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Abstract
Coupled equations describing diffusion and cross-diffusion of tracer particles in hard-sphere suspen-

sions are derived and solved numerically. In concentrated systems with strong excluded volume and
viscous interactions the tracer motion is subdiffusive. Cross diffusion generates transient perturbations
to the host-particle matrix, which affect the motion of the tracer particles leading to nonlinear mean
squared displacements. Above a critical host-matrix concentration the tracers experience clustering
and uphill diffusion, moving in opposition to their own concentration gradient. A linear stability
analysis indicates that cross diffusion can lead to unstable concentration fluctuations in the suspension.
The instability is a potential mechanism for the appearance of dynamic and structural heterogeneity
in suspensions near the glass transition.

1 Introduction
In complex fluids and colloidal suspensions the diffusion of tracer particles often cannot be
described by classical theories of Brownian motion [1,2]. In concentrated suspensions the mean
squared displacement of the tracer particles is a nonlinear function of time, and the probability
distribution function is non-Gaussian, owing to hydrodynamic and spatial heterogeneity in the
host matrix [1, 3–13]. In order to explore such effects within the generic context of hard-sphere
suspensions, experimental methods such as dynamic light scattering [3] and particle tracking [6] have
been used extensively over the past several decades, as well as molecular dynamics simulations [13]
and statistical mechanical models [1,2]. At high concentrations near the glass transition long-range
viscous interactions between the particles make accurate simulations and experiments challenging,
and there is uncertainty about the origin of the spatial and temporal heterogeneity within the host
matrix [6, 12–16].

In this work a continuum model of anomalous diffusion in hard-sphere suspensions is developed,
in which the differential equations governing diffusion and cross-diffusion of tracer particles in
concentrated suspensions are solved numerically. The model smooths over particle-scale effects
and therefore is relatively simple to solve – requiring the solution of only two coupled, though
nonlinear, parabolic differential equations. Furthermore, the model can simulate the development
of spatiotemporal heterogeneity within the host matrix, and the effect of this on the motion of
the tracer particles. This yields a macroscopic depiction of the coupling effects between the host
matrix and tracer particles, and the onset of anomalous tracer diffusion.

In Section 2 the flux equations describing diffusion and cross-diffusion in suspensions are
briefly reviewed, and in Section 3 the governing conservation equations are described and put
in dimensionless form. The equations are solved in Section 4 for the case of a Gaussian tracer
pulse placed within an initially uniform host matrix, as depicted in figure 1. The macroscopic
shape and time behaviour of the perturbation to the host matrix caused by the tracer particles is
simulated, as well as the feedback effect on the tracer motion. Section 4.2 contains a discussion
of the results and their relation to light scattering and particle tracking experiments. Finally, in
Section 5 a linear stability analysis of the governing equations is undertaken, showing that near
the glass transition an initially uniform suspension is marginally stable to the growth of normal
mode concentration fluctuations.

For God so loved the world, that He gave His only begotten Son, that whosoever believeth in Him
should not perish, but have everlasting life. For God sent not His Son into the world to condemn
the world; but that the world through Him might be saved. John 3:16-17
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Figure 1: Schematic of a Gaussian pulse of hard-sphere tracer particles centred at x = 0 within a
uniform suspension of larger host particles.

2 Diffusion and cross-diffusion in concentrated suspensions
The system to be studied is illustrated in figure 1, in which a uniform suspension of spherical host
particles of radius R1 contains a Gaussian pulse of smaller tracer particles of radius R2 within
the pore space. The flux equations describing diffusion and cross-diffusion of the host and tracer
particles in the one-dimensional system in figure 1 can be written as

J1 = −D11
∂n1
∂x
−D12

∂n2
∂x

, (1a)

J2 = −D21
∂n1
∂x
−D22

∂n2
∂x

, (1b)

where n1 and n2 are the concentrations of the host and tracer particles (number of particles per
unit volume of mixture) [17]. In quiescent systems with zero volume velocity the host particle
flux is J1 = n1u1, where u1 is the average host particle velocity, and J2 = n2u2 is the flux of
tracer particles. In equations (1) D11 and D22 are the Fickian diffusion coefficients of the host and
tracer particles, respectively, while D12 and D21 are cross-diffusion coefficients. Phenomenological
expressions for the diffusion and cross-diffusion coefficients as functions of concentration have been
obtained previously [18], and are briefly summarized below.

