Magnetic symmetry of geometrical optics
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We propose that there exist a magnetic monopole as a consequence of the magnetic symmetry of the
geometrical optics in the (4 + d)-dimensions of unified space. The magnetic symmetry is a consequence of the
extra internal symmetry. The magnetic monopole is formulated using the generalized gauge theory made of
an additional Killing vector field, which is internal and commute with the already existing fields. The extra
internal symmetry restricts the internal metric and the gauge potential. The restricted gauge potential is
made of the unrestricted electric part and the restricted magnetic part. As the consequence of the restricted
gauge potential, the refractive index in the eikonal equation and in the refractive index-curvature relation
are decomposed. The related curvature is treated as Abelian because the geometrical optics is an Abelian
physical system.
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Dirac proposed, due to symmetrical reasoning in the
Maxwell’s theory of electromagnetism, there exist mag-
netic symmetry appears as magnetic monopole which has
magnetic charge ~. Inspired by Dirac idea of the mag-
netic monopole, the magnetic symmetry was formulated
as the SU(2) local gauge theory, non-Abelian theory in
the (4 + d)-dimensions of unified space’. The (4 + d)-
dimensions of unified space is the (3 4+ 1)-dimensions of
external space-time, i.e. the (3+ 1)-dimensions of curved
space-time, plus the d-dimensions of internal (isometry
group, G) space”.

The formulation of the SU(2) local gauge theory,
non-Abelian theory in the (4 + d)-dimensions of unified
space”, roughly speaking, looks like the SU(N) Yang-
Mills theory” where the choice of the simple Lie group
G = U(1) reduces the Yang-Mills theory to the Maxwell’s
theory”. The role of magnetic symmetry of the SU(2)
local gauge theory, non-Abelian theory in the (4 + d)-
dimensions of unified space, is to restrict the gauge po-
tential”.

To the best of our knowledge, the geometrical optic-
s (the eikonal equation) is formulated without including
the magnetic symmetry'~ The eikonal equation can
be derived from the Maxwell equations”. Because of the
Maxwell’s theory is U(1) local'® gauge theory, Abelian
theory, and the eikonal equation can be derived from the
Maxwell equations, we argue that the geometrical optics
is also the U(1) local gauge theory, Abelian theory, there
exist the magnetic symmetry and the magnetic monopole
in the geometrical optics.

The gauge theory can be viewed as the general theory
of relativity in a higher-dimension of unified space which
consists of the (3 + 1)-dimensions of external space-time
plus d-dimensions of internal (isometry group, G) space.
If the metric tensor, g,.,(u,v = 1,2,..,4 4+ d), in this
(4 + d)-dimensions of unified space has an d-dimensions
of isometry group whose Killing vector fields span the
internal space, the general theory of relativity becomes the

gauge theory of the isometry group in curved space-time”.

Let us choose the d Killing vector fields, & (i =
1,2,..,d) to satisfy the canonical commutation relations
of the isometry group, G

(6,651 = £, & (1)
By definition, these Killing vector fields must also satisfy
"gfi Guv = 07 (Z = 172a 7d) (2)

where £g, is the Lie derivative along the direction of &;.
The existence of the Killing vector fields means the ex-
istence of an isometric mapping, i.e. a mapping of the
space-time onto itself. It means that the space-time have
an intrinsic symmetry'” (2). We will call, from now on,
an intrinsic symmetry as an internal symmetry.

If we assume that the d Killing vector fields, &;, are or-
thonormal to each other with respect to the metric ten-
SOT, guu, SO that the internal metric, ¢, (i,k =1,2,..,d)
of the d-dimensions of internal space

bik = & &K Guv 3)

becomes the Cartan-Killing form. In general, if the d
Killing vector fields are not kept to be orthonormal, so
that the internal metric (3) is left arbitrary, then we have,
in addition to the gauge fields, the internal gravitons, ¢;,
as non-trivial dynamical fields in the theory. This theory
is called the generalized gauge theory”.

