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We show that there exists a magnetic monopole in the U(1) geometrical optics as a consequence of the
magnetic symmetry in a (4 + d)-dimensional unified space where the magnetic symmetry is a consequence
of the extra internal symmetry. This magnetic symmetry restricts the gauge potential. The restricted
(decomposed) gauge potential is made of the scalar potential as the unrestricted electric part and the vector
potential as the restricted magnetic part. We also show that the refractive indices can be formulated in
relation to the decomposed gauge potential. We treat the curvature in the curvature-refractive index relation
of the U(1) geometrical optics as an Abelian curvature form in the fibre bundle.
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Dirac proposed, due to symmetrical reasoning in
the Maxwell’s theory of electromagnetism, there exist
a magnetic symmetry appears as a charged magnetic
monopole1,2. Inspired by Dirac’s idea, the magnetic sym-
metry was formulated as a self-consistent subset of a
local, a non-Abelian SU(2) gauge theory in a (4 + d)-
dimensional unified space3. A (4 + d)-dimensional uni-
fied space is a (3 + 1)-dimensional external space-time,
i.e. a (3 + 1)-dimensional curved space-time, plus a d-
dimensional internal (isometry group, G) space4.

The formulation of a self-consistent subset, a local, a
non-Abelian SU(2) gauge theory in a (4+d)-dimensional
unified space3, roughly speaking, looks like a local, a non-
Abelian SU(N) Yang-Mills theory5 where the choice of
the simple Lie group G = U(1) reduces the Yang-Mills
theory to the Maxwell’s theory6. The role of a magnetic
symmetry of the SU(2) local gauge theory in a (4 + d)-
dimensional of unified space, is to restrict the gauge po-
tential3.

To the best of our knowledge, the geometrical optics is
formulated without including the magnetic symmetry7–13.
The geometrical optics (the eikonal equation) can be
derived from the Maxwell equations8. Because of the
Maxwell’s theory is a local14, an Abelian U(1) gauge
theory and the eikonal equation can be derived from the
Maxwell equations, we argue that the geometrical optics
is also a local, an Abelian U(1) gauge theory, there exist
a magnetic symmetry and a magnetic monopole in the
geometrical optics.

The gauge theory can be viewed as the general theory
of relativity in a higher-dimensional unified space which
consists of a (3+1)-dimensional external space-time plus
a d-dimensional internal (isometry group, G) space3. If
the metric tensor, gµν (µ, ν = 1, 2, .., 4 + d), in a (4 + d)-
dimensional unified space has a d-dimensional isometry
group whose Killing vector fields span the internal space,
the general theory of relativity becomes the gauge theory
of the isometry group in curved space-time3.

Let us choose the d Killing vector fields, ξi (i =
1, 2, .., d) to satisfy the canonical commutation relations

of the isometry group, G3

[ξi, ξj ] = f k
ij ξk (1)

By definition, these Killing vector fields must also satisfy3

£ξi gµν = 0, (i = 1, 2, .., d) (2)

where £ξi is the Lie derivative along the direction of ξi.
The existence of the Killing vector fields means the

existence of an isometric mapping. A mapping of the
space-time onto itself is an isometric mapping, if the
Lie derivative of the metric tensor associated with it, as
shown in eq.(2), vanishes15. It means that the space-
time have an intrinsic symmetry15 (2). If we relate the
intrinsic symmetry (2) with the homogeneity principle16,
the homogeneity of space implies identical metric proper-
ties at all points of the space. An exact definition of the
homogeneity of space involves considering set of coordi-
nate transformations that transform the space into itself,
i.e. leave its metric unchanged10. We will call, from now
on, an intrinsic symmetry (2) as an internal symmetry.

A magnetic monopole is formulated using the gener-
alized gauge theory (i.e. the d Killing vector fields are
not kept to be orthonormal) which has an extra internal
symmetry made of some additional Killing vector fields,
which are internal and which commute with the already
existing fields, ξi. Let us assume that there exists only
one such vector field denoted by m. By assumption3 that
m commutes with the already existing fields, ξi, we ob-
tain

[m, ξi] = 0, (i = 1, 2, .., d) (3)

and in analogy with the definition (2)

£m gµν = 0 (4)

where £m is the Lie derivative along the direction of m.
The existence of the additional Killing vector field, m,
means the existence of an extra internal symmetry15 (4).