2.1 Diffusion coefficients
In the dilute tracer limit n2 → 0, the diffusion and cross-diffusion coefficients in concentrated
hard-sphere suspensions can be written in the approximate form

D11 = D0
1KΠ̂1, D12 = D0

1Kσ/α, (2a,b)

D21 = D0
2(ˆ̀KΠ̂1 − γτ), D22 = D0

2τ, (2c,d)

where D0
i = kBT/(6πRiη0) is the Stokes-Einstein diffusivity of particle i, kB is Boltzmann’s

constant, T is temperature, and η0 is the viscosity of the suspending fluid [18]. In (2a) K is the
dimensionless permeability (viscous mobility) of the host-particle matrix and Π̂1 = Π1/(kBT ) =
d(φ1Z)/dφ1, where Π1 = (∂Π/∂n1)T is the derivative of the host-matrix osmotic pressure Π
with respect to concentration; φ1 = n1v1 is the host-particle volume fraction, v1 = 4

3πR
3
1 is the

volume of a host particle and Z(φ1) is the host-matrix compressiblity factor. In (2b) σ is the
reflection coefficient of the host matrix and α is the equilibrium partition coefficient of the tracer
particles between the pore space and the bulk fluid. In (2c) γ is a preferential interaction coefficient
accounting for excluded volume effects and ˆ̀= φ2`/(λ

2φ1), where φ2 = n2v2 is the tracer-particle
volume fraction, λ = R2/R1 is the ratio of particle sizes and ` = (α + σ − 1)/α is a viscous
cross-diffusion factor between the tracer and host particles. Finally, in (2d) τ is the diffusive
tortuosity factor accounting for viscous hindrance to tracer diffusion within the pore space.
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For spherical particles approximate expressions for the friction and compressibility factors of
the host-particle matrix are

K = (1− φ1)6.55 and Z =
1− aφ1

1− φ1/φp
, (3a,b)

where a = 4− 1/φp and φp = 0.64 is the volume fraction at random close packing. More accurate
expressions for K and Z are available [18]; however, equations (3) have a relatively simple form
similar to that used recently by Worster et al. [19] and will suffice for qualitative purposes. In the
dilute limit φ1 � 1 equations (3) reduce to the exact results K = 1−6.55φ1 and Z = 1+4φ1 [20,21].
Given Z, Π̂1 can be obtained as

Π̂1 = Z + φ1Zφ, where Zφ =
dZ
dφ1

=
4

(1− φ1/φp)2
. (4)

Approximate expressions for the partition coefficient α and preferential interaction coefficient γ
in hard-sphere suspensions are

α = e−b12φ1 and γ = −n2b12v1 = −φ2b12/λ3, (5a,b)

where λ = R2/R1 is the size ratio of the tracer and host particles, b12 = (1+λ)3 is a thermodynamic
coupling coefficient, φ2 = n2v2 is the tracer volume fraction and v2 = 4

3πR
3
2 is the tracer particle

volume. In the limit φ1 → 0 and λ→ 0, (5a) shows that the partition coefficient is equal to the
void fraction, α = 1− φ1. A more general expression for α is obtained in the appendix, where it is
shown that equation (5a) gives qualitatively correct results for all φ1 when λ . 1.

Power law constitutive equations for the diffusive tortuosity factor τ and reflection coefficient σ
in hard sphere suspensions are

τ = (1− λd)aτ and σ = 1− (1− λd)aσ , (6a,b)

where

λd =
3λφ1

cd(1− φ1)
and cd = 3

φg
(1− φg)

(1 + λ2)

(1 + λ)
. (7a,b)

Here λd is the ratio of the tracer size R2 to the locally averaged pore size within the suspension,
Rd = cdRp, where Rp = 3φ1/[R1(1−φ1)] is the physical pore size [22]. The quantity cd is a scaling
factor accounting for fluctuations in the pore size and φg = 0.58 is the volume fraction at the
hard-sphere glass transition. The scaling factor ensures that τ → η0/η in the large tracer limit
R2 →∞, where η(φ1) is the dynamic viscosity of the host suspension. When λd ≥ 1 the tracer
particles are trapped in the pores and τ = 0 while σ = 1. The exponents aτ and aσ in (6) are

aτ =
τ1cd
3λ

and aσ =
σ1cd
3λ

, (8a,b)

where τ1 = 2.5λ/(.22 + λ) and σ1 = b12 − (1 + 3λ+ λ2) + λ2/(1 + λ3). Finally, given α and σ, the
cross-diffusion factor can be obtained as

` =
(σ + α− 1)

α
and ˆ̀=

φ2`

λ2φ1
. (9)

With equations (3)–(9), the diffusion coefficients in (2) can be determined as functions of the
volume fractions φ1 and φ2 and the particle size ratio λ.