The magnetic monopole is formulated using the gener-
alized gauge theory which has an extra internal symme-
try made of some additional Killing vector fields, which
are internal and which commute with the already exist-
ing fields, &;. Let us assume that there exists only one
such wvector field denoted by m. By assumption” that m
commutes with the already existing fields, &;, we obtain

m,&] =0, (i=12,.,d) (4)
and in analogy with the definition (2)
£m g =0 (5)



where £,, is the Lie derivative along the direction of m.

The existence of the additional Killing vector field, m,

means the existence of an extra internal symmetry'” (5).
Since m is assumed to be internal”, we have

m=m'§ (6)

The commutation relation (4) tells us that the multiplet,
m, made of the components, m*

= . (7)

The extra internal symmetry (5) restrict the internal
metric (3) as well as, we will see, the gauge potential”.
The extra internal symmetry (5) has consequence that
there exist the magnetic symmetry”, which can be written
mathematically, as below

Dyin = 8,1+ gB, x i =0 (8)

where B:L is the gauge potential of the isometry group,
G. What about the value of the multiplet, m? Let us
assume for simplicity that the internal metric, ¢, is of
the Cartan-Killing form. It means that, as we mention
above, we assume that the d Killing vector fields, &;, are
orthonormal to each other with respect to the metric ten-
sor, g,,. With this simplification, the magnetic sym-
metry (8) implies, among others, that the multiplet, 1,
must have a constant length

m? = constant (9)
which we can choose to be the unit without loss of gen-
erality.

Previously, we mention that the role of magnetic sym-
metry is to restrict the gauge potential. To see how the
magnetic symmetry (8) restricts the gauge potential, Bl,
let us consider, for simplicity, the case when the isometry
group is SU(2). In case of SU(2), the magnetic symme-
try (8) can be solved exactly for B’# as follow

= 1
BfU(Q) — AiU(?) mSU(?) _ ngU(Q) % 8ﬂmSU(2)(10)

where AEU@) is the (Abelian) component of EEU(Q)
which is not restricted by the magnetic symmetry (8).
We see that the gauge potential (10) is made of two
parts, i.e. the unrestricted part, A,, and the other part
which is completely determined by the magnetic sym-
metry. We will call the unrestricted part, A,, electric
and the other part which is completely restricted by the
magnetic symmetry, magnetic’. The restricted gauge po-
tential, ESU(Q), with AEU(Q) = 0 and SV = pSUR)
describes precisely the Wu-Yang magnetic monopole
Here, 79V as 1mSY(2) must have a constant length which
we can choose to be unit without loss of generality.

The corresponding field strength, C_v",‘i,,U (2), correspond-
ing to the SU(2) gauge potential (10) is

GSu(2)
ng
— 8ALBVSU(2) _8,,B§U(2) +ngU(2) % BVSU(z) (11)

We see that the third term on the right hand side of e-
q.(11) is the non-Abelian (non-commutative) term what
produces the non-linear term in the equation' ‘. This ter-
m is the main difference compare to the field strength of
the Maxwell’s theory which is Abelian.

In the (3 4 1)-dimensions of space-time, for the geo-
metrical optics approximation (short wavelength, A —
0'Y), the four-vector potential, EW and the related field

strength, G’)LW can be represented respectively as' =

EM =a, " (12)

and
Gu =V,.B,—V,B, (13)

where ¢ (z,y, z,t) is phase (eikonal) and amplitude, a,,
is a slowly varying function of coordinates and time’.
V. denotes a space-time covariant derivative . We see
from eq.(12), the amplitude, a,, has the same dimension
as the displacement from equilibrium'”, the oscillating
variable”", the four-vector potential B},

In case of a steady monochromatic wave, the
frequency”" is constant and the time dependence of the
eikonal, 1, is given by a term —wt where w is a notation
for (angular) frequency’. Let us introduce v, a func-
tion, which is also called etkonal”’. The relation between
11 and ¥ can be expressed as

,l/}i

1= —
w

c

Y+t (14)

where the eikonal, 1)1, is a function of coordinates only”.
In the 3-dimensions of space it is denoted by 1 (z,y, 2).