Since m is assumed to be internal3, we have

m = mi ξi (5)



We see from eq.(5), because m and ξi are vectors then mi

should be a scalar. The commutation relation (3) tells
us that the multiplet, m̂, made of the components, mi

m̂ =


m1

m2

.

.
md

 (6)

must form an adjoint representation of the group3.
Roughly speaking, the multiplet is nothing but vector
representation.

As a consequence of the extra internal symmetry (4)
there exist a magnetic symmetry3, which can be written
mathematically, as below

Dµm̂ = ∂µm̂+ g ~Bµ × m̂ = 0 (7)

where ~Bµ is the gauge potential of the isometry group,
G. What about the value of the multiplet, m̂? Let us
assume for simplicity that the d Killing vector fields, ξi,
are orthonormal to each other with respect to the metric
tensor, gµν . With this simplification, the magnetic sym-
metry (7) implies, among others, that the multiplet, m̂,
must have a constant length3

m̂2 = constant (8)

which we can choose to be the unit without loss of gen-
erality.

The extra internal symmetry (4) or in turn the mag-
netic symmetry (7) restricts the gauge potential3. To
see how the magnetic symmetry (7) restricts the gauge

potential, ~Bµ, let us consider, for simplicity, the case
when the isometry group is SU(2). In case of SU(2), the

magnetic symmetry (7) can be solved exactly for ~Bµ as
follow3

~BSU(2)
µ = ASU(2)

µ m̂SU(2) − 1

g
m̂SU(2) × ∂µm̂SU(2) (9)

where A
SU(2)
µ is the (Abelian) component of ~B

SU(2)
µ . We

see that the gauge potential (9) is made of two parts, i.e.

the unrestricted part, a scalar, A
SU(2)
µ , and the other part

which is completely determined by the magnetic sym-

metry, a vector, m̂SU(2). We will call A
SU(2)
µ , electric

and m̂SU(2), magnetic3. The restricted gauge potential,
~B
SU(2)
µ , with Aµ = 0 and m̂SU(2) = r̂SU(2) describes pre-

cisely the Wu-Yang magnetic monopole17. Here, r̂SU(2)

as m̂SU(2) must have a constant length which we can
choose to be unit without loss of generality.

The corresponding field strength, ~G
SU(2)
µν , of the

~B
SU(2)
µ (9) is3

~GSU(2)
µν

= ∂µ ~B
SU(2)
ν − ∂ν ~BSU(2)

µ + g ~BSU(2)
µ × ~BSU(2)

ν (10)

We see that the third term on the right hand side of
eq.(10) is the non-Abelian (non-commutative) term what

produces the non-linear term in the equation18. This
term is the main difference compare to the field strength
of the Maxwell’s theory which is Abelian.

In a (4 + d)-dimensional unified space, for the geomet-
rical optics approximation (short wavelength, λ → 010),
the four-vector potential is replaced by the gauge po-

tential, ~Bµ, and the related field strength, ~Gµν , can be
represented respectively as12,13,19

~Bµ = aµ e
iψ (11)

and

~Gµν = ∂µ ~Bν − ∂ν ~Bµ (12)

where a phase (an eikonal), ψ(x, y, z, t), and a slowly
varying function of coordinates and time, an amplitude,
aµ

9, are represented in a (4 + d)-dimensional unified
space. Here, a space-time covariant derivative, ∇µ11,
is replaced by the covariant derivative of a (4 + d)-
dimensional unified space, ∂µ. We see from eq.(11), the
amplitude, aµ, has the same dimension as the displace-
ment from equilibrium20, the oscillating variable21, the

gauge potential ~Bµ.
In case of a steady monochromatic wave, the

frequency22 is constant and the time dependence of the
eikonal, ψ, is given by a term −fθt where fθ is a no-
tation for (angular) frequency9. Let us introduce ψ1, a
function, which is also called eikonal9. The relation be-
tween ψ1 and ψ can be expressed as9

ψ1 =
c

fθ
ψ + ct (13)

where the eikonal, ψ1, is a function of coordinates only9

and c is the speed of light in vacuum. The eikonal in a
(3 + d)-dimensional unified space (without time) is de-
noted by ψ1(x, y, z, d).

