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COLLATZ CONJECTURE - THE PROOF

LESZEK MAZUREK

1. Introduction

The Collatz conjecture is a well known mathematical problem. It claims that
for every positive integer Io if iterating

(1.1) In+1 =


1
2 · In for, In even

3 · In + 1 for, In odd

ultimately we get 1.
The purpose of this paper is to prove that the Collatz conjecture is true. The

proof consists of two parts:

Theorem 1.1. If the Collatz conjecture is true for a positive integer I0, it is
equivalent of the condition that a positive integer n and a sequence of integers
mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 exists, for which

(1.2) 3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1.

Theorem 1.2. For every positive integer I0, such a positive integer n and
a sequence of integers mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 can be found.
Therefore, (by Theorem 1.1) the Collatz conjecture is true.

2. Remarks and Definitions

To understand how the Collatz conjecture works and make it more accessible, we
have to iterate integers in their binary representations. This paper explains when
binary numbers are even or odd, how they are affected by different operations
and examines how they iterate through the Collatz formula. The definitions and
remarks introduced below are used over the course of this paper.

Remark 2.1. An integer is odd when in binary representation its least significant
bit is 1. An integer is even when in binary representation its least significant bit is
0.

Remark 2.2. Every even positive integer can be reduced to the odd positive integer
by recursively dividing it by 2 until the result is odd.
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When Ieven is an even positive integer, Iodd is an odd positive integer and p is the
number of divisions by 2 required for Ieven to became the odd integer Iodd, then

(2.1)
Ieven

2p
= Iodd.

Example 2.3. Reduction of an even integer to an odd integer in binary represen-
tation.

Let Ieven be an even positive integer

Ieven = 20 = 10100b.

Then

Ieven
2p

=
20

22

=
10100b

100b

= 101b

= 5 = Iodd.

We see that an even positive integer Ieven can be reduced to an odd positive integer
Iodd. In this case 20 is reduced to 5.

Remark 2.4. By multiplying an odd positive integer by 3 and adding 1, we get a
result which is always even

(2.2) 3 · Iodd + 1 = Ieven.

Example 2.5. Example in binary representation.
Let Iodd be an odd positive integer

Iodd = 7 = 111b.

Then

3Iodd + 1 = 21 + 1

= 10101b + 1

= 10110b

= 22 = Ieven.

We see that by multiplying an odd positive integer Iodd by 3 and increasing by 1,
we get an even positive integer Ieven.

Definition 2.6. For any positive integer I, let lsb(I) be the least significant
nonzero bit in the binary representation of I.

Example 2.7. Binary numbers with their least significant nonzero bits in bold:

lsb(101101011000b) = 1000b,

lsb(10010110b) = 10b,

lsb(10110101100b) = 100b,

lsb(1100111b) = 1b,

lsb(1101111000b) = 1000b.
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Remark 2.8. For every odd positive integer Iodd

(2.3) lsb(Iodd) = 20 = 1.

Example 2.9. We find lsb(Iodd) for an odd positive integer Iodd.
For Iodd = 25 we have

lsb(25) = lsb(11001b) = 20 = 1.

Remark 2.10. For every even positive integer Ieven

(2.4) lsb(Ieven) = 2p,

where p is a positive integer, and then

(2.5)
Ieven

2p
= Iodd,

therefore

(2.6) Ieven = 2pIodd.

Example 2.11. We find lsb(Ieven) for an even positive integer Ieven.
For Ieven = 28 we have

lsb(28) = lsb(11100b) = 22

and thus

Ieven
2p

=
28

lsb(28)

=
28

22

=
11100b

100b

= 7 = Iodd.

When we divide 28 by lsb(28) it gives us an odd positive integer 7.

Definition 2.12. For any positive integer I, let msb(I) be the most significant
bit in a binary representation of I.

Example 2.13. Binary numbers with their most significant bits in bold:

msb(101101011000b) = 100000000000b,

msb(10010110b) = 10000000b,

msb(10110101100b) = 10000000000b,

msb(1100111b) = 1000000b,

msb(1101111000b) = 1000000000b.

Definition 2.14. For any positive integer I, let N(I) be the number of consec-
utive nonzero bits attached to lsb(I) in the binary representation of I.
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Example 2.15. Binary numbers with consecutive nonzero bits attached to lsb in
bold:

N(101101011000b) = 1,

N(10010110b) = 1,

N(10110111100b) = 3,

N(110011b) = 1,

N(111111000b) = 5.

Definition 2.16. Let O denote a base odd integer of I and be defined as

(2.7) O =
I

lsb(I)
,

where I can be an even or odd positive integer.

Example 2.17. Finding a base odd integer.
We check the case for an odd integer

I = 9 = 1001b,

lsb(I) = lsb(1001b) = 1b,

O =
I

lsb(I)

=
1001b

1b

= 1001b

= 9.

We conclude that for odd integers

(2.8) O = I.

Notice that when I is an odd positive integer, its base odd integer O is equal to I.
Now we check the case for an even integer

I = 20 = 10100b,

lsb(I) = lsb(10100b) = 100b,

O =
I

lsb(I)

=
10100b

100b

= 101b

= 5.

To find the base odd integer O for an even integer I, we divide integer I by 2 until
we get an odd result. We do this by dividing I by its least significant nonzero bit
lsb(I).
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3. Simplification of The Collatz conjecture

Using the above remarks and definitions, standard form of the Collatz conjecture
(1.1) can be substantially simplified. Despite each of the following simplifications
iterating integers in slightly different way, all of them are fully aligned with original
definition and therefore can be used to prove the Collatz conjecture.