3 Governing equations

In figure 1 a Gaussian tracer pulse of width d and concentration n2 = n02e−x
2/2d2 is placed at t = 0

within a uniform matrix of the host particles at initial concentration n01. The flux equations (1)
can be combined with conservation of particle number,

∂ni
∂t

+
∂niui
∂x

= 0 (i = 1, 2), (10)
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to yield two coupled diffusion equations of the form

∂n1
∂t

=
∂

∂x

(
D11

∂n1
∂x

+D12
∂n2
∂x

)
, (11a)

∂n2
∂t

=
∂

∂x

(
D21

∂n1
∂x

+D22
∂n2
∂x

)
. (11b)

Upon replacing the number densities with volume fractions using the relation φi = nivi, and
introducing the dimensionless length and time scales, x̂ = x/d and t̂ = tD0

2/d
2, equations (11) can

be written in dimensionless form as

∂φ1

∂t̂
= λ

∂

∂x̂

(
D̂11

∂φ1
∂x̂

+ λ−3D̂12
∂φ2
∂x̂

)
, (12a)

∂φ2

∂t̂
=

∂

∂x̂

(
λ3D̂21

∂φ1
∂x̂

+ D̂22
∂φ2
∂x̂

)
, (12b)

where D̂ij = Dij/D
0
i and λ = R2/R1 = D0

1/D
0
2.

3.1 Initial and boundary conditions
At t̂ = 0 the host suspension is of uniform volume fraction φ01 giving the initial conditions

φ1 = φ01 and φ2 = φ02e
−x̂2/2 (−∞ < x̂ <∞). (13)

The boundary conditions are

φ1 → φ01 and φ2 → 0 (x̂→ ±∞). (14)

Equations (12)–(14) depend on three dimensionless parameters – the initial volume fractions φ01,
φ02, and the particle size ratio λ.

4 Results
Equations (12)–(14) were solved using the open source GNU Octave package with a method
of lines routine developed by Scheisser and Griffiths [23]; identical results were obtained using
Mathematica’s NDSolve. Figure 2 shows profiles of φi(x̂, t̂) for the case λ = 0.75 with initial volume
fractions corresponding to a concentrated host matrix (φ01 = 0.55) and dilute tracer distribution
(φ02 = 0.01). The solid curves in figure 2a are the computed tracer volume fraction profiles at
t̂ = 0.1 (blue) and t̂ = 100 (red), while the dashed curves are the Gaussian profiles obtained by
setting the cross-diffusion terms to zero (D̂12 = D̂21 = 0). In the absence of cross-diffusion equation
(12b) has the analytical Gaussian solution

φ2(x̂, t̂) =
φ02√

1 + 2D̂22t
exp

(
− x̂2/2

1 + 2D̂22t

)
, (15)

which also gives the dashed curves in figure 2a. At t̂ = 0.1 the solid and dashed curves overlap,
while at t̂ = 100 the tracer concentration profile departs from the Gaussian solution.

The physical origin of the non-Gaussian diffusion at t̂ = 100 is illustrated in figure 2b, which
shows the host-matrix volume fraction profiles computed from equation (12a) at t̂ = 0.1 (blue),
t̂ = 1 (orange) and t̂ = 100 (red). Collective motion of the host particles, induced by the initial
tracer pulse through the cross-diffusion term in (12a), leads to a transient perturbation of the
host-matrix volume fraction in the vicinity of x̂ = 0. This φ1(x̂, t̂) profile in turn affects the tracer
particle’s motion via the cross-diffusion term in (12b).
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Figure 2: Plots of (a) tracer volume fraction φ2(x̂) and (b) host matrix volume fraction φ1(x̂)
at times t̂ = 0.01 (blue), t̂ = 0.1 (orange) and t̂ = 100 (red) for the case φ01 = 0.55, φ02 = 0.01
and λ = 0.75. The dashed curves in (a) are the Gaussian φ2 profiles obtained in the absence of
cross-diffusion.
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Figure 3: (a) Mean squared displacement 〈x̂2〉 computed from equation (16) for the case φ02 = 0.01,
λ = 0.75 and several initial host matrix volume fractions (φ01 = 0.55 (blue); 0.59 (orange); 0.60
(red); 0.605 (green); 0.607 (purple); 0.61 (brown)). (b) Mean squared displacements for the case
φ01 = 0.55 and φ02 = 0.01 and several particle size ratios (λ = 0.75 (blue); 0.85 (orange); 0.95 (red);
1.0 (green); 1.05 (purple)). (c) Mean squared displacements for the case φ01 = 0.55, λ = 1 and
several tracer concentrations (φ02 = 0.0005 (blue); 0.001 (orange); 0.005 (red); 0.008 (green); 0.01
(purple)). The dashed lines in (a)-(c) are the Gaussian MSDs 〈x̂2〉 = 2D̂22t̂ obtained in the absence
of cross-diffusion effects.