The equation of ray propagation in a transparent
medium can be written in relation with the refractive
index, n, as below8,9

|~∇ψ1| = |~n| = n (14)

where n is a scalar, ~∇ is a notation for gradient. Because
ψ1 is a function of coordinates only, then the refractive in-
dex is also a function of coordinates only. More precisely,
the refractive index is a smooth continuous function of
the position23. In a 3-dimensional space, the refractive
index is denoted by n(x, y, z).

The equation (14) is called the eikonal equation8,9, i.e.
a type of the first order linear partial differential equation.
The analysis of partial differential equation for steady
state is very important e.g. for formulating the Atiyah-
Singer index theorem, an effort for finding the existence
and uniqueness of solutions to linear partial differential
equations of elliptic type on closed manifold24. Because,
as we will see, the refractive index is related with the
curvature and we can apply the magnetic symmetry to
the formulation of the refractive index, so probably, we
could apply the magnetic symmetry of geometrical optics

2



to the curvature part of the Atiyah-Singer index theorem.
Progress work was reported25.

Let us formulate the eikonal, ψ1, in the (4 + d)-
dimensions of unified space. Because the eikonal, ψ1, is
a function of coordinates only (it is time-independent),
so it becomes a (3+d)-dimensional eikonal, ψ1(x, y, z, d),
which lives in a (4 + d)-dimensional unified space. The

gradient operator, ~∇, in eq.(14) is replaced by the covari-
ant four-gradient, ∂µ. So, eq.(14) becomes

|∂µψ1| = |~nµ| = n (15)

where µ runs from 1 to 4+d by considering that the time
components of ψ1 and n are zero.

We see from eq.(15), the refractive index is a scalar, a
real number. The zeroth rank tensor (scalar) of the re-
fractive index describes an isotropic linear optics26. But,
the refractive index can be not simply a scalar27. The re-
fractive index can also be a second rank tensor which de-
scribes that the electric field component along one axis
may be affected by the electric field component along
another axis27. The second rank tensor of the refractive
index describes an anisotropic linear optics26.

Our works28,29 show that the second rank tensor of the
refractive index is a consequence of the fourth rank to-
tally covariant tensor of Riemann-Christoffel curvature,
Rµνρσ. Naturally, it means that the fourth rank to-
tally covariant tensor of Riemann-Christoffel curvature
describes an anisotropic linear optics. In this article, we
will work with the refractive index as a scalar related to
the second rank tensor of Ricci curvature where we apply
the magnetic symmetry to the refractive index. This work
could be extended to the second rank tensor of refractive
index related with the fourth rank totally covariant ten-
sor of Riemann-Christoffel curvature.

In analogy with SU(N) Yang-Mills theory, the choice
of the simple Lie group, G = U(1) reduces a local, a
non-Abelian SU(2) gauge theory in a (4+d)-dimensional
unified space to the Maxwell’s theory, a local, an Abelian
U(1) gauge theory in a (4+d)-dimensional unified space.
We obtain from eqs.(9), (10) that the restricted U(1)
gauge potential and its related field strength can be rep-
resented respectively as

~BU(1)
µ = AU(1)

µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1) (16)

and

~G U(1)
µν = ∂µ ~B

U(1)
ν − ∂ν ~B U(1)

µ (17)

where A
U(1)
µ is the electric potential part of the U(1)

gauge potential, a scalar, which is not restricted by the
magnetic symmetry (7) and m̂U(1) is the multiplet or the
magnetic potential part of the U(1) gauge potential, a
vector, which is completely determined by the magnetic

symmetry (7). Both, A
U(1)
µ and m̂U(1), live in a (4 + d)-

dimensional unified space.
In analogy with the Wu-Yang monopole in the SU(2)

Yang-Mills theory, if we set A
U(1)
µ = 0 and m̂U(1) = r̂U(1)

in the restricted U(1) gauge potential, ~B
U(1)
µ (16), then

the restricted U(1) gauge potential, ~B
U(1)
µ , describes

the gauge potential of magnetic monopole of the U(1)
Maxwell’s theory.