Example 3.1. Iteration of the Collatz conjecture (1.1) starting from I0 = 11.

Table 1. Original Collatz iterations starting from I0 = 11.

n In (In)b even/odd pn (2pn)b
0 11 1011 o
1 34 100010 e 1 10
2 17 10001 o
3 52 110100 e 2 100
4 26 11010 e
5 13 1101 o
6 40 101000 e 3 1000
7 20 10100 e
8 10 1010 e
9 5 101 o

10 16 10000 e 4 10000
11 8 1000 e
12 4 100 e
13 2 10 e
14 1 1 o

In binary notation, division by 2 is simply a shift of the whole number by one
position(bit) to the right. In Table 1, we see it for every even integer. Instead of
multiple divisions by 2, it can be shortened to one operation. We divide by 2pn ,
where pn is a positive integer and represents a number of consecutive zeros at the
end of a binary number. Notice that 2pn is the least significant nonzero bit of an
even integer, defined earlier in Definition 2.6. Merging all single divisions by 2 into
one division by 2pn , we can simplify iterations of the Collatz conjecture to iterations
presented in Table 2.

Formally, this simplification of Collatz conjecture can be define as

In+1 =


In
2pn for, In even,

3 · In + 1 for, In odd,

(3.1)

where 2pn = lsb(In) is the least significant nonzero bit of In.

Symbol In is kept as a representation of elements in the series, even if some elements
are omitted in comparison to the original Collatz conjecture proposition (1.1).
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Table 2. Collatz iterations with divisions by 2pn .

n In (In)b even/odd pn (2pn)b
0 11 1011 o
1 34 100010 e 1 10
2 17 10001 o
3 52 110100 e 2 100
4 13 1101 o
5 40 101000 e 3 1000
6 5 101 o
7 16 10000 e 4 10000
8 1 1 o

Since now each even integer is producing odd integer and each odd integer is pro-
ducing even integer, we can consolidate both operations into one. This time, we
process only odd positive integers, so we substitute In with On using definition
(2.16). We define this simplification of the Collatz conjecture as

On+1 =
3 ·On + 1

2pn
,(3.2)

where 2pn = lsb(3 ·On + 1) is the least significant nonzero bit of (3 ·On + 1).

Notice that (3 ·On +1) is always even, so 2pn ≥ 2 for every n. This simplification of
Collatz conjecture results in iterations of odd integers only. To start from an even
integer, we simply reduce it to an odd integer, by dividing it by 2 as many times
as needed to achieve an odd result.

Table 3. Collatz iterations simplified to odd integers only.

n On (On)b e/o 3On + 1 (3On + 1)b pn (2pn)b
0 11 1011 o 34 100010 1 10
1 17 10001 o 52 110100 2 100
2 13 1101 o 40 101000 3 1000
3 5 101 o 16 10000 4 10000
4 1 1 o

There is one more simplification we can do.

The process introduced below differs from the original Collatz proposition, however,
it produces the same results. To distinguish it from the above explanations, symbol
An is used as an element of the iterations.

Starting from any positive integer A0, we do not need to constantly divide by 2pn .
To keep this process aligned with the orginal Collatz conjecture, instead of always
adding 1, we have to add the least significant nonzero bit of An. By this, we allow
An to increase, ultimately reaching, instead of 1, integer in the form of 2p, where p
is a positive integer.
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Table 4. Improved Collatz conjecture - iterations without divisions.

n An (An)b 3An (3An)b pn (2pn )b 3An + 2pn (3An + 2pn )b On

0 11 1011 33 100001 0 1 34 100010 17

1 34 100010 102 1100110 1 10 104 1101000 13

2 104 1101000 312 100111000 3 1000 320 101000000 5

3 320 101000000 960 1111000000 6 1000000 1024 10000000000 1

4 1024 10000000000

Notice that corresponding odd integers are still present in such iterations in column
On in Table 4. They are also visible in column (3An + 2pn)b in bold, but for each
iteration they are multiplied by constantly increasing powers of 2.

Formal definition of this improved Collatz conjecture is presented below.

Definition 3.2. For any positive integer A0 if iterating

(3.3) An+1 = 3An + lsb(An),

where lsb(An) is the least significant nonzero bit of An, ultimately we get An = 2p,
where p is positive integer.

This way we have two equivalent methods of iterating the Collatz conjecture.
The first one, proposed in (3.2), is a simplified version of (1.1) that only skips
all even numbers and, as original, finally reaches 1. The second one, without any
divisions by 2, proposed in (3.3), ultimately reaches 2p, where p is a positive integer.
In this case, the result in binary representation is just 1 followed by the sequence of
zeros. Each of these two methods have exactly the same number of steps
as they are strictly connected.

Example 3.3. In Table 5, we see a comparison of iterations through both methods
side by side; without divisions (3.3) as An and with divisions (3.2) as On, starting
from 11.

Table 5. Equivalence of Collatz iterations without divisions An

and with divisions On starting from 11.

n An (An)b On (On)b
0 11 1011 11 1011
1 34 100010 17 10001
2 104 1101000 13 1101
3 320 101000000 5 101
4 1024 10000000000 1 1
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Example 3.4. In Table 6, we see a comparison of iterations through both methods
side by side; without divisions (3.3) as An and with divisions (3.2) as On, starting
from 57.

