + 31210 + 211

In Table 11, we see the influence of non minimal changes of C,, on B,. In all
cases, without any artificial assumptions about minimal changes of C,,, formula for
B, is

(85) Bp=3""1.2mo  gn-2.gm 4 gn=3 gmz 4 4 gl gmn-2 4 30 gma-
and differences between consecutive m’s can be greater than 1. This can be

presented as a condition for m’s to be integers and

(86) Mp_1 > My_o > ... >mq > mg > 0.
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9. EQUATION FOR 3"

Theorem 9.1. For every positive integer n, 3 to the power of n can be expanded
into a sequence

(9.1) 32 =3""1.20 37221 L gn=3.92 . 1 3l.gn"2 309071 4 gn

which can also be presented as

n—1

(9.2) 37 = (3nlk2k) 4 2n
k=0

Remark 9.2. Notice that in (9.1), all differences between consecutive powers of 2
are strictly equal to 1.

Proof. For n =1, we have
3! =3%.20 42!
=142
=3
To see a bit more complicated case, for n = 2, we have
3?=312043% 2" 4 22
=3+2+4
=9
=32
Assuming it is true for n, we check if it is true for n + 1. We start from
3m=3n"h0 pgn=2.9b L gn=3.92 1 pgt.onm2 4 30.9nml Lon (L 3).
After multiplication on both sides by 3
gntl =3n.90 pgn-l.ol L gn=2.92 4 4 32.9n=2 4 3l.gn=1 4 3.9n
=320 p3ntoot p 3292 4 4329772 pghontl 4 (24 1).27
=3m20+3n 2l 4 3n 222 4 432 2n 2 43t 4 (24 30) 2
=3m.20 pgnlgl p3n=2.92 1 4329772 4 3l.gnml 4 30.9n 4 ol
Now we substitute n +1 =w

(9.3) 3w =3w .20 pgwr2.9l L gw=3.92 1 4 3l.gw=24 30 gw=l 4 ow,

which proves that formula (9.1) is correct. (]
ATI,
10. LiMIT OF B
Lemma 10.1. When iterating Procedure 1 for any initial positive integer Ay we
have
A A
(10.1) ntl o Zn
Bn+1 Bn

for all m > 0.
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Proof. From (6.9) and (6.10) we have

Cn
(10.2) Api1 = Ay, (3 + An)
and
Cn
(10.3) Bni1 =B, (3 + Bn) .
From (6.14)
A, > B,

for all n > 0, so

C, C,
3+ — 3+ —
(+3)<(+5)
therefore
o)
n < 1
(3+%)
Dividing (10.2) by (10.3)
Chn
(10.4) Antl _ A (o )
+ 3+ B
and finally
A, A,
(10.5) = E =,
for all n > 0. U

Lemma 10.2. When iterating Procedure 1 for any initial positive integer Ag we

have
Ay
Notice that we always have
(10.7) C,=2-Cp1
where p,, is positive integer and
(108) CO = 2p0,p0 > 0.
Proof. We analyse
. An
im —
n—oo B,

From (6.8)
An = 3nAO + Bna
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SO
. A, 3"Ag + B,
hm _— = hm —_—
n—oo B, n—oo Bn
B, 3"Ap
= 1. R
109) s (55

. 3" Ap
S (1 "B, > |

Substituting B,, from (8.2) and 3" from (9.1) we have

) 3" Ao
lim <1+ B )

n—oo n

B hm 1+ (3n71.20+3n72.21+3n73.22+.“ +31.2n72+30.2n71+2n)A0
- 3n—1,20+3n—2_21+3n—3,22+_._+31,2n—2_~_30_2n—1

n—oo

Notice that the above substitution for B, is correct only under condition that C,
equals 2C,,_1 for every n and Cy = 1, see (8.3) and (8.4).
One can check that