4.1 Tracer mean squared displacement
Figure 3 shows the tracer mean squared displacement (MSD), calculated as

〈x̂(t̂)2〉 =

∫ L

−L
x̂2
[
P (x̂, t̂)− P (x̂, 0)

]
dx̂, (16)

where 2L is the domain size and P (x̂, t̂) = φ2(x̂, t̂)/(φ02
√

2π) is the tracer probability density
function (the

√
2π factor ensures that

∫∞
−∞ P (x̂, t̂)dx̂ = 1). The dashed lines show the linear MSD,

〈x̂2〉 = 2D̂22t̂, obtained in the absence of cross diffusion. At early times t̂ . 0.1, the perturbation to
the host particles has not yet become large enough to affect the tracer particles; the tracer diffusion
is Gaussian in this regime and the MSDs are linear. As time increases the host matrix becomes
more heterogeneous and the tracer MSDs become sublinear, implying transient subdiffusive tracer
motion. Figure 3a shows the effect on the MSD of varying the initial host concentration. At volume
fractions below φ01 ≈ 0.55 the MSDs are approximately linear at all times, similar to observations of
anomalous yet Brownian motion [5, 6]. At higher host volume fractions above φ01 = 0.59, however,
the MSDs become increasingly sublinear, similar to experimental observations of tracer subdiffusion
near the glass transition [3, 4, 8, 10].

4.1.1 Clustering

Above φ01 ≈ 0.607 the tracer particles near the origin exhibit clustering; they move at times t̂ > 1
in a direction opposite to their own concentration gradient (uphill diffusion) and the MSD becomes
negative (brown curve in figure 3a). Similarly to cross-diffusion in molecular systems [24], the uphill
diffusion is caused by the interplay between the normal diffusion term and the cross-diffusion term
on the right-hand-side of the tracer conservation equation (12b). For relatively low host volume
fractions φ1 the Fickian D̂22 term dominates and ∂φ2/∂t̂ < 0 everywhere in the system. At host
concentrations above the glass transition φg = 0.58, however, the tracer diffusivity D̂22 approaches
zero and the cross-diffusion D̂21 term begins to dominate, so that ∂φ2/∂t̂ > 0 near the origin.
Another way of interpreting the phenomenon is via the colloidal reflection coefficient σ given by
equation (6a), which approaches 1 as the host volume fraction increases above φg [18]. Therefore the
host particles have a filtration effect on the tracer particles, pushing them out of the high φ1 regions
into the less-concentrated zone at the origin. This effect of the colloidal reflection coefficient on the
tracer diffusion provides a potential physical mechanism for the filtration behaviour observed in
Brownian dynamics simulations of concentrated hard-sphere suspensions by Ariza and Puertas [25].
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Clustering of the tracer particles has also been observed in the molecular dynamics simulations
of Làzaro-Làzaro et al. [26], and experimentally by Sentjabrskaja et al. [10] – these works show
normal Gaussian tracer diffusion at low host concentrations leading to subdiffusion and finally
clustering of the tracer particles at host-matrix concentrations near the glass transition.

4.1.2 Effect of varying the tracer size and concentration

Figure 3b illustrates the effect of varying the tracer/host size ratio λ = R2/R1 in a suspension
with φ01 = 0.55 and φ02 = 0.01. For small tracer particles (λ < 0.8) the particles can diffuse
throughout the pore space; the non-Fickian cross-diffusion term in (12b) is small relative to the
Fickian diffusion term, and the tracer MSDs are linear. As the tracer size increases the diffusion
becomes more significantly affected by the host matrix; the non-Fickian term in (12b) begins
to control the tracer motion while the Fickian term approaches zero. The tracer MSD becomes
increasingly sublinear, leading again to uphill diffusion and clustering at a critical size ratio λc ≈ 1.
A similar transition sequence also occurs by varying the initial tracer concentration φ02. Figure 3c
shows the effect of increasing the tracer concentration in a suspension with φ01 = 0.55 and λ = 1, so
that the tracer particles are of the same size as the host particles (intra-diffusion). In this case also
there is a transition from normal diffusion at sufficiently low tracer concentrations to subdiffusion
and finally clustering as the tracer concentration increases above φ02 = 0.01.