Table 6. Equivalence of Collatz iterations without divisions An

and with divisions On starting from 57.

n An (An)b On (On)b
0 57 111001 57 111001
1 172 10101100 43 101011
2 520 1000001000 65 1000001
3 1568 11000100000 49 110001
4 4736 1001010000000 37 100101
5 14336 11100000000000 7 111
6 45056 1011000000000000 11 1011
7 139264 100010000000000000 17 10001
8 425984 1101000000000000000 13 1101
9 1310720 101000000000000000000 5 101

10 4194304 10000000000000000000000 1 1

Example 3.5. Relations between An, On, lsb(An) and msb(An) are shown in the
example below:

An︷ ︸︸ ︷
On︷ ︸︸ ︷

1001010000000︸ ︷︷ ︸
lsb(An)

↑︸ ︷︷ ︸
msb(An)

An is the entire integer, all bits in binary notation,
On is the odd base of An, which are only bits between first and last nonzero bits,
lsb(An) is the least significant nonzero bit of An in the form of 2p,
msb(An) is the most significant bit of An in the form of 2q,
where p, q are positive integers.

4. Elaboration on Improved Collatz conjecture

Considering iterations of An through the improved Collatz conjecture proposed
in (3.3) a very interesting feature can be seen. The least significant nonzero bit
lsb(An) is almost always just a small fraction of An. Therefore, the most significant
bit msb(An) tends to grow with coefficient on average close to 3 with each iteration.
Using the improved Collatz conjecture

An+1 = 3An + lsb(An),

we usually get

(4.1)
lsb(An)

An
≈ 0,
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therefore, we can say that on average

(4.2) msb(An+1) ≈ 3 ·msb(An).

Small deviations from this rule can be observed, when interactions with other bits
of lower significance occur (especially when On is small), which can temporarily
make this coefficient slightly higher.

On the other hand, the least significant bit lsb(An), being a part of An, is each
time multiplied by 3 and additionally increased by adding lsb(An). Therefore, the
least significant bit of An tends to grow with coefficient on average close to 4 with
each iteration.

When iterating

(4.3) An+1 = 3An + lsb(An)

on average, we have

lsb(An+1) ≈ 3 · lsb(An) + lsb(An)

≈ 4 · lsb(An).
(4.4)

A deviation from this rule can occur through interactions with other bits of An.
The coefficient can be temporary much higher than 4, when a sequence of bits in
the form of ”...10101010101” appears at the end of On which is a part of An (see
Figure 2 for A0). In this case, we can observe a rapid shortening of An. This coef-
ficient can also be temporarily smaller, when a sequence of consecutive 1’s appears
at the end of On. In this case, this coefficient is temporarily equal 2, until number
of 1’s is reduced one by one in the following iterations (compare Table 9).

Even if both described dependencies can be temporarily disturbed, eventually in
a large number of iterations they become very evident. As a result of their in-
teractions, the distance between the most significant bit msb(An) and the least
significant nonzero bit lsb(An) gets shortened.

Notice that a difference in lengths between msb(An) and lsb(An) represents the
length of On in bits.

We see

(4.5) msb(An)− lsb(An)→ 0, as n→∞,

and

(4.6) msb(An) / lsb(An)→ 1, as n→∞.
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Example 4.1. Comparison of growth trends between the most significant bit
msb(An) and the least significant nonzero bit lsb(An).

Figure 1. Comparison of growth trends between msb(An) and
lsb(An) starting from 57.

Figure 2. Comparison of growth trends between msb(An) and
lsb(An). Special case when An contains a sequence of bits
”...1010101”.

When initial integer A0 is very big, on average

(4.7)
msb(An+1)

msb(An)
= 3

and on average

(4.8)
lsb(An+1)

lsb(An)
= 4,
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we can propose a formula to estimate the number of iterations required to reach
On = 1, which means An = 2p, where p is a positive integer.
When using binary numbers, we know that each position represents a power of 2.
Multiplication by 3 extends the length of a number by

(4.9) log2(3) = 1.584963.

By continuous multiplication of a binary number by 3, its length increases on av-
erage by 1.584963 bits(positions) per operation.

We check how fast the least significant bit lsb(An) increases its length, we have

(4.10) log2(4) = 2.

We see that by continuous multiplication of the least significant nonzero bit by 4,
its length increases on average by 2 bits(positions) per operation. We calculate how
fast lsb(An) approaches msb(An).

We have

(4.11) 2− 1.584963 = 0.415037,

thus lsb(An) is on average 0.415037 bits(positions) closer to msb(An) per iteration.
Note that a number of needed iterations can be bigger, when at the end of A0 we
have a sequence of consecutive 1’s ”...1111111”, or it can be dramatically smaller,
when at the end we have a sequence of alternating 0 and 1 ”...01010101”.

Example 4.2. Starting from A0, which is 20000 bits long, we can predict how many
times we have to iterate, through the improved version of the Collatz conjecture
(3.3), until we finally reach On = 1 (which means An = 2p, where p is a positive
integer). To approximate a number of iterations, we have to divide the length of
A0 in bits by 0.415037, in this case

(4.12)
20000

0.415037
≈ 48188.

Exact number of required operations depends on detailed structure of bits in a
particular initial integer. However, for big initial integers that do not end with
consecutive 1’s or alternating sequences of 0 and 1, exact number of iterations
should be very close to an estimated one. In practice, starting from A0, which was
created as randomly generated 20000 bits, the exact number of operations needed
to reach 1 was 48043, which is only around 0.3% different from the estimated one.