3%—1. 20 + 3”—2. 21 + 3'”—3. 22 o+ 31. 2'IL—2 + 30. 2n—1

grows much faster than 2™ as n — oo, so

lim
n—oo

3n120 gm0l 43002 4 431202 4 30207 2
3n—1.90 4 3n—2.91 1 3n—3.92 4 31.9n—2 4 30.9n-1 -

which makes:

lim (1 +

n—oo

(3n—1_20_~_3n—2.21+3n—3.22+“. _~_31_2n—2+30.2n—1+2n)A0
3n71,20+3n72,21+3n73,22+_”+31,2n72+30,2n71

=1+ Ap.
Finally, we have
(10.10) 7}1_{1;0 g—: =1+ Ao,
when
(10.11) C,=2C,_
for every n and
(10.12) Cy=1.

For any initial Ay, the condition (10.11) is impossible to be fulfilled, when n — oo
(see Remark 7.4, Remark 7.1 and Remark 7.7). After certain number of repetitions
(see Remark 7.5) C,, > 2C,,_; always occurs. Whenever C,, > 2C,,_; occurs, value
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of B, in equation (10.9) grows gradually, faster than the value of 3™. We use the
equation presented in (8.5)

(10.13) B, =3""t.2mo pgn-2.9m1 4 gn=3.9m2 4 4 3l.gma-2 4 30, 9mn—

and
Mp_1 > Mp_2 > ... > Mo >mq > mg > 0.

In above representation of B,,, differences between consecutive powers of 2 can be
greater than 1, while in formula for 3", the difference between consecutive powers
of 2 is always equal to 1, as n — oo (compare with Remark 9.2). Therefore, we
have

(10.14) 3" K B, asn — oo,
which is
(3"71-20 43722t 4377092 L 4312772 1 30. 9 4 2n)
< (3nTh2me 4 gnRogm 4 3nTdgme 44 gl gmez 4 30,9

3n—1.20+3n—2.21_’_371—3_22_;'_“. _;'_31.271—2_’_30.271—1_’_271
3n—1,2m0+3n—2,2m1 _|_3n—3,2m2+.”_|_31,2m,,,_2 _|_30,2mn_1

Finally,
A ™A

lim =" = lim <1+3 0)

n—oo B, n—oo0 B,
(10.15) — lim (1+0)

n—oo
=1

when
(10.16) Cp =2P"-Chy,
where p,, is an positive integer and
(10.17) Co = 2P, py > 0.

O

Lemma 10.3. Starting from any positive integer, when iterating Procedure 1, such
iteration number k exists, that for all following iterations n

(10.18) oy

and then
(10.19) A, = 2P where p € 7.
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Proof. When starting Procedure 1 from any positive integer Ag, the condition for
A, to be in a form of 2P (where p is positive integer) is such that the least significant
nonzero bit of A,, is

(10.20) Isb(Ap) = Cy = A,

From (6.9) and (6.10) we have

(10.21) A1 =34, +C,
and
(10.22) Bpy1 =38, +C,.

We substitute C,, = A,,, so

(10.23) Api1 =34, + A,
= 4Ana
(10.24) Bpi1 = 3B, + Ap.

We extract A, from (10.24)
An = B7L+1 - 3B,
and substitute in (10.23)

Apy1 =44,
= 4(B,+1 — 3Bn)
=4B,1+1 — 12B,.
We divide both sides by B,,+1, to get
(10.25) Antr _ 4 12Bn,
B Bi1

Now, we substitue from (6.8)
A, =3"Ay+ B,
in (10.24), so
Bot1 = 3B + A,
=3B, +3"Ao+ B,

— 4B, + 3" Ay.
Finally, we substitute B,,4+1 in (10.25)
A 128,
10.26 =4- .
( ) By 1 4B, + 3" Ao

When n — oo, from (10.14) we have
(10.27) 3" < B,,
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SO
12B, 12B,
10.2
(10.28) 1B, + 374, 4B, >
which gives
Ap
(10.29) 4351

Bn+1

from (10.26) and it produces the same result, which is already proven in Lemma
10.2. On the other hand, when 3™ Ay is still comparable or bigger than 4B,,, we
have

(10.30) __12B.
' 4B, + 3" A, ’
which means that
Ap
(10.31) 40t <4
Bn+1

We see that condition for A,, to be in a form of 27, leads us to an ultimate condition

An+1
10.32 - <4
(10.32) Bor

From Lemma 10.1, we get that % is continuously decreasing, so we formulate the
final conclusion.