Together these results are suggestive of a dynamic phase transition initiated by a subcritical
instability of the uniform suspension. That is, in the λ = 1 case the Gaussian tracer pulse plays
the role of a small concentration perturbation to the intially uniform host matrix. For sufficiently
dilute trace concentrations or sufficiently low host-matrix concentrations φ01 � φg the perturbation
decays with time and the suspension is stable. However, at a critical host concentration near to or
above the glass transition φg the perturbation tends to grow with time. (The total volume fraction
φT = φ1 + φ2 always decreases with time and is stable.) The possibility that near φg the host
matrix is unstable to concentration fluctuations is explored further in Section 5.

4.2 Discussion
The results in figure 2 depend on the phenomenological expressions for the Dij described in
Section 2.1, and in order to have confidence in them it is necessary to test the expressions for
the diffusion coefficients at the high concentrations studied. Previously it has been shown that
the expression (2d) for the tracer Fickian diffusivity D22 is in good quantitative agreement with
experimental data at volume fractions from dilute up to very near the glass transition φg = 0.58
and for several values of the size ratio λ; also the predicted value of φ1 at which D22 → 0 is in
agreement with experiment both for the case of stationary host particles and mobile particles [18].
The equations for the cross-coefficients D12 and D21 have not yet been tested for hard spheres as
cross-diffusion data are not presently available. Measured cross-diffusion coefficients in polymer
solutions that interact mainly via excluded-volume effects, however, show a qualitatively similar
concentration dependence [27–30]. One significant shortcoming of the expressions for D12 and D21

is the assumption that the equilibrium partition coefficient α can be written in the form of equation
(5a), which is strictly valid only in the dilute limit φ1 � 1 [18]. However, it is shown in the
Appendix that in the case λ ≤ 1 the equation gives qualitatively correct results at concentrations
up to the close-packed limit.

The anomalous diffusion results in figure 2 are nevertheless a very robust feature of the cross-
diffusion model. Qualitatively similar results are obtained, for example, using the more tractable
expressions

D11 = D0
1(1− φ1/φp)−2, D12 = aD0

1φ1, (17a,b)

D21 = bD0
2φ2, D22 = D0

2(1− φ1/φg)2. (17c,d)

In these equations D11 is in a form used by Davis and Russel [31] while the form of D22 was
suggested by Rallison [32], and D12 and D21 with a = b = 3.5 were obtained by Batchelor [17] in
the case λ = 1. These equations satisfy the necessary condition for anomalous diffusion to occur
within the model – the tracer Fickian diffusivity D22 approaches zero as φ1 → φg while D11, D12

and D21 remain finite.
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4.2.1 Dynamic light scattering

The tracer mean squared displacements in figure 3 are qualitatively similar to those observed in
experimental studies and molecular dynamics simulations of anomalous diffusion in hard-sphere
suspensions [3,4,6,8,10,13,26,33]. The physical situations, however, are similar but not equivalent.
Equations (11) simulate the evolution of a macroscopic concentration distribution within the
suspension, while particle tracking experiments and light scattering studies typically explore
the motion of individual particles or microscopic concentration fluctuations in a macroscopically
uniform system [3,6]. For normal Gaussian diffusion the MSD from either approach is the same;
however, in anomalous systems this is no longer the case [34]. Related to this issue is the different
interpretations of gradient diffusion experiments and dynamic light scattering results [35–39].

In dynamic light scattering and particle tracking measurements the particles are observed to
undergo Gaussian diffusion at early times, reflecting cage-rattling, and non-Gaussian diffusion at
later times, via hopping from cage to cage [3, 32]. The continuum model developed here does not
capture particle-scale effects such as cage rattling, but simulates the evolution of a macroscopic
particle concentration distribution. The similarity of the tracer diffusion results to light scattering
measurements of the MSD suggests there may nevertheless be an underlying connection between
cage dynamics and the development of a macroscopic host-matrix perturbation [16]. The effect of
concentration perturbations on the stability of a uniform suspension is explored further in the next
section.