As we mention previously that the eikonal equation of
the geometrical optics can be derived from the Maxwell
equations, it has a consequence that the field strength of

the geometrical optics, ~Gµν (12), and the field strength

of the Maxwell’s theory, ~G
U(1)
µν (17), in principle are the

same i.e. both are fields30. In turn, it has a consequence

that we can replace ~Gµν by ~G
U(1)
µν . In other words, we

can replace the gauge potential, ~Bµ (11), by the restricted

U(1) gauge potential, ~B
U(1)
µ (16). If we replace ~Bµ by

~B
U(1)
µ then eq.(11) becomes

~B U(1)
µ = aµ e

iψ (18)

Eq.(18) expresses the U(1) gauge potential of the geomet-
rical optics in a (4 + d)-dimensional unified space. This
U(1) gauge potential of the geometrical optics (18) is
the same as the restricted U(1) gauge potential of the
Maxwell’s theory in a (4 + d)-dimensional unified space
(16). The related field strength of the geometrical optics
has the same form as the field strength of the Maxwell’s
theory (17) where the gauge potential of the geometrical
optics is given by (18).

Eq.(18) can now be written as

~BU(1)
µ aµ = aµ a

µ eiψ = a2 eiψ = eiψ (19)

where aµ is a complex conjugate of a complex vector
amplitude, aµ, and a is a scalar amplitude31 which we
can take its value as 1. Using Euler’s formula, eq.(19)
can be written as

cosψ + i sinψ = ~BU(1)
µ aµ (20)

Eq.(20) shows us that ~B
U(1)
µ aµ is a complex function. To

simplify the problem, we take the real part32 of (20) only,
we obtain

cosψ = Re ( ~BU(1)
µ aµ) (21)

where ψ in eq.(21), i.e. phase (eikonal or ”gauge”) is an
angle. This angle has value

ψ = arccos
[
Re
(
~BU(1)
µ aµ

)]
(22)

Substituting eqs.(22), (16) into eq.(13), we obtain

c

fθ
arccos

{
Re

[(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
aµ
]}

+ ct = ψ1 (23)

If we substitute eq.(23) into eq.(15), then the eikonal
equation (15) becomes∣∣∣∣∂ν ( c

fθ
arccos

{
Re

[(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
aµ
]}

+ ct)| = n (24)
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where n is a dimensionless quantity, a scalar, a real num-
ber, i.e. a function of (3 + d)-coordinates which lives in
a (4 + d)-dimensional unified space.

Eq.(24) shows us that the refractive index is decom-
posed into the unrestricted electric part and the restricted
magnetic part by the magnetic symmetry (7). This mag-
netic symmetry is a consequence of the extra internal
symmetry of a (4 + d)-dimensional unified space (4). In

analogy with the Maxwell’s theory, if we set A
U(1)
µ = 0

and m̂U(1) = r̂U(1) in the restricted gauge potential then

the restricted gauge potential, ~B
U(1)
µ (16), describes the

gauge potential of magnetic monopole of the U(1) geo-
metrical optics as below

~BU(1)
µ = −1

g
r̂U(1) × ∂µr̂U(1) (25)

The form of the gauge potential of magnetic monopole
of the U(1) geometrical optics is precisely the same as
the gauge potential of magnetic monopole of the U(1)
Maxwell’s theory.

The equation of ray propagation in a steady state can
also be derived from the Fermat’s principle9

δψ1 = 0 (26)

We obtain from the Fermat’s principle (26), the
curvature-refractive index relation as below9,33,34

1

R
= N̂ ·

~∇n
n

(27)

where n is a scalar, the same as n in the eikonal equa-
tion (14), (15), N̂ is the unit vector along the principal
normal, R is the radius of curvature. 1/R is the curva-
ture of a 1-dimensional space, κ(R) = 1/R. We see that
eq.(27) is a type of the first order non-linear partial dif-
ferential equation. The nonlinearity is due to the form of

n−1 ~∇n. Physically, eq.(27) says that the rays are bent
in the direction of increasing the refractive index 9,35.