When iterating Procedure 1, as n — oo, at certain iteration k, we have Isb(Ay) =
Aj. For all next iterations, where n > k

An

10. — <4
(10.33) B, <
and also
(10.34) A, =27

where p is a positive integer.

11. PROOF OF THEOREM 1.2

Proof. We start with any positive integer Iy, let Ay = Iy. We start Procedure 1.
Iterating this procedure, as n — oo we have

(11.1) 3"4y = A, — B,
from (6.8) also

(11.2) A, > B,
from (6.14) and

(11.3) nlingoﬂ —1

n

from Lemma 10.2.
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In binary notation, such situation occurs only when:
A, is a single bit in the form of 2™, where m,, € Z* and
B,, is the sum of almost all bits 2?~, where 0 < p,, < m,, as follows

(Ay)p = 100000000000000...,
(Bn)p = 11111111111111....

From Lemma 10.3, we know that when iterating Procedure 1, such k exists, that
for all following iterations n, where n > k

Ap
11.4 — <4
(11.4) 5 <
and then A,, is in the form of
(11.5) A, = 2P

where p is a positive integer.

Therefore, for all n > k we substitute in (11.1), 4, = 2™~ and B,, from (10.13),
we finally have

3nA0 — 9Mn _ (3n—1.2m0 +3n—2.2m1 +-._+31.2mn,2_’_30.277%,1)

11.6
(11.6) = 9mn _ gn—logmo _gn=2.9mi _ _ 3l.9gmn-—2_ 30 gmn-1

Now we sort elements and substitute Ay = Iy to conclude.

For any initial Iy, such positive integer k exists that for every positive integer n > k
sequence of integers

My, > M1 > My > ... >Mq >mg > 0
exists, for which

377,]0 — 2mn _2mn,130 _2mn,231 L 2m13n72 _ 2m03n71.

12. EXTENSION OF THEOREM 1.2

Theorem 12.1. For every initial positive integer Iy, an infinite number of equa-
tions exists that satisfies Theorem 1.2, therefore, it can be extended in an infinite
number of ways to form the following expression

(12.1)
2Mn __ 2mn_130 _ 2mn_231 e . — 2m13n—2 _ 2m03n—1
I, = 3n )

where n is a positive integer and all m’s form a sequence of integers that

My > Mp—1 > Mp_2 > ... >mq >mo > 0.

Proof. The proof of Theorem 1.2 confirms that. O
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13. EXAMPLES

Presented below are various examples of positive integers, confirming the Theo-
rems proven above.

(13.1) 36.9 =213 2930 _ 9631 _ 9132 9333 _ 9231 _ 9035

(13.2) 37.9 =215 21330 99319632 9d33 9331 9235 _ 9036

(13.3) 38%.9 =217 21530 _ol331 9932 9633 ozt 9335 9236 _ 9037

312. 6541 = 232 _ 22830 _ 22531 _ 22332 _ 22233 _ 22134 _ 21735

(13.4) _ 91536 _ 91337 _ 91038 _ 9939 _ 93310 _ 90311

(13.5) 37.435 = 2720 _ 21630 _gllgl 91032 9933 _ 9dgl 9135 _ 9036

34lgy _ 970 _ 96630 _ 9613l _ 96032 _ 95933 _ 95634 _ 95235
_ 95036 _ 94837 _ 94438 _ 94339 _ 942310 _ 94131l _ 938312

_ 937313 _ 936314 _ 935315 _ 934316 _ 933317 _ 931318 _ 930319

(13.6) _ 928320 _ 927321 _ 926322 _ 923923 _ 921324 _ 920325 _ 919326
_ 918327 _ 916928 _ 915329 _ 914330 _ 912431 _ 911332 _ 99333