On Figure 3, we see how length of On, in number of bits, decreases when iterating
initial integer A0 consisting of 20000 random bits.

Length of On, is the difference in bits between the length of msb(An) and the length
of lsb(An) and decreases with almost perfect accuracy (see Figure 3). However,
when we look closer at first 1000 iterations on Figure 4, we see local fluctuations.
It is even more visible on Figure 5, where only first 100 iterations are presented.

Above elaboration, together with analysis of ending sequences of 1’s, ”...111111”
described in Section 7 of this work, can be enough to proof the Collatz conjecture,
however it is not used for this purpose in this work. It is only presented for better
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understanding how integers are processed iterating through the Collatz formula and
what we can observe when analyzing their binary representations.

Figure 3. Decrease of On length for 20000 bits long initial A0

Figure 4. Decrease of On length for 20000 bits long initial A0

(first 1000 iterations).
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Figure 5. Decrease of On length for 20000 bits long initial A0

(first 100 iterations).

5. Proof of Theorem 1.1

Proof. For any positive integer I0, we find its base odd integer using (2.7) and it is

(5.1) O0 =
I0

lsb(I0)
.

Value of lsb(I0) is in the form of 2p, where p ≥ 0 and p = 0 when I0 is odd, thus

(5.2) O0 =
I0
2p

,

where p ≥ 0.

We iterate this odd positive integer O0 through simplified Collatz conjecture
presented in equation (3.2). We have

(5.3)
3

3
3

3
3O0+1

2p0
+1

2p1
+1

2p2 + 1
...

2
pn−2

+1

2pn−1 = 1,

and On is odd for every n, so (3On + 1) is always even, therefore

(5.4) p0, p1, p2, ..., pn−2, pn−1 ≥ 1.
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Equation (5.3) can be also presented like this

(5.5)

(((((
(3O0 + 1)

3

2p0
+ 1

)
3

2p1
+ 1

)
3

2p2
+ 1

)
...

)
3

2pn−2
+ 1

)
1

2pn−1
= 1.

By performing simple algebraic transformations we get

(5.6)
3nO0 = (2pn−12pn−22pn−3 ... 2p12p0)− (2pn−22pn−3 ... 2p12p0) 30−
− (2pn−3 ... 2p12p0) 31 − · · · − 2p12po3n−3 − 2po3n−2 − 3n−1.

Now, we can substitute O0 from (5.2)

3n I0
2p = (2pn−12pn−22pn−3 ... 2p12p0)− (2pn−22pn−3 ... 2p12p0) 30 − ...
− (2pn−3 ... 2p12p0) 31 − · · · − 2p12po3n−3 − 2po3n−2 − 3n−1,

and multiply both sides by 2p

3nI0 = (2pn−12pn−22pn−3 ... 2p12p02p)− (2pn−22pn−3 ... 2p12p02p) 30 − ...
− (2pn−3 ... 2p12p02p) 31 − · · · − 2p12po2p3n−3 − 2po2p3n−2 − 2p3n−1.

We substitute the following:

2pn−12pn−22pn−3 ... 2p12p02p = 2mn ,

2pn−22pn−3 ... 2p12p02p = 2mn−1 ,

2pn−3 ... 2p12p02p = 2mn−2 ,

...

2p12po2p = 2m2 ,

2po2p = 2m1 ,

2p = 2m0 ,

(5.7)

where all p0, p1, p2, ..., pn−2, pn−1 ≥ 1 and p ≥ 0.

We finally have

(5.8) 3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 and m0 can eventually be 0,
when I0 is odd.

�

6. Procedure

We consider the following procedure.

Procedure 1.

Step 1. Take any positive integer A0 and define B0 = 0, C0 = lsb(A0) (the least
significant nonzero bit of A0 in its binary representation). Let our initial equation
be

(6.1) A0 = A0 − B0 .
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Step 2. Multiply both sides of equation by 3

(6.2) 3A0 = 3A0 − 3B0.

Step 3. On the right side of equation we add C0 to A and B sections

(6.3) 3A0 = (3A0 + C0) − (3B0 + C0).

This is still a valid equation because B0 = 0 and C0 elements cancel each other.

Step 4. We name A and B sections as A1 and B1, so we have

(6.4) 31A0 = A1 − B1,

where

A1 = 3A0 + C0,(6.5)

B1 = 3B0 + C0,(6.6)

and

(6.7) C0 = lsb(A0).

Step 5. By repeating steps 2 to 4, we get universal equations for iteration n

(6.8) 3nA0 = An − Bn,

where

An = 3An−1 + Cn−1,(6.9)

Bn = 3Bn−1 + Cn−1,(6.10)

Cn−1 = lsb(An−1).(6.11)

By definition, Cn−1 is the least significant nonzero bit of An−1, so

(6.12) 0 < Cn−1 ≤ An−1,

thus

(6.13) 3An−1 < An ≤ 4An−1.

Notice that for every iteration n

An > Bn,(6.14)

An > 3An−1,(6.15)

Bn > 3Bn−1,(6.16)

Cn ≥ 2Cn−1,(6.17)

we can continue this procedure forever.
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Remark 6.1. When increasing index from n to n + 1 and calculating

An+1 = 3An + Cn

we have

lsb(An) = Cn,

also

lsb(3An) = Cn,

but

lsb(3An + Cn) = Cn+1,

therefore

Cn+1 ≥ 2Cn.

General rule for increase of Cn when iterating Procedure 1 is

(6.18) Cn+1 = 2p·Cn,

where p is a positive integer.