The equation of ray propagation in a transparent medi-
um can be written in relation with the refractive index,
n, as below™

V| = |7 = n (15)

where n is a scalar, V is a notation for gradient. Because
11 is a function of coordinates only, then the refractive
index is also a function of coordinates only. More precise-
ly, the refractive index is a smooth continuous function
of the position”~. In the 3-dimensions of space, the re-
fractive index is denoted by n(z,y, 2).

The equation (15) is called the eikonal equation™", i.e.
a type of the first order linear partial differential equation.
The analysis of partial differential equation for steady
state is very important e.g. for formulating the Atiyah-
Singer index theorem, an effort for finding the existence
and uniqueness of solutions to linear partial differential
equations of elliptic type on closed manifold”’. Because,
as we will see, the refractive index is related with the
curvature and we can apply the magnetic symmetry to



the formulation of the refractive index, so probably, we
could apply the magnetic symmetry of geometrical optics
to the curvature part of the Atiyah-Singer index theorem.
Progress work was reported

Let us formulate the eikonal, 7, in the (4 + d)-
dimensions of unified space. Because the eikonal, 11, is a
function of coordinates only (it is time-independent), so
P1(x,y, z) becomes the (3 + d)-dimensions eikonal which
lives in the (4 + d)-dimensions of unified space. The gra-
dient operator, V, in eq.(15) transforms to the covariant
four-gradient, d,. So, eq. (15) becomes

0,91] = [, =n (16)

where v runs from 1 to 44 d by considering that the time
components of ¢, and n are zero.

We see from eq.(16), the refractive index is a scalar, a
real number. The zeroth rank tensor (scalar) of refractive
index describes isotropic linear optics”’. But, the refrac-
tive index can be not simply a scalar®®. The refractive
index can also be expressed as a second rank tensor which
describes that the electric field component along one axis
may be affected by the electric field component along an-
other axis™”. The second rank tensor of refractive index
describes anisotropic linear optics

Our works”>*® show that the second rank tensor of
refractive index is a consequence of the fourth rank to-
tally covariant tensor of Riemann-Christoffel curvature,
R, 0. Naturally, it means that the fourth rank total-
ly covariant tensor of Abelian Riemann-Christoffel cur-
vature describes the anisotropic linear optics. In this
article, we will work with the refractive index as a s-
calar related with the second rank tensor of Abelian Ricci
curvature where we apply the magnetic symmetry to the
refractive index. This work could be extended to the
second rank tensor of refractive index related with the
fourth rank totally covariant tensor of Abelian Riemann-
Christoffel curvature.

In analogy with SU(N) Yang-Mills theory, the choice
of the simple Lie group, G = U(1) reduces the SU(2)
local gauge theory, non-Abelian theory in the (4 + d)-
dimensions of unified space to the Maxwell’s theory,
U(1) local gauge theory, Abelian theory in the (4 + d)-
dimensions of unified space. We obtain from egs.(10),
(11) that the restricted U(1) gauge potential and its re-
lated field strength can be represented respectively as

- 1
BYW = AU mUQ) EmUU x 3,V (17)
and
GY®Y =09,BY" -9,B" (18)

where Ag(l) is the electric potential part of the U(1)
gauge potential which is not restricted by the magnet-
ic symmetry (8) and mY() is the multiplet or magnetic
potential part of the U(1) gauge potential which is com-
pletely determined by the magnetic symmetry (8). Both,

Ag(l) and MmUY are the d-dimensional physical objects

which live in the (4 4+ d)-dimensions of unified space. In
analogy with the Wu-Yang monopole, if we treat the re-
stricted gauge potential, EU(l) (17), with AU(U =0 and
mP M) = #U(M) then the restricted gauge potential, BU(l)
describes the magnetic monopole of the U(1) Maxwell S
theory.