5 Linear stability analysis
In linear stability analysis a uniform suspension with initial concentrations n01 and n02 is perturbed
by small sinusoidal fluctuations in the form of normal modes, such that

n1 = n01 + a1eωt sin kx and n2 = n02 + a2eωt sin kx, (18a,b)

where k and ω are the wave number and growth rate of the perturbation and a1, a2 are the
amplitudes [35,40,41]. If the growth rate ω is less than zero the perturbations decay with time
and the suspension is stable, while if ω > 0 the perturbations grow and the system is unstable;
when ω = 0 the suspension is at marginal stability.

For sufficiently small perturbations (a1, a2 � n01, n
0
2) the diffusion coefficients Dij can be taken

as constants [42,43]. Inserting (18) into (11) then gives

ωa1 = −k2a1D11 − k2a2D12 and ωa2 = −k2a1D21 − k2a2D22. (19a,b)

Eliminating the amplitudes a1 and a2 from (19) and solving the resulting quadratic equation for ω
gives the solutions

ωC = −k2DL
C and ωS = −k2DL

S , (20)
where

DL
C =

1

2

[
(D11 +D22) +

√
(D11 +D12)2 − 4(D11D22 −D12D21)

]
, (21a)

and
DL
S =

1

2

[
(D11 +D22)−

√
(D11 +D22)2 − 4(D11D22 −D12D21)

]
, (21b)

are the long-time collective and self diffusion coefficients measured by dynamic light scattering
experiments [35,37,43]. Setting the growth rate ωS to zero in equation (20) shows that marginal
stability occurs when DL

S = 0. Light scattering experiments showing that DL
S → 0 as the glass

transition is approached [3, 44] suggest that an initially uniform suspension is therefore only
marginally stable to the growth of concentration perturbations.

Requiring DL
S ≥ 0 for stability in (21b) gives

D11D22 −D12D21 ≥ 0, (22)

which is equivalent to the well-known thermodynamic equilibrium stability condition [35,45,46],
but here represents a kinetic instability that has been obtained independently of thermodynamic
considerations. A kinetic instability could potentially play a role in the formation of the normal
modes and long-range concentration fluctuations observed in hard-sphere suspensions near the
glass transition [4, 10,26,47,48].
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6 Conclusions
Phenomenological equations describing diffusion of spherical tracer particles in concentrated hard-
sphere suspensions have been solved numerically. A pulse of tracer particles added to an initially
homogeneous suspension perturbs the host matrix via cross diffusion. Depending on the initial
host concentration, several distinct transitions of the tracer diffusion occur. At low concentrations,
the diffusion is Fickian and Gaussian. At higher concentrations the diffusion becomes nonGaussian,
while the tracer mean squared displacement remains approximately linear. Next the mean squared
displacement becomes increasingly sublinear, and eventually a kinetic transition occurs in which
the tracer particles move in opposition to their own concentration gradient. The origin of the
anomalous diffusion is cross-diffusion effects between the host suspension and tracer particles,
which become more significant as the tracer Fickian diffusivity decreases near the glass transition.
At high concentrations the host suspension acts like a dynamic membrane, filtering the tracer
particles out of the more crowded regions of the host matrix. Similar transitions also occur by
varying the size or concentration of the tracer particles, at a fixed host volume fraction. The theory
reproduces several qualitative aspects of anomalous diffusion, including non-Gaussian distribution
functions, subdiffusive mean squared displacements and clustering near the glass transition. The
perturbations to both the tracer and host particle concentration profiles have been simulated,
giving a macroscopic perspective on the physical mechanisms involved. A linear stability analysis
suggests that the glass transition is marginally stable to concentration perturbations, yielding a
possible mechanism for the onset of normal-mode like dynamic and structural heterogeneity.
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A Tracer partition coefficient in concentrated suspensions
In previous work an expression for the partition coefficient α of tracer particles in a hard-sphere
suspension was obtained in the form of equation (5a) [18]. This equation is strictly valid only in
the dilute limit, but in practice can be applied at higher concentrations [30, 49]. Here, a more
general approach is used to obtain an expression for α in concentrated suspensions. In order to
introduce necessary concepts a brief review of the previous derivation is first given below.