Note that minimal possible change of Cn as n increases is

(6.19) Cn+1 = 2·Cn.

Example 6.2. Minimal change of Cn.
We check how Cn increases starting from 3. For the initial value An = 3 we have

Cn = lsb(An) = lsb(3) = lsb(11b) = 20 = 1.

We see that in the next iteration it is

Cn+1 = lsb(3An + Cn) = lsb(10) = lsb(1010b) = 21 = 2.

In this case the change of Cn is minimal

Cn+1 = 21Cn.

Example 6.3. Non-minimal change of Cn.
Now we check how Cn increases starting from 5. For the initial value An = 5 we
have

Cn = lsb(An) = lsb(5) = lsb(101b) = 20 = 1.

We see that in the next iteration it is

Cn+1 = lsb(3An + Cn) = lsb(16) = lsb(10000b) = 24 = 16.

In this case the change of Cn is non-minimal

Cn+1 = 24Cn.



LESZEK MAZUREK 17

7. Series of the consecutive minimal changes of Cn

Remark 7.1. When iterating through Procedure 1, we see that the number of con-
secutive minimal changes of Cn (when Cn+1 = 2Cn) is limited by the number of
consecutive nonzero bits attached to lsb(An) in binary representation of An. This
dependency can be formulated as follows.

The number of consecutive minimal changes of Cn is equal to N(An),
the number of consecutive nonzero bits attached to lsb(An) in An (see
Definition 2.14).

In case when there are no nonzero bits attached to lsb(An), we have Cn+1 > 2Cn

(see Table 7 for A3 and A4, where we have corresponding 4 and 4 in the column
Cn+1/Cn). The number of consecutive minimal changes of Cn in example below
(number of 2’s in Cn+1/Cn) is equal to N(A0).

Example 7.2. In this case N(A0) = 3, thus the number of consecutive minimal
changes of Cn is 3.

Table 7. Relation between N(An), the number of consecutive
nonzero bits attached to lsb(An), and the number of consecutive
minimal changes of Cn.

n An N(An) 3An Cn Cn+1/Cn

0 101111b 3 10001101b 1b 2
1 10001110b 2 110101010b 10b 2
2 110101100b 1 10100000100b 100b 2
3 10100001000b 0 111100011000b 1000b 4
4 111100100000b 0 10110101100000b 100000b 4
5 10110110000000b 1 1000100010000000b 10000000b ...
... ... ... ... ... ...

Example 7.3. In this case N(A0) = 2, thus the number of consecutive minimal
changes of Cn is 2.

Table 8. Relation between how many times Cn+1

Cn
= 2 and N(An).

n An N(An) 3An Cn Cn+1/Cn

0 1110b 2 101010b 10b 2
1 101100b 1 10000100b 100b 2
2 10001000b 0 110011000b 1000b 4
3 110100000b 0 10011100000b 100000b 8
4 10100000000b 1 111100000000b 100000000b ...
... ... ... ... ... ...

Remark 7.4. Notice that as we iterate and n→∞, each time N(An) decreases to
0, gets new value and decreases to 0 again and so on ... (compare Example 7.6).
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Remark 7.5. Notice that for every iteration n, for which N(An) = 0, we have
Cn+1/Cn > 2.

Example 7.6. We check initial iterations of number 27 (11011b) using the Proce-
dure 1. In Table 9, we see how N(An) decreases to 0. When N(An) is greater than
0, Cn has minimal change (Cn+1 = 2Cn). When N(An) reaches 0, change of Cn is
not minimal (Cn+1 > 2Cn).

Table 9. N(An) decreases to 0 in series, as n→∞.

n An N(An) Cn+1/Cn

0 11011 1 2
1 1010010 0 4
2 11111000 4 2
3 1011110000 3 2
4 100011100000 2 2
5 1101011000000 1 2
6 101000010000000 0 4
7 1111001000000000 0 4
8 101101100000000000 1 2
9 10001001000000000000 0 4

10 110011100000000000000 2 2
11 10011011000000000000000 1 2
12 111010010000000000000000 0 4
13 10101111000000000000000000 3 2
14 1000001110000000000000000000 2 2
15 11000101100000000000000000000 1 2
16 1001010001000000000000000000000 0 ...
... ... ... ...

Remark 7.7. As explained above, minimal change of Cn requires a series of 1’s at
the end of On, which decreases with each iteration. To achieve constantly minimal
change of Cn we need an infinitely long series of 1’s. For every integer, such series is
always limited, therefore inevitably after sequence of minimal changes of Cn,where
Cn+1 = 2Cn, we have bigger change, where Cn+1 > 2Cn.

8. Series of Bn

We check how Bn grows, assuming C0 = 1 and constantly minimal change
of Cn which is

(8.1) Cn+1 = 2Cn,

for every n.
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Table 10. Change of Bn with n→∞, when Cn+1 = 2Cn.

n Bn Cn 3Bn + Cn

0 0 20 20

1 20 21 3120 + 21

2 3120 + 21 22 3220 + 3121 + 22

3 3220 + 3121 + 22 23 3320 + 3221 + 3122 + 23

4 3320 + 3221 + 3122 + 23 24 3420 + 3321 + 3222 + 3123 + 24

5 3420 + 3321 + 3222 + 3123 + 24 25 3520 + 3421 + 3322 + 3223 + 3124 + 25

From Table 10, we get the following formula

(8.2) Bn = 3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1,

assuming a minimal change of Cn

(8.3) Cn+1 = 2Cn,

and

(8.4) C0 = 20 = 1.

