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In this work, we use the concept of quaternion time and demonstrate that it can be applied
for description of four-dimensional space-time intervals. Real quaternions form a normed division
algebra and we suggest that this is the main advantage of quaternions over other mathematical
representations of space-time. First, we use the quaternion norm for the description of the
measurement process. We demonstrate that the quaternion time interval together with the finite
speed of light signal propagation allow for a simple intuitive understanding of the time interval
measurement by a moving observer. We derive a quaternion form of Lorentz time dilation and
show that the norm of the quaternion time corresponds to the traditional expression of the
Lorentz transformation. We determine that the space-time interval in the observer reference
frame is given by a conjugate quaternion expression, which is essential for proper definition of the
quaternion derivative in the observer reference frame. Then, we use quaternion division to define
the four-dimensional differentiation. Finally, we apply quaternion gradients of the commutator and
anti-commutator types to an arbitrary quaternion potential, which leads to generic quaternion field
expressions. We apply the resulting formalism to the electromagnetic and gravitational potentials
and show that the traditional field expressions are obtained under simplifying assumptions, while

the new additional field terms need further study and experimental verification.

I. INTRODUCTION

We begin by proposing the real quaternions [1], [2],
[3], [4], [5], [6], as an alternative to the traditional math-
ematical formalism of four-dimensional space-time used
in special relativity [7], [8], [9], [10], [11], [12].

Previously, bi-quaternions were applied to special rela-
tivity [13] and showed initial promise in developing a uni-
fied field theory [14]. However, unlike real quaternions,
bi-quaternion mathematics is not a division algebra.

We develop a complex polar form of the quaternion
time interval and demonstrate that it describes transition
time from one physical state to another, while the norm of
the quaternion time interval describes the experimentally
measured value of the time interval, which corresponds
to the Lorentz time dilation.

We deduce that the conjugate quaternion time inter-
val corresponds to the time interval in the observer ref-
erence frame, which is essential for the correct definition
of quaternion differentiation by the observer.

We use quaternion differentiation of a generic quater-
nion potential in order to define the quaternion form of
a generic quaternion field.

Jack [15], [16] demonstrated a new approach of ap-
plying quaternion differentiation to derive quaternion
Maxwell equations, then, Dunning-Davies and Norman
[17] suggested using a similar method for the gravita-
tional field.

We apply the new definition of the generic quater-
nion field to electromagnetic and gravitational interac-
tions and show that it reproduces the known results for
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the vector fields, while introducing additional scalar and
vector components that need further investigation.

Therefore, we show that quaternion algebra allows def-
inition of quaternion derivatives resulting in quaternion
calculus and a general form of quaternion field expres-
sions.

II. QUATERNION SPACE-TIME

Historically, Rodrigues [1] introduced quaternions
while searching for a method to describe rotation of
three-dimensional solids. His discovery can be consid-
ered the precursor to quaternion algebra, which was for-
mally introduced and extensively studied by Hamilton
[2], [3], who came across quaternions while searching
for well-defined division in the three-dimensional space.
Hamilton was quoted saying ”Time is said to have only
one dimension, and space to have three dimensions...
The mathematical quaternion partakes of both these ele-
ments” [4]. In Hamilton’s definition of quaternions, time
is real scalar and space is a three-dimensional imaginary
vector.

The key advantages of real quaternion algebra over
other mathematical approaches is that it has a positive
Euclidean norm, it describes both rotation and propa-
gation in three-dimensional space, and constitutes a di-
vision algebra with well-defined multiplication and di-
vision. This is fundamentally different from the four-
dimensional mathematics of Poincare [7], Minkowski [8],
[9], and Einstein [10] used in the special theory of
relativity, where only one-dimensional inertial motion
is described, no rotation is present, negative norm of
the space-time interval is possible [12], and no four-
dimensional division is defined. Consequently, quater-
nion algebra deserves further investigation as an alterna-



tive mathematical formalism of space-time physics.

Since the algebra of real quaternions is the only four-
dimensional division algebra, we introduce the four-
dimensional quaternion manifold,

T = (70,71, 72, 73) = (G070, 171,272, 1373) , (1)

which we identify with time in order to facilitate an in-
tuitive physical interpretation of the quaternion mathe-
matics [5].