As we mention previously that the eikonal equation of
the geometrical optics can be derived from the Maxwell
equations, it has a consequence that the field strength of

the geometrical optics, G wv (13), and the field strength of

the Maxwell’s theory, G, " (18), in principle are same
i.e. both are ﬁelds . In turn, it has a consequence that
we can replace G,“, with G U(l). In other words, we
2), with the
restricted U (1) gauge potential, B v (17). If we replace

BE'M with ég( ) then eq.(12) becomes

BE'MU(D =a, e (19)

can replace the four-vector potential B}L (1

Eq.(19) expresses U(1) gauge potential of the geometrical
optics in the (4 4+ d)-dimensions of unified space. This
U(1) gauge potential of the geometrical optics (19) is
the same as the restricted U(1) gauge potential of the
Maxwell’s theory in the (4 + d)-dimensions of unified s-
pace (17). The related field strength of the geometri-
cal optics has the same form as the field strength of the
Maxwell’s theory (18) where the gauge potential is given
by (19).
Eq.(19) can be written as

eV = ég(l) a;l (20)

Using Euler’s formula, eq.(20) can be written as
cosyp +isingy = 55(1) a;l (21)
Eq.(21) shows us that ég(l)a;1 is a complex function.

To simplify the problem, we take the real part’ of (21)
only, we obtain

cos ) = BU(l) (22)

where ¢ in eq.(22), i.e. phase (eikonal or "gauge”) is an
angle. This angle has value

¥ = arccos (ég(l) a;l) (23)
Substituting eqs.(23), (17) into eq.(14), we obtain
< arccos {(Ag(l) MV — Zpt ) Oum v ) a, 1}
w

+ ot = (24)

If we substitute eq.(24) into eq.(16), then the eikonal
equation (16) becomes

0 < arccos AU(l) RV _ 2 U@ Ot U@
v w g u,

+ct}=n (25)




where n is a dimensionless quantity, a scalar, a real num-
ber, i.e. a function of (3 + d)-coordinates which lives in
the (4 + d)-dimensions of unified space. Eq.(25) shows
us that the refractive index is decomposed into the un-
restricted electric part and the restricted magnetic part
by the magnetic symmetry (8). This magnetic symmetry
(8) is a consequence of the extra internal symmetry of
the (4 + d)-dimensions of unified space (5). In analogy
with the Mazwell’s theory, if we treat the restricted gauge
potential, Eg(l) (17), with A,[{(l) =0 and mVM = U@
then the restricted gauge potential, Eg(l), describes the
magnetic monopole of the U(1) geometrical optics as be-
low

- 1
By = — p UM 9,7V (26)

The equation of ray propagation in a steady state
can also be derived from the Fermat’s principle, 01, =

07-°'. We obtain the refractive index-curvature relation
as below”
1 N v/%
—=N.— 27
7 - (27)

where n here is a scalar, the same as n in the eikonal
equation (15), (16), N is the unit vector along the prin-
cipal normal, R is the radius of curvature. 1/R is the
curvature of 1-dimension of space, k(R) = 1/R. We see
that eq.(27) is a type of the first order non-linear partial
differential equation. The nonlinearity is due to the form
of n=1 Vn. Physically, eq. (27) says that the rays are bent
in the direction of increasing the refractive index”

The dimension of curvature of eq.(27) can be extended
to any arbitrary number of dimensions’. In the (4 + d)-
dimensions of unified space, eq.(27) can be written as

R,
P2 =N, 9,Inn (28)
g

where R,, is the second rank tensor of Ricci

curvature ”°”) a function of the metric tensor and g =
|(det g, )|, is a scalar, a real number. Why do we formu-
late the curvature in eq.(28) as the second rank tensor
of Ricci curvature? It is because of the related refractive
index in eq.(28) is a scalar.

The second rank tensor of Ricci curvature, R, can be
obtained by contraction from the totally covariant fourth
rank tensor of Riemann-Christoffel curvature, R, o,
which is non-linear, so the second rank tensor of Ricci
curvature is also nmon-linear. The fourth rank tensor of
Riemann-Christoffel curvature, R",,,, is a commutation
relation of covariant derivative operator, VoV ,—V ,V,
and Ry,,, can be obtained from R”,,,, through rela-
tion Ryvpo = guy R7,,,. Here, the metric tensor, g,
is a type of function which takes as input a pair of
tangent vectors We see that nonlinearity is linked
with noncommutativity. Noncommutativity does produce
nonlinearity' . Non-commutative is other name of non-
Abelian. Noncommutativity or non-Abelian analysis will

be useful when we consider the relation between the cur-
vature and the field strength (the gauge potential ). In
turn, the relation of curvature and refractive index.