As explained earlier (Remark 7.7), as n → ∞, Cn+1 can not always equal 2Cn, so
we check how Bn grows when bigger change of Cn occurs every so often.

Table 11. Change of Bn, as n→∞, when Cn+1 does not always
equal 2Cn.

n Bn Cn Cn+1/Cn

0 0 20 21

1 20 21 21

2 3120 + 21 22 22

3 3220 + 3121 + 22 24 21

4 3320 + 3221 + 3122 + 24 25 23

5 3420 + 3321 + 3222 + 3124 + 25 28 22

6 3520 + 3421 + 3322 + 3224 + 3125 + 28 210 21

7 3620 + 3521 + 3422 + 3324 + 3225 + 3128 + 210 211

8 3720 + 3621 + 3522 + 3424 + 3325 + 3228 + 31210 + 211

In Table 11, we see the influence of non minimal changes of Cn on Bn. In all
cases, without any artificial assumptions about minimal changes of Cn, formula for
Bn is

(8.5) Bn= 3n−1·2m0 + 3n−2·2m1 + 3n−3·2m2 + ... + 31·2mn−2 + 30·2mn−1

and differences between consecutive m’s can be greater than 1. This can be
presented as a condition for m’s to be integers and

(8.6) mn−1 > mn−2 > ... > m1 > m0 ≥ 0.
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9. Equation for 3n

Theorem 9.1. For every positive integer n, 3 to the power of n can be expanded
into a sequence

(9.1) 3n = 3n−1·20 + 3n−2·21 + 3n−3·22 + ... + 31·2n−2 + 30·2n−1 + 2n,

which can also be presented as

3n =

n−1∑
k=0

(
3n−1−k2k

)
+ 2n.(9.2)

Remark 9.2. Notice that in (9.1), all differences between consecutive powers of 2
are strictly equal to 1.

Proof. For n = 1, we have

31 = 30· 20 + 21

= 1 + 2

= 31.

To see a bit more complicated case, for n = 2, we have

32 = 31· 20 + 30· 21 + 22

= 3 + 2 + 4

= 9

= 32.

Assuming it is true for n, we check if it is true for n + 1. We start from

3n = 3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1 + 2n | (· 3).

After multiplication on both sides by 3

3n+1 = 3n· 20 + 3n−1· 21 + 3n−2· 22 + ... + 32· 2n−2 + 31· 2n−1 + 3· 2n

= 3n· 20 + 3n−1· 21 + 3n−2· 22 + ... + 32· 2n−2 + 31· 2n−1 + (2 + 1)· 2n

= 3n· 20 + 3n−1· 21 + 3n−2· 22 + ... + 32· 2n−2 + 31· 2n−1 +
(
2 + 30

)
· 2n

= 3n· 20 + 3n−1· 21 + 3n−2· 22 + ... + 32· 2n−2 + 31· 2n−1 + 30· 2n + 2n+1.

Now we substitute n + 1 = w

(9.3) 3w = 3w−1· 20 + 3w−2· 21 + 3w−3· 22 + ... + 31· 2w−2 + 30· 2w−1 + 2w,

which proves that formula (9.1) is correct. �

10. Limit of An

Bn

Lemma 10.1. When iterating Procedure 1 for any initial positive integer A0 we
have

(10.1)
An+1

Bn+1
<

An

Bn

for all n > 0.
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Proof. From (6.9) and (6.10) we have

(10.2) An+1 = An

(
3 +

Cn

An

)
and

(10.3) Bn+1 = Bn

(
3 +

Cn

Bn

)
.

From (6.14)
An > Bn

for all n > 0, so (
3 +

Cn

An

)
<

(
3 +

Cn

Bn

)
,

therefore (
3 + Cn

An

)
(

3 + Cn

Bn

) < 1.

Dividing (10.2) by (10.3)

(10.4)
An+1

Bn+1
=

An

Bn
·

(
3 + Cn

An

)
(

3 + Cn

Bn

)
and finally

(10.5)
An+1

Bn+1
<

An

Bn
,

for all n > 0. �

Lemma 10.2. When iterating Procedure 1 for any initial positive integer A0 we
have

(10.6) lim
n→∞

An

Bn
= 1.

Notice that we always have

(10.7) Cn = 2pn ·Cn−1

where pn is positive integer and

(10.8) C0 = 2p0 , p0 ≥ 0.

Proof. We analyse

lim
n→∞

An

Bn
.

From (6.8)
An = 3nA0 + Bn,
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so

lim
n→∞

An

Bn
= lim

n→∞

3nA0 + Bn

Bn

= lim
n→∞

(
Bn

Bn
+

3nA0

Bn

)
= lim

n→∞

(
1 +

3nA0

Bn

)
.

(10.9)

Substituting Bn from (8.2) and 3n from (9.1) we have

lim
n→∞

(
1 +

3nA0

Bn

)

= lim
n→∞

(
1 +

(3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1 + 2n)A0

3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1

)
.

Notice that the above substitution for Bn is correct only under condition that Cn

equals 2Cn−1 for every n and C0 = 1, see (8.3) and (8.4).

One can check that

3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1

grows much faster than 2n as n→∞, so

lim
n→∞

(
3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1 + 2n

3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1

)
= 1,

which makes:

lim
n→∞

(
1 +

(3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1 + 2n)A0

3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1

)

= 1 + A0.