Here, iy, is a real scalar unity interval and, 27,15,13,
are purely imaginary unit vectors, and 7y, 7, 72,73 € R,
are real scalars. The relationships between the Euclidean
quaternion units, ig, 71, 73, 23, are essential for the present
theory and are defined according to Hamilton [2] as,

In the current work, we develop the quaternion for-
malism in vacuum, therefore, we use the absolute value
of the speed of light in vacuum, ¢, as a scalar coefficient of
proportionality between space and time. This allows us
to express four-dimensional space-time in terms of four-
dimensional quaternion time,

4 o L X1 , T2 , T3
Tt = (207’0721*,12*,13* . (3)
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Thus, using quaternion unit intervals (2) and the speed
of light in vacuum, ¢, we were able to express four-
dimensional space-time in terms of quaternion time.

III. QUATERNION SPACE-TIME
COORDINATES AND INTERVALS

Next, we use quaternion space-time in order to estab-
lish coordinate point locations in the space-time coordi-
nate system.

Using (3) we define a point location in the quaternion
space-time coordinate system as,

T

T:(TO;F): (th C) ) (4)
where we define a pure imaginary space vector location,
T = (021,772,373 ) , (5)

and the real scalar time,

T0 = ioto = fo . (6)
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FIG. 1. A three-dimensional representation of the quaternion
time-point.

Note from (4) that g is the time at the zero-point space
location, & = 0.

The space-time coordinate point (4) is defined relative
to the quaternion zero-point,

0:(0,6):(@00,5‘10,720,730). (7)

Consequently, the quaternion space-time coordinate
point (4) is described by a four-dimensional quaternion
interval starting at the zero-point and ending at the co-
ordinate point.

Applying the definition of the quaternion space-time
coordinates, we use the quaternion time-point (4) for de-
scription of a time event of a physical process at a space
location, Z.

The norm of the quaternion time interval, or its abso-
lute value, can be defined as,

T=lrl=VrF=V7FT, (8)

where we use the conjugate quaternion time defined as,
T=(70,-7), (9)

Since the quaternion norm is positive real scalar, we iden-
tify the length of the quaternion time interval with the
measured time duration of a physical process.

In Fig. 1, we demonstrate a diagram of a quaternion
space-time point using a three-dimensional representa-
tion, where we neglect for simplicity the fourth dimen-
sion, 73 = 0.

IV. POLAR REPRESENTATION OF
QUATERNION TIME INTERVALS

Note that the quaternion time interval signifies a tran-
sition in space-time from the zero-point to a space loca-
tion, Z, during the time interval, 7.
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FIG. 2. Polar form of the quaternion time interval in the
source field.

To describe this motion, we introduce a constant vector
velocity,

R

i=Z, (10)
where T is a space interval and 7 is the absolute value of
the time interval given by (8). Note that we previously
defined quaternion velocity [5].

Then, we write quaternion time in terms of its norm
and vector velocity,

’TZ(to,ZT) , (11)

where we note a feedback form of the quaternion time
interval with the correction term determined by the ve-
locity relative to the speed of light.
We introduce a purely imaginary unit-vector,
1=

(12)

3

SHEST
S|

which signifies the direction of motion.
Finally from (11) and (12), we express the quaternion
time interval in polar form,

T =1 (cosf, Vsinf) =7 exp (10), (13)

where the angle, 6, is a function of the velocity, ¥, and is
defined as,

’U2

t
cosf =2 = 1-—,
T c (14)
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Then from (13) and (17), we obtained the full polar
form of the time interval transformation,

t
T = 702 exp (76) . (15)
v
1 - 072

FIG. 3. Polar form of the quaternion time interval in the
source field. in the observer time-frame.

Similarly, we can express the quaternion conjugate
time interval as,

Fo 0 exp(—i0) . (16)
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From (14), we can easily determine the measured du-
ration or norm of the quaternion time interval,

to (17)

T=|1|=

which we immediately recognize as the traditional form
of the Lorentz time dilation. As can be seen the time
quaternion interval depends on both the speed, v/¢, and
direction of motion, 7. On the other hand, the measured
time interval is a function of the speed only.

In Fig. 2 and Fig. 3, we demonstrate diagrams of a
quaternion space-time interval and its conjugate using a
three-dimensional representation.