Figure 4 shows an osmotic equilibrium set-up for a binary hard-sphere suspension. The
suspension in compartment A has particle number densities n1 and n2, and total osmotic pressure
ΠT ; the suspension is in equilibrium across a semi-permeable partition with a reservoir (compartment
B) containing only the fluid solvent and tracer particles at number density nr and osmotic pressure π.
In the McMillan-Mayer theory of suspensions the solvent is assumed incompressible and composed
of molecules much smaller than the hard-sphere colloidal particles, so that thermodynamically
the system can be treated like a binary hard-sphere gas, with the total osmotic pressure ΠT of
the suspension playing the same role as the total pressure of the gas [17,50,51]. In this case the
Gibbs-Duhem equation of the mixture can be written as, at constant temperature,

n1dµ1 + n2dµ2 = dΠT , (23)

where µi(n1, n2) is the chemical potential per particle of component i. Similarly, the Gibbs-Duhem
equation applied to the suspension of tracer particles in compartment B is

nrdµr = dπ, (24)

where µr is the chemical potential per particle in the reservoir. At equilibrium the tracer chemical
potentials are equal and µ2 = µr.

https://www.kingjamesbibleonline.org/become-a-christian.php
https://www.kingjamesbibleonline.org/become-a-christian.php
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A B

{π, nr}{ΠT , n1, n2}

Figure 4: Illustration of osmotic equilibrium in a bidisperse hard-sphere suspension. The membrane
separating compartments A and B is permeable to the fluid (blue) and smaller tracer particles but
impermeable to the larger host particles. Because of excluded volume effects, the equilibrium tracer
concentration n2 in compartment A is less than the concentration nr in the reservoir compartment
B; α = n2/nr is the equilibrium partition coefficient. ΠT is the total osmotic pressure of the
mixture in A, while π is the osmotic pressure of the tracer suspension in B.

A.1 Osmotic pressures
A.1.1 Host particles

The host-particle osmotic pressure in A is defined as the difference between the pressures of
compartments A and B, so that Π = ΠT − π [18,50]. In the tracer limit φ2 → 0, Π depends only
on n1 and can be written as

Π = n1kBTZ, (25)

where Z(φ1) is the hard-sphere compressibility factor given approximately by (3b). While (3b)
suffices for the qualitative results obtained in Section 4, here a more accurate equation of state for
Z is used in order to obtain an accurate equation for α. At host volume fractions below φ1 ≈ 0.55,
the Carnahan-Starling equation

Z =
1 + φ1 + φ21 − φ31

(1− φ1)3
(26)

agrees very closely (to within 1%) with the results of molecular dynamics simulations [52, 53].
However, equation (26) becomes inaccurate as φ1 increases above the glass transition φg = 0.58.
At volume fractions above 0.55 the compressibility factor is more accurately given by the Speedy
equation of state Z = 2.67/(1− φ/φp) [54]. The following empirical equation

Z =
1 + aφ1 + 32φ31 − 55φ41

(1− φ1/φp)
, (27)

where a = 4− 1/φp, agrees to within 5% with the results of molecular dynamics simulation data
at volume fractions up to 0.55, and at higher volume fractions is of comparable accuracy to the
Speedy equation [18]. More accurate expressions for Z developed by LeFevre [55], Liu [56] or
Paricaud [57] for volume fractions above 0.55 could also be used, but equation (27) has a relatively
simple form and is of sufficient accuracy for the present purposes.

A.1.2 Tracer particles

The osmotic pressure π of the tracer particles in the reservoir compartment B can be written as

π = nrkBTZ(φr), (28)

where Z(φr) is the hard-sphere compressibility factor evaluated at φr = v2nr. Equation (28)
generalizes the corresponding equation for π used previously [18] by allowing the tracer concentration
in the reservoir to be non-dilute. At high host concentrations φ1 → φp, excluded volume effects
cause the tracer concentration φr in the reservoir to be non-dilute, even though φ2 in compartment
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A is dilute. For the case λ = 1 in the close-packed limit φ1 → φp, the reservoir concentration
must also approach close packing φr → φp in order to maintain equilibrium. This phenomenon is
demonstrated in more detail below.

A.2 Equilibrium partition coefficient
A.2.1 Dilute limit

In the dilute limit φ1 � 1 the chemical potential of the tracer particles in compartment A of figure
4 can be written as

µ2 = µ0
2 + kBT lnφ2 + µex2 (29)

where µ0
2 is a constant and µex2 (φ1, λ) = kBTb12φ1 is the excess chemical potential caused by

interactions between the tracer and host particles [58]. In the limit φr � 1 the tracer chemical
potential in compartment B is (for an incompressible fluid)

µr = µ0
2 + kBT lnφr.