Finally, we have

(10.10) lim
n→∞

An

Bn
= 1 + A0,

when

(10.11) Cn = 2Cn−1

for every n and

(10.12) C0 = 1.

For any initial A0, the condition (10.11) is impossible to be fulfilled, when n→∞
(see Remark 7.4, Remark 7.1 and Remark 7.7). After certain number of repetitions
(see Remark 7.5) Cn > 2Cn−1 always occurs. Whenever Cn > 2Cn−1 occurs, value
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of Bn in equation (10.9) grows gradually, faster than the value of 3n. We use the
equation presented in (8.5)

(10.13) Bn = 3n−1· 2m0 + 3n−2· 2m1 + 3n−3· 2m2 + ... + 31· 2mn−2 + 30· 2mn−1

and

mn−1 > mn−2 > ... > m2 > m1 > m0 ≥ 0.

In above representation of Bn, differences between consecutive powers of 2 can be
greater than 1, while in formula for 3n, the difference between consecutive powers
of 2 is always equal to 1, as n → ∞ (compare with Remark 9.2). Therefore, we
have

(10.14) 3n � Bn, as n→∞,

which is

(3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1 + 2n)

� (3n−1· 2m0 + 3n−2· 2m1 + 3n−3· 2m2 + ... + 31· 2mn−2 + 30· 2mn−1),

thus

lim
n→∞

(
3nA0

Bn

)
= lim

n→∞

(
3n−1· 20 + 3n−2· 21 + 3n−3· 22 + ... + 31· 2n−2 + 30· 2n−1 + 2n

3n−1· 2m0 + 3n−2· 2m1 + 3n−3· 2m2 + ... + 31· 2mn−2 + 30· 2mn−1

)
= 0.

Finally,

lim
n→∞

An

Bn
= lim

n→∞

(
1 +

3nA0

Bn

)
= lim

n→∞
(1 + 0)

= 1

(10.15)

when

(10.16) Cn = 2pn ·Cn−1,

where pn is an positive integer and

(10.17) C0 = 2p0 , p0 ≥ 0.

�

Lemma 10.3. Starting from any positive integer, when iterating Procedure 1, such
iteration number k exists, that for all following iterations n

(10.18)
An

Bn
< 4

and then

(10.19) An = 2p,where p ∈ Z+.
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Proof. When starting Procedure 1 from any positive integer A0, the condition for
An to be in a form of 2p (where p is positive integer) is such that the least significant
nonzero bit of An is

(10.20) lsb(An) = Cn = An.

From (6.9) and (6.10) we have

(10.21) An+1 = 3An + Cn

and

(10.22) Bn+1 = 3Bn + Cn.

We substitute Cn = An, so

An+1 = 3An + An(10.23)

= 4An,

Bn+1 = 3Bn + An.(10.24)

We extract An from (10.24)

An = Bn+1 − 3Bn

and substitute in (10.23)

An+1 = 4An

= 4(Bn+1 − 3Bn)

= 4Bn+1 − 12Bn.

We divide both sides by Bn+1, to get

(10.25)
An+1

Bn+1
= 4− 12Bn

Bn+1
.

Now, we substitue from (6.8)

An = 3nA0 + Bn

in (10.24), so

Bn+1 = 3Bn + An

= 3Bn + 3nA0 + Bn

= 4Bn + 3nA0.

Finally, we substitute Bn+1 in (10.25)

(10.26)
An+1

Bn+1
= 4− 12Bn

4Bn + 3nA0
.

When n→∞, from (10.14) we have

(10.27) 3n � Bn,
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so

(10.28)
12Bn

4Bn + 3nA0
→ 12Bn

4Bn
→ 3,

which gives

(10.29)
An+1

Bn+1
→ 4− 3→ 1

from (10.26) and it produces the same result, which is already proven in Lemma
10.2. On the other hand, when 3nA0 is still comparable or bigger than 4Bn, we
have

(10.30)
12Bn

4Bn + 3nA0
> 0,

which means that

(10.31)
An+1

Bn+1
= 4− 0+ < 4.

We see that condition for An to be in a form of 2p, leads us to an ultimate condition

(10.32)
An+1

Bn+1
< 4.

From Lemma 10.1, we get that An

Bn
is continuously decreasing, so we formulate the

final conclusion.

When iterating Procedure 1, as n→∞, at certain iteration k, we have lsb(Ak) =
Ak. For all next iterations, where n > k

(10.33)
An

Bn
< 4

and also

(10.34) An = 2p,

where p is a positive integer.
�

11. Proof of Theorem 1.2

Proof. We start with any positive integer I0, let A0 = I0. We start Procedure 1.
Iterating this procedure, as n→∞ we have

(11.1) 3nA0 = An − Bn

from (6.8) also

(11.2) An > Bn

from (6.14) and

(11.3) lim
n→∞

An

Bn
= 1

from Lemma 10.2.
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In binary notation, such situation occurs only when:
An is a single bit in the form of 2mn , where mn ∈ Z+ and
Bn is the sum of almost all bits 2pn , where 0 ≤ pn < mn, as follows

(An)b = 100000000000000...,

(Bn)b = 11111111111111....

From Lemma 10.3, we know that when iterating Procedure 1, such k exists, that
for all following iterations n, where n > k

(11.4)
An

Bn
< 4

and then An is in the form of

(11.5) An = 2p

where p is a positive integer.