The refractive index, n, in egs. (25), (28), is a scalar.
So, by substituting n in eq.(25) into eq.(28), we obtain

BUM
0, [C arccos <” + ct
w a,

where the restricted U(1) gauge potential, ELJ (1), is given
by eq.(17). We see from eq.(29), the curvature, which
is shown by the second rank tensor of Ricci curvature,
is related naturally with the restricted gauge potential,
Eg(l). It is in a harmony that the curvature and the field
strength are identical

The related field strength of the restricted U(1) gauge
potential of the geometrical optics, as we mention pre-
viously, has the same form as the field strength of the
Maxwell’s theory which is Abelian, so the field strength
of the geometrical optics is also Abelian. It means that
the geometrical optics is an Abelian physical system. It
has a consequence that the related curvature in the re-
fractive index-curvature relation (29) should be Abelian.
So, the second rank tensor of Ricci curvature, Ry, (29),
is Abelian. The Abelian Ricci curvature means that the
non-linear terms, i.e. the third and the fourth terms, on
the right hand side of the Ricci curvature tensor equation

R,
g

=N, 0,In (29)

below'” vanish
orr ore
_ B up o o
R, = 5o Owv +1%, Fppa -1, r”,. (30)

So, we obtain the second rank tensor of Abelian Ricci
curvature
ore ore
R, = B i (31)
Oxr oxv
where I'”,, is the Christoffel symbol of the second kind
Substituting eq.(31) into eq.(29), the refractive index-
curvature relation (29) becomes

1 ore,, B ore,,
OxP oxv

BE'TLJ(I)
0, [c arccos </ +ct
w a,

where the left hand side of (32) is the Abelian Ricci cur-

vature and gg(l) is the U(1) restricted gauge potential
(17). We interpret that the Abelian Ricci curvature in
the left hand side of (32) is decomposed, as a consequence
that the refractive index (the gauge potential) in the right
hand side of (32) is decomposed.

Symmetry is a fundamental principle in universe, in-
cluding physics. An isometric mapping in geometry has a
consequence that the space-time have an internal symme-
try (2). If we extend the (3+1)-dimensions of space-time
including the d-dimensions of internal (isometry group)

—_

Q

N, O, 1n (32)




space means that we generalize the general theory of rel-
ativity including the gauge theory, then we obtain the
(4 + d)-dimensions of unified space.

The magnetic monopole is formulated using the gen-
eralized gauge theory which has an extra internal sym-
metry (5) made of the extra internal vector field which
is internal and commute with the already existing vector
fields. The extra internal symmetry restricts the internal
metric (as well as the gauge potential) so that the ex-
tra internal vector field has value as a constant length
or we can choose to be the unit without loss of gen-
erality. The existence of extra internal symmetry has
consequence that there exist the magnetic symmetry (8).
The magnetic symmetry can be solved exactly, in case
of SU(2) isometry group, by the SU(2) restricted gauge
potential (10). The restricted gauge potential is made
of two parts, i.e. the unrestricted electric part and the
restricted magnetic part which is completely determined
by the magnetic symmetry. If we set the unrestricted
electric part as zero and we choose the restricted mag-
netic part mSY(2) = #SU(2) then we obtain the Wu-Yang
magnetic monopole.

In analogy with SU(N) Yang-Mills theory, the choice
of the simple Lie group, G = U(1) reduces the SU(2)
local gauge theory, non-Abelian theory in the (4 + d)-
dimensions of unified space to the Maxwell’s theory,
U(1) local gauge theory, Abelian theory in the (4 + d)-
dimensions of unified space. In case of the U(1) restrict-
ed gauge potential, if we set the unrestricted electric
part as zero and we choose the restricted magnetic part
MV = #U() then we obtain the magnetic monopole of
U(1) Maxwell’s theory.