_ 97334 _ 96335 _ 95336 _ 94337 _ 93338 _ 91339 _ 90340

334_ 121 = 261 _ 25730 _ 25231 _ 25132 _ 25033 _ 24734 _ 24335

724136 o 23937 o 23538 o 23439 o 233310 o 232311 o 229312

(137) _228313 _ 227314 _ 226315 _ 225316 _ 224317 _ 222318 _ 221319
7219320 _ 218321 _ 217322 _ 214323 _ 212324 . 211325 _ 210326

_ 99327 _ 97328 _ 96329 _ 95330 _ 93331 _ 92932 _ 90333
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(13.8)
3174. 8388607 = 2299 o 229530 o 229031 o 228932 - 228833 . 228534
_228135 _ 227936 _ 227737 _ 227338 _ 227239 _ 2271310 _ 2270311 _ 2267312

_ 9266313 _ 9265314 _ 9264315 _ 9263316 _ 9262317 _ 9260318 _ 9259319 _ 9257320
_ 9256321 _ 9255922 _ 9252923 _ 9250924 _ 9249325 _ 9248926 _ 9247927 _ 9245328
_ 9244329 _ 9243330 _ 9241331 _ 9240932 _ 9236333 _ 9235334 _ 9234935 _ 233336
_ 9232937 _ 9220938 _ 9227930 _ 9225340 _ 9224341 _ 9223342 _ 9221943 _ 9219344
_ 9218345 _ 9214346 _ 9213347 _ 9207948 _ 9206349 _ 9204350 _ 9201351 _ 9200352
_ 9198353 _ 9197354 _ 9196355 _ 9195356 _ 9193357 _ 9190958 _ 9187359 _ 9185360
_9l84361 _ 9183962 _ 9180363 _ 9179964 _ 9178365 _ 9173366 _ 9172967 _ 9l71368
_ 9170369 _ 9169370 _ 9168371 _ 9166372 _ 9165373 _ 9163374 _ 9162375 _ 9160376
_9l58377 _ 9157378 _ 9151379 _ 9150980 _ 9148381 _ 9147382 _ 9146983 _ 145384
_ 9143385 _ 9139386 _ 9138387 _ 9131388 _ 9130389 _ 9128390 _ 9126391 _ 9123392

_ 9122393 _ 9121304 _ 9120395 _ 9119396 _ 9118397 _ 9117398 _ 9116399 _ 91143100
_9l133101 _ 91123102 _ 91083103 _ 91073104 _ 91053105 _ 91023106 _ 91013107

_ 91003108 _ 9993109 _ 9983110 _ 9943111 _ 9933112 _ 9913113 _ 9903114 _ 9803115
_ 9873116 _ 9863117 _ 9843118 _ 9833119 _ 9813120 _ 9803121 _ 9783122 _ 9743123
_ 9723124 _ 9713125 _ 9693126 _ 9673127 _ 9663128 _ 9653120 _ 9613130 _ 9603131
_ 9593132 _ 9583133 _ 9573134 _ 9563135 _ 9543136 _ 9533137 _ 9523138 _ 9493139
_ 9463140 _ 9423141 _ 9403142 _ 9303143 _ 9363144 _ 9343145 _ 9323146 _ 9303147
_ 9293148 _ 9283149 _ 9243150 _ 9223151 _ 9213152 _ 9203153 _ 9193154 _ 9183155
_ 9173156 _ 9163157 _ 9153158 _ 9143159 _ 9133160 _ 9123161 _ 9113162 _ 9103163
_ 993164 _ 983165 _ 973166 _ 963167 _ 953168 _ 943169 _ 933170 _ 923171 _ 913172

_ 903173
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FIGURE 6. Decreasing %ﬂ — 1, as n — oo for Ay = 27.
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FI1GURE 7. Decreasing % — 1, as n — oo for Ay = 121.
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FIGURE 8. Decreasing 4> — 1, as n — oo for Ay = 8388607.
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