The dimension of curvature of eq.(27) can be extended
to any arbitrary number of dimensions36. In the (4 + d)-
dimensions of unified space, eq.(27) can be written as

Rµν = g Nµ ∂ν lnn (28)

where Rµν is the second rank tensor of Ricci
curvature15,37, a function of the metric tensor gµν and
g = |(det gµν)|, is a scalar, a real number. Why do we
formulate the curvature in eq.(28) as the second rank
tensor of Ricci curvature? It is because of the related
refractive index in eq.(28) is the zeroth rank tensor, a
scalar.

Why do we need to formulate a curvature in a fibre
bundle? Actually, the fibre bundle and the gauge theory
are developed independently. Until it was realized that
the curvature in the fibre bundle and the field strength
in Yang-Mills theory are identical38. Simply speaking,
the curvature in the fibre bundle is the field strength
in the gauge theory. Because we treat the geometrical

optics as the U(1) gauge theory so we need to formu-
late the curvature in the curvature-refractive index rela-
tion of the U(1) geometrical optics as the Abelian curva-
ture form in the fibre bundle. Probably, this is another
reason why we do really need to formulate the curva-
ture in the curvature form of the fibre bundle instead
of the Riemann-Christoffel curvature tensor. The curva-
ture form in the fibre bundle is able to be an Abelian (or
a non-Abelian) which is not for the Riemann-Christoffel
curvature tensor39.

The curvature form, Ωρσ, can be written as40,41

Ωρσ =
∑

Rρσµν du
µ ∧ duν (29)

where Rµνρσ is the fourth rank tensor of Riemann-
Christoffel curvature, uµ, uν are local coordinates and ∧
is a notation of wedge product. If we reformulate eq.(28)
using the eq.(29) and a relation of Rµν = gρσRρσµν , we
obtain

Ωρσ =
∑

g gρσ Nµ ∂ν lnn duµ ∧ duν (30)

Eq.(30) shows the relation between the scalar refractive
index and the curvature form in a (4 + d)-dimensional
unified space formulated in the fibre bundle.

Let us introduce the general form of the curvature ma-
trix, Ω, which can be written as below40

Ω = dω − ω ∧ ω (31)

where ω is the connection matrix. We see that eq.(31) is
identical with eq.(10). Both equations are non-Abelian,
non-linear equations, where the curvature matrix, Ω, is

identical with the field strength, G
SU(2)
µν and the con-

nection matrix, ω, is identical with the gauge potential,
~B
SU(2)
µ . Roughly speaking, in case of the U(1) gauge

theory42, we have

Ω = dω (32)

Is there a relationship between the curvature matrix, Ω
(31), and the curvature form, Ωρσ (29)? Yes, there is43.
If ωρσ and Ωρσ denote the components of the connection
and the curvature matrices, ω and Ω, respectively40,41,44,
then we can write

Ωρσ = dωρσ − ω τ
ρ ∧ ωτσ (33)

In case of the U(1) gauge theory, from eqs.(32),(33), we
have

Ωρσ = dωρσ (34)

Eq.(34) is the equation of Abelian curvature form.
Substituting eq.(34) into eq.(30), we obtain

dωρσ =
∑

g gρσ Nµ ∂ν lnn duµ ∧ duν (35)

where n is given below∣∣∣∣∂ν ( c

fθ
arccos

{
Re

[(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
aµ
]}

+ ct)| = n (36)
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as in eq.(24). Eq.(35) shows explicitly the relation be-
tween a scalar refractive index and the Abelian curvature
form.

We see from eqs.(35), (36), the refractive index is
decomposed into the unrestricted scalar electric poten-

tial, A
U(1)
µ , and the restricted vector magnetic potential,

m̂U(1). The decomposed refractive index also contains
an information of the magnetic monopole as a topolog-
ical object. So, what is the consequence of the decom-
posed refractive index to the Abelian curvature form? Is
the Abelian curvature form also decomposed? Does the
Abelian curvature form also contain an information of
the topological object? If the answer of these questions
are positive, what is the topological object in the Abelian
curvature form? What does it mean physically?
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