The eikonal equation of the geometrical optics can be
derived from the Maxwell equations. It has the conse-
quence that the field strength of the geometrical optics
and the field strength of the Maxwell’s theory, in prin-
ciple are same, i.e. both are fields. So, we can replace
the field strength of the geometrical optics with the field
strength of the Maxwell’s theory. In turn, the four-vector
potential of the geometrical optics can be replaced with
the restricted gauge potential. At present, the geometri-
cal optics becomes an U(1) local gauge theory, Abelian
theory in the (4+d)-dimensions of unified space, the same
as the Maxwell’s theory. In case of the restricted gauge
theory of the geometrical optics, if we set the unrestricted
electric part as zero and we choose the restricted mag-
netic part mUM = #U() then we obtain the magnetic
monopole of U(1) geometrical optics (26).

The refractive index in the eikonal equation is a di-
mensionless quantity, i.e. a scalar, a single real variable.
The replacement of the four-vector potential of the ge-
ometrical optics with the restricted gauge potential has
consequence that the refractive index is no longer single
real variable but it is decomposed into the unrestricted
electric part and the restricted magnetic part. What does
it imply to our understanding of the refractive index?

We see in this article so far, the ray propagation in
the geometrical optics is descibed by the eikonal equa-

tion with obey the Fermat’s principle and the refractive
index-curvature relation which can be derived from (as a
consequence of) the Fermat’s principle. Both equation-
s are formulated in the steady state (time-independent)
physical system. Could Fermat’s principle apply for a
non-steady state (time-dependent) physical system?

The curvature in the refractive index-curvature rela-
tion is formulated as the second rank tensor of Ricci cur-
vature. Why? It is because of the related refractive index
is a scalar, the zeroth rank tensor. Can the refractive in-
dex in the refractive index-curvature relation be e.g. the
second rank tensor, instead of a scalar? What is the con-
sequence to the curvature if the refractive index is e.g. a
second rank tensor?

In case of the refractive index-curvature relation, be-
cause the geometrical optics is an Abelian physical sys-
tem then the related curvature is also Abelian. The A-
belian curvature means that the non-linear terms of the
Ricci curvature equation vanish. The non-linear terms of
the Ricci curvature equation vanish means that the direc-
tion of related tangent vectors is indistinguishable. So,
the commutation relation of covariant derivative opera-
tor gives result zero, i.e. it is commute. We also interpret
that the Abelian Ricci curvature is decomposed as a con-
sequence that the refractive index (the gauge potential)
is decomposed (32). Is the Abelian Ricci curvature itself
also decomposed?

By considering that the gauge transformation is the
transformation to the gauge potential and the curvature
(actually, the connection on a principal fiber bundle is
identical with the gauge potential’’) is related with the
gauge potential, so could we do ”the gauge transforma-
tion” to the curvature (the connection on a principal fiber
bundle)? What is the consequence of the restricted gauge
potential (the gauge potential decomposition) to the con-
nection on a principal fiber bundle (the curvature)? Is
the connection on a principal fiber bundle also decom-
posed?

We see from eqs.(20), (21), the restricted gauge po-
tential is formulated in relation with a complex function,
e'¥. Without simplifying that we only take the real part,
what is the consequence of this complex function to the
restricted potential, also to the refractive index in the
eikonal equation and to the curvature in the refractive
index-curvature relation? Could the curvature have a
complex value?

We see that the magnetic monopole of the geometri-
cal optics can be obtained from the magnetic symmetry
which is a consequence of the extra internal symmetry. In
analogy with the magnetic monopole of the geometrical
optics, could we obtain all other members of topological
solitons using the same way?

In the refractive index-curvature relation, we see that
the Abelian Ricci curvature is related naturally with the
restricted gauge potential. It is in a harmony that the
curvature and the field strength are identical. If charge
is the fundamental quantity in the gauge field theory and
the metric tensor is the fundamental quantity in the cur-



vature geometry, is there relation between the charge and
the metric tensor?

If the metric tensor can be simplified using the frame
field or tetrad or vierbein, then what is the consequence
of this simplification to the internal symmetry, the mag-
netic symmetry? In turn what is the consequence of this
simplification to the curvature in the refractive index-
curvature relation? Could the frame field or tetrad or
vierbein be generalized?
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