Also by using, ¥ = U, we obtain the vector form of
the apparent space contraction,

: (18)

f:

Therefore, we were able to obtain the main mathemat-
ical results of the special theory of relativity by using
quaternion formulation of the space-time interval and its
absolute value.

V. PHYSICAL INTERPRETATION OF
QUATERNION SPACE-TIME INTERVALS

We will now elaborate on the physical meaning of the
quaternion time interval defined by (4) and (17) . Let us
assume the existence of time sources such as clocks, and
time detectors such as observers, with recording instru-
ments.



Assume that there is a stationary clock located on a
train platform, which we consider a signal source. First
we perform an experiment in the source reference frame
of the stationary clock, where the location of the clock
we define as the zero-point of space, £ = 0. Also, let
us consider an observer with a video camera passing the
platform on a train at midnight, when the time on the
platform clock is zero. We assume that the train is mov-
ing along a straight track with a constant vector velocity,
¥ . The observer synchronizes the camera clock with the
platform clock at midnight and then starts filming the
time on the platform clock while simultaneously record-
ing the time-stamp of the camera.

After synchronization, the starting time for both the
platform clock and the observer camera is zero. The ob-
server stops filming when the camera records time, tq,
appearing on the platform clock. Then, what is the time-
stamp on observer’s camera at the end of the record-
ing? Due to the finite speed of light propagation, we
expect that the time on the platform clock will appear
delayed relative to the time-stamp on the observer’s cam-
era. Also, we expect that the delay is a function of the
train speed relative to the speed of light as the light sig-
nal from the clock is chasing the observer on the moving
train.

Let us define the quaternion time-point at the end of
the interval as, T = (o, 70/c). The quaternion time in-
terval of the recording is given by the difference,

TO(tO,Tv)T, (19)
c

In Fig. 2, we demonstrate the diagram of a quaternion
space-time interval in the source reference frame.

Let us suggest that the measured time interval on the
camera time-stamp is a real scalar value, equal to the
quaternion norm of the interval (17),

t
Tl =VTT=VFT=—==1, (20
v

1-=2
which is the Lorentz time dilation generally accepted as
a verified experimental result.

Next, let us consider the same experiment in the ob-
server’s reference frame. Clearly, we expect to obtain
the same experimental result even though the platform
is now moving away from the observer with a constant ve-
locity —v. The starting time of the measurement and the
clock synchronization time is zero, as in the source refer-
ence frame. However, the end time-point is now given by
the conjugate quaternion 7/ = (ty, —7¢/c) due to imag-
inary space inversion when changing from the source to
the observer reference frame,

' —-0= (to,—TU) =
c

In Fig. 3, we demonstrate a diagram of a quaternion
space-time interval in the observer reference frame.

(21)
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Let us now calculate the measured time-interval dura-
tion in the observer reference frame,

t
Fl=VTT=VFT=—==1. (2
(%

I-=
As expected, the measured time duration by the observer
remains the same as in the source reference frame, despite
the conjugate form of the time interval.

Therefore, the physical interpretation of the quater-
nion time interval can be deduced directly from its def-
inition. It describes the time interval measured by the
observer, moving with a constant velocity, ¢/, from the
zero-point to a location, £. Here, tg, is time on the sta-
tionary zero-point clock and, 7 = ||, is the time in-
terval duration measured by the moving observer. Note
that the conjugate form of the space-time interval in the
observer reference frame is critically important for the
correct definition of quaternion differentiation in the ob-
server reference frame. This physical interpretation is
similar to the relativistic Doppler effect approach [11],
however using quaternion mathematical formalism.

VI. QUATERNION DIFFERENTIATION AND
FIELDS

Next, we take advantage of quaternion division in order
to define proper quaternion differential operators in the
source and observer reference frames. Thus, using the
definition of the quaternion multiplicative inverse,

\‘M\ Rl

(23)

7_' - 7'72’
we define the quaternion differential operators cor-
responding to the gradient operators in the three-
dimensional space,

6_1i_ i_;ﬂ_;i_fi
T cdr \coty’ tox C0xs’ COxs

V_li_ i _i_fi _|_Z"i +fi
Tcdr \coty'  tox ! Coxy ! Poxs)’

(24)
We can write the four-dimensional gradients in the sim-
plified quaternion notation as,

— -

V =(Vy,—-V)
(25)
V = (Vo, +€)7

Thus, the correct form of the quaternion differential op-

erator assumes the conjugate form, V., in the source ref-
erence frame, with a minus sign in front of the vector



part of the operator. On the other hand in the observer
reference frame, the expression for the differential oper-
ator has the traditional form , V., due to the conjugate
form of the space-time interval, 7, in the denominator.