Equating the chemical potentials at local equilibrium, µ2 = µr, gives the partition coefficient as

α =
φ2
φr

= e−b12φ1 , (30)

as obtained previously [18]. Using Widom’s insertion method Lekkerkerker [50] derived a more
general expression for α valid at semi-dilute concentrations in the form

α = (1− φ1)e−(Ay+By
2+Cy3), (31)

where y = φ1/(1− φ1), A = 3λ+ 3λ2 + λ3, B = (9/2)λ2 + 3λ3 and C = 3λ3.

A.2.2 Concentrated suspensions

Heyes and Santos [59] derived an expression for the chemical potential of a tracer particle in
suspensions at arbitrary concentration by considering the work required to insert a particle of
radius R2 into a uniform sea of host particles of radius R1 and volume fraction φ1. They obtained

µ2 = µ0
2 + kBT lnφ2 + µex2 , (32)

where the excess chemical potential is given by the more general expression

µex2 (φ1, λ) = kBT (c0 + c1λ+ c2λ
2 + c3λ

3). (33)

The coefficients in (33) are functions only of φ1 such that

c0 = −ln(1− φ1), c1 =
3φ1

1− φ1
, c2 = c1 + 3a2, c3 = Z − 1− 1

3
c1 −

2

3
c2, (34)

where Z is the compressibility factor,

a2 =

∫ φ1

0

(
Z∗

φ1

)
dφ1, (35)

and Z∗ = Z − (1 + 2φ1)/(1− φ1)2. In the dilute limit φ1 � 1 equation (32) reduces to (29).
Integrating (35) with equation (27) for Z gives1

a2 = 1.311φ1 + 1.024φ21 + 11.733φ31 − 1.721ln(1− φ1/φp)− (c0 + c1). (36)

The chemical potential of the particles in compartment B can be obtained by integrating equation
(24), using (25) for π, giving

µr = µ0
2 + kBT

∫ φr

0

1

φ

d(φZ)

dφ
dφ. (37)

1Alternatively, using the Carnahan-Starling equation (26) gives a2 = −c0 − φ1/(1− φ1)2.
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Inserting (27) into (37) and integrating gives2

µr = µ0
2 + kBT lnφr + µexr , (38)

where

µexr
kBT

= 2.621φr + 3.072φ2r + 46.933φ3r − 1.721 ln(1− φr/φp) +
2.689φr

(1− φr/φp)
. (39)

Equating the chemical potentials in (32) and (38) gives the partition coefficient as

α =
φ2
φr

= e−(µ
ex
2 −µ

ex
r )/kBT . (40)

Since µexr depends on φr, equation (40) is an implicit equation for φr which must be solved
numerically. Figure 5 shows equations (40) (solid blue curves), (30) (dash-dotted green curves)
and (31) (dashed red curves) plotted versus φ1 for the case φ2 = 10−3 and several values of λ.
When λ � 1, equation (30) gives qualitatively correct results for α at concentrations up to the
close-packed limit φ1 = φp, and Lekkerkerker’s approximate expression (31) is in good quantitative
agreement with the full model.

For λ & 1, as φ1 increases toward φp α approaches the minimum possible value for hard spheres,
αmin = φ2/φp. In this limit the tracer particles in compartment A are jammed in between the
host particles, and in order to maintain equilibrium the tracer particles in compartment B are also
jammed at the maximum close-packing concentration φr = φp. Equations (30) and (31) break
down in this limit, predicting that α → 0 as λ → ∞. For hard spheres the maximum possible
concentration in the reservoir is φr = φp, and therefore the minimum possible value of the partition
coefficient is αmin = φ2/φp, shown as the dotted black line in figure 5. For λ ≥ 1 the full solution
(40) approaches this minimum as φ1 → φp. An approximate explicit expression for α that has the
correct limits is

α = (1− φ2/φp)e−b12φ1 + φ2/φp. (41)

Figure 5 shows that for the case λ = 1 equation (30) gives qualitatively correct results, though the
actual value of α is smaller than given by (30). This suggests that the cross-diffusion effects simulated
in Section 4 will be qualitatively similar but enhanced upon using the more general expression (40)
for α (since D12 ∼ α−1); this possibility will be explored in future work. Lekkerkerker’s expression
(31) cannot be used when λ = 1 in concentrated suspensions with φ1 > 0.5, as it gives a value
for α that is several orders of magnitude too small as φ1 → φp. At higher values of λ� 1, both
equations (30) and (31) break down beyond the dilute limit, and either (40) or (41) should be used
in concentrated suspensions.
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