Therefore, for all n > k we substitute in (11.1), An = 2mn and Bn from (10.13),
we finally have

3nA0 = 2mn − (3n−1· 2m0 + 3n−2· 2m1 + ... + 31· 2mn−2 + 30· 2mn−1)

= 2mn − 3n−1· 2m0 − 3n−2· 2m1 − ...− 31· 2mn−2 − 30· 2mn−1 .
(11.6)

Now we sort elements and substitute A0 = I0 to conclude.

For any initial I0, such positive integer k exists that for every positive integer n > k
sequence of integers

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0

exists, for which

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1.

�

12. Extension of Theorem 1.2

Theorem 12.1. For every initial positive integer I0, an infinite number of equa-
tions exists that satisfies Theorem 1.2, therefore, it can be extended in an infinite
number of ways to form the following expression
(12.1)

I0 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1

3n
,

where n is a positive integer and all m’s form a sequence of integers that

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

Proof. The proof of Theorem 1.2 confirms that. �
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13. Examples

Presented below are various examples of positive integers, confirming the Theo-
rems proven above.

(13.1) 36·9 = 213 − 2930 − 2631 − 2432 − 2333 − 2234 − 2035

(13.2) 37·9 = 215 − 21330 − 2931 − 2632 − 2433 − 2334 − 2235 − 2036

(13.3) 38·9 = 217 − 21530 − 21331 − 2932 − 2633 − 2434 − 2335 − 2236 − 2037

312·6541 = 232 − 22830 − 22531 − 22332 − 22233 − 22134 − 21735

−21536 − 21337 − 21038 − 2939 − 23310 − 20311
(13.4)

(13.5) 37·435 = 220 − 21630 − 21131 − 21032 − 2933 − 2434 − 2135 − 2036

34127 = 270 − 26630 − 26131 − 26032 − 25933 − 25634 − 25235

−25036 − 24837 − 24438 − 24339 − 242310 − 241311 − 238312

−237313 − 236314 − 235315 − 234316 − 233317 − 231318 − 230319

−228320 − 227321 − 226322 − 223323 − 221324 − 220325 − 219326

−218327 − 216328 − 215329 − 214330 − 212331 − 211332 − 29333

−27334 − 26335 − 25336 − 24337 − 23338 − 21339 − 20340

(13.6)

334·121 = 261 − 25730 − 25231 − 25132 − 25033 − 24734 − 24335

−24136 − 23937 − 23538 − 23439 − 233310 − 232311 − 229312

−228313 − 227314 − 226315 − 225316 − 224317 − 222318 − 221319

−219320 − 218321 − 217322 − 214323 − 212324 − 211325 − 210326

−29327 − 27328 − 26329 − 25330 − 23331 − 22332 − 20333

(13.7)
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3174·8388607 = 2299 − 229530 − 229031 − 228932 − 228833 − 228534

−228135 − 227936 − 227737 − 227338 − 227239 − 2271310 − 2270311 − 2267312

−2266313 − 2265314 − 2264315 − 2263316 − 2262317 − 2260318 − 2259319 − 2257320

−2256321 − 2255322 − 2252323 − 2250324 − 2249325 − 2248326 − 2247327 − 2245328

−2244329 − 2243330 − 2241331 − 2240332 − 2236333 − 2235334 − 2234335 − 2233336

−2232337 − 2229338 − 2227339 − 2225340 − 2224341 − 2223342 − 2221343 − 2219344

−2218345 − 2214346 − 2213347 − 2207348 − 2206349 − 2204350 − 2201351 − 2200352

−2198353 − 2197354 − 2196355 − 2195356 − 2193357 − 2190358 − 2187359 − 2185360

−2184361 − 2183362 − 2180363 − 2179364 − 2178365 − 2173366 − 2172367 − 2171368

−2170369 − 2169370 − 2168371 − 2166372 − 2165373 − 2163374 − 2162375 − 2160376

−2158377 − 2157378 − 2151379 − 2150380 − 2148381 − 2147382 − 2146383 − 2145384

−2143385 − 2139386 − 2138387 − 2131388 − 2130389 − 2128390 − 2126391 − 2123392

−2122393 − 2121394 − 2120395 − 2119396 − 2118397 − 2117398 − 2116399 − 21143100

−21133101 − 21123102 − 21083103 − 21073104 − 21053105 − 21023106 − 21013107

−21003108 − 2993109 − 2983110 − 2943111 − 2933112 − 2913113 − 2903114 − 2893115

−2873116 − 2863117 − 2843118 − 2833119 − 2813120 − 2803121 − 2783122 − 2743123

−2723124 − 2713125 − 2693126 − 2673127 − 2663128 − 2653129 − 2613130 − 2603131

−2593132 − 2583133 − 2573134 − 2563135 − 2543136 − 2533137 − 2523138 − 2493139

−2463140 − 2423141 − 2403142 − 2393143 − 2363144 − 2343145 − 2323146 − 2303147

−2293148 − 2283149 − 2243150 − 2223151 − 2213152 − 2203153 − 2193154 − 2183155

−2173156 − 2163157 − 2153158 − 2143159 − 2133160 − 2123161 − 2113162 − 2103163

−293164 − 283165 − 273166 − 263167 − 253168 − 243169 − 233170 − 223171 − 213172

−203173

(13.8)
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Figure 6. Decreasing An

Bn
→ 1, as n→∞ for A0 = 27.

Figure 7. Decreasing An

Bn
→ 1, as n→∞ for A0 = 121.
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Figure 8. Decreasing An

Bn
→ 1, as n→∞ for A0 = 8388607.
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