Since we are primarily interested in the reference frame
of the measuring apparatus, which is the observer refer-
ence frame, we will use the form of the derivative operator
given by V.

Let us introduce a quaternion potential corresponding
to an arbitrary physical interaction,

—

¢ =(¢0,0). (26)

Then using the definition of quaternion multiplication
for any two quaternions a and b,

' (27)
b

we can define two derivatives of the potential function,

F+=Vé=(Vooo—V-3, Vod+ Vo0 +V x6)

F~ =V = (Yodo ~ V-4, Vob+ Voo~V x3).
(28)

Note that the two derivatives are due to non-
commutativity of the quaternion multiplication. Since
we are looking for single-valued functions for the defini-
tion of the fields, let us use quaternion commutator and

ant-commutator relations to derive the field expression,
as in [15],

Fa={V,0}=5(Ved+¢V)

1
2
(29)

1
2

We can calculate two types of the generic quaternion
fields from (28),

Fa=(Yodo =V -3, Vod+ V)
(30)
Fe= (O, ﬁxq?)

Thus, we obtained generic field equations for an arbi-
trary physical interaction defined by a quaternion poten-
tial function, ¢. One of the fields is a full quaternion,
with both the scalar and vector parts, while the other is
a pure vector field.

For example, let us consider electromagnetic interac-
tion expressed by a quaternion potential, ¢, in the ob-
server reference frame, where we define the electric and
magnetic fields as,

9,,:—(80, é)
(31)
Fo= (07 @').

As we can see, the electric field is a full quaternion,
with both the scalar and vector components. On the
other hand the magnetic field is purely a vector field.
We derive full expressions for the fields from (30) and
obtain

Lo B L.
S0= Vot +V-G= -0 1 G5

Cato
_ . 9o 2
§= Vo Vo= Voo o 32)

which is similar to the traditional expressions for the vec-
tor electric and magnetic fields. However, there is a scalar
component of the electric field, &), which is not present
in the traditional approach. Jack identified this compo-
nent with thermo-electric effects. Judging by the form of
the scalar electric fieldd in (32), which includes a time-
varying component of the scalar potential as well as a
space-varying component of the vector potential, it may
be also related to piezoelectricity.

Next, we apply the definitions of the quaternion fields
(30) to the gravitational potential in the quaternion form
(26),

(33)

This leads us to three types of gravitational field in-
cluding a scalar field, Gy, as well as two vector fields,

a traditional gravitational vector field, Q, and the new
rotational field, C,

.. D ..
Go=Vodo—V-3=20_ .3
Cato
; Lo .9 4
G=Vad+Ton=Ton+ o (34)
G T xd

Note that we chose the opposite signs for the gravita-
tional fields from the electric and magnetic fields based
on the knowledge that similar charges repulse while sim-
ilar masses attract.



Assuming small variations of the gravitational poten-
tial with time, d¢g /Ity ~ 0, and dp/dty ~ 0, we obtain
the approximate form of the gravitational field,

Go~—V-¢
G ~ Vo (35)
Cr~—-Vxao,

which is a new form of gravitational field expressions for
slow varying fields, introducing a new scalar gravitational
field, Gy, and a new vector field, é, which is similar to
the magnetic field.

VII. CONCLUSIONS

We introduced quaternion space-time and presented a
framework for description of physical events using quater-
nion time intervals. We derived the quaternion form of
the Lorentz time transformation and presented an intu-
itive physical interpretation of the time dilation. Then,
we showed that quaternion algebra leads to well behaved
quaternion calculus, provided we choose the right deriva-
tives for the observer reference frame. Finally, we pro-
posed a general form of quaternion field expressions, by
differentiating a generic quaternion potential function,
and applied them to electromagnetic and gravitational
interactions. The additional novel terms in the field ex-
pressions need further study and experimental verifica-
tion.
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