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Abstract

To illustrate that a Nash Equilibrium results from a flawed attempt to solve a game, this article
studies two extensions of the classic oligopoly model of Cournot. The common cost function
is quadratic, and the (still linear) inverse demand functions allow of differentiated goods. The
model is a vector maximum problem, its Pareto Optimum is the solution. A Nash Equilibrium
results from unwarranted conditioning on endogenous variables. The choice of parameters is
discussed and six model variants are analysed numerically. Some comments are made on the
use of the model in experimental economics.
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No one has the right, and few the ability, to lure
economists into reading another article on oligopoly the-
ory without some advance indication of its alleged con-
tribution. The present paper accepts the hypothesis that
oligopolists wish to collude to maximize joint profits. It
seeks to reconcile this wish with facts, such as that collu-
sion is impossible for many firms and collusion is much
more effective in some circumstances than in others.

G. J. Stigler| (1964, p. 44)

1 Introduction

There is something weird about the notion of Nash Equilibrium. Although game theory has
been designed to deal with decision problems in which the effects of each player’s actions on
the outcomes for the other players cannot be ignored, noncooperative game theory does just
that: the “first-order conditions” for a Nash Equilibrium ignore the partial cross-derivatives
of the payoff functions. Ignoring the cross-derivatives is in fact a grave mathematical error:
it amounts to treating the actions inconsistently and leads to contradictions. The two-page
note Nieuwenhuis| (2018)) merely underlines that the conditions for a Nash Equilibrium are
incompatible with the first-order approximations of the payoff functions. Nieuwenhuis| (2017)
exposes the error in noncooperative game theory at greater length, arguing that a game is
a vector maximum problem from which a Nash Equilibrium derives by treating variables
erroneously as constants in certain places, and illustrates the fallacy of Nash Equilibrium
with three examples, in oligopoly theory, in the Prisoner’s Dilemma, and in dynamic general
equilibrium models with imperfect competition and rational expectations. As an example
within the first example, that article analyses the classic duopoly model of Cournot (1927)—
homogeneous product, linear inverse demand function and cost function—extended to the
case of a common quadratic cost function.

The present article analyses a further extension of the “classic case” to illustrate that a
Nash Equilibrium results from a mathematically flawed attempt to solve a game, thus insist-
ing on the removal of noncooperative game theory from the textbooks on microeconomic
theory. It considers oligopolies with any number of firms that produce varieties of some good
(one homogeneous good included as a special case), sharing a quadratic cost function. The
inverse demand functions are still linear; for simplicity’s sake, the specification is symmetric
in the way it treats the goods. The model is a vector maximum problem, its Pareto Optimum
is the solution. Like Stiglers, the article accepts the hypothesis that firms wish to collude
to maximise joint profits, but it takes a different turn. It stresses that collusion is in fact the
profit maximising strategy of the firms in the artificial world of the model, as this artificial
world does not contain any impediments for collusion. The article defines the maximal-profit
set of an industry as the set of points where industry profit is maximal along rays through
the origin, and shows that it is characterised by a constant profit-output ratio that is inde-
pendent of the number of firms and of the slopes of the marginal-cost function and inverse
demand functions. The maximal-profit set and the Pareto Optimum have a number of points
in common, but in general do not coincide. The article discusses how parameter values may



be chosen so as to obtain model variants with attractive features for use in the economics lab-
oratory, and presents numerical examples to highlight the differences between and similarities
of the outcomes of six model variants; in five variants, the incentives for merger according to
noncooperative game theory appear at odds with the tenet of rational, optimising behaviour.
Finally, it comments on the use of this class of models in the laboratory.

2 The model

Consider an industry with profit maximising firms i, i = 1,...,/, each of which produces a
variety of some good. The firms have identical quadratic cost functions and linear marginal-
cost functions,

c(gi) = c1gi + c2q;, (1a)
mc(g;) = 1+ 2¢2q;, (1b)

with g; the quantity of the variety produced by Firm i, and where c; § 0, so that marginal cost
may be increasing, constant or decreasing. The last case requires ¢; > 0 for marginal cost to
be positive over a certain range of output.

The inverse demand functions, too, are linear:

Pi:fi(CIlw-wQI):dO—dQ_<t_d)Qia i:17~"717 (2)

where Q :=1};q;. The entity Q will serve as an indicator of industry output. The parameters
satisfy dgp > ¢y, 0 < d <t. The condition dy > ¢ ensures that the prices of the goods exceed
marginal cost when the firms produce nothing at all. When ¢ > d, the goods are imperfect
substitutes. The symmetric specification of the inverse demand functions, next to the common
cost function, implies that most outcomes of interest are points on the ray g1 = g2 = --- = qq
(the axis of symmetry of the model), which keeps the analysis simple.

With differentiated goods, that is when ¢ > d, the ordinary demand functions are

qi:gi(pla"'7p1) - 60,1+5IP_(TI+61)]91" i:27"'517 (3)
do
%01 (I—1)d+1’ =
o — (I—2)d+t 7 I>1
(I—=1)d+1)(t—d)
8 = d 1>2

(I-1d+1)(t—d) -

where P :=Y}; p;. The parameters satisfy &; > 0,0 < & < 1.

The systems of inverse or ordinary demand functions may also be partially inverted to a
system of mixed demand functions, with the prices of some goods and the quantities of the
other goods as left-hand side variables. In general, there are 2/ equivalent systems of demand
functions. The present, symmetric specification reduces the number of analytically distinct
cases to I + 1, one case for each number of firms that use the prices of their products as
instruments.



The profit function of Firm i is revenue minus cost, wi(pi,q;) := pi- qi — c(qi). The profit
functions of all firms must be maximised subject to the constraint of the cost function (1a)
and to the constraints of the inverse demand functions or, equivalently, the ordinary de-
mand functions (3) or some system of mixed demand functions. These are extensive forms of
the problem, all equivalent to one another. The I problems of profit maximisation are inter-
dependent, because the arguments of the maximands are interrelated through the demand
functions: they constitute a vector maximum problenﬂ or game. The game, in any extensive
form, may be treated with the methods of |De Finetti (1937a,bﬂ or Kuhn and Tucker| (1950,
Section 6).@ The alternative and more common approach is to use a system of demand func-
tions to eliminate one half of the number of arguments from the maximands and arrive at a
normal form of the game; in each normal form, the arguments of the maximands may be var-
ied independently of one another. Each normal form, combined with the matching system of
demand functions, is equivalent to an extensive form; hence, all normal forms are equivalent
to one another. The choice of which variables to eliminate is arbitrary in the sense that, with a
correct mathematical treatment, it does not affect the solutions for the prices and quantities.lz_r]
A game theorist who attacks a normal form must secure that her proposed solution respects
the equivalence of the normal forms.

The choice of which variables to eliminate is not arbitrary in every aspect. In fact, there
is a most convenient choice, which is to eliminate the prices. It yields easy to understand
expressions, because the dimensions of the parameters of the cost function and the inverse
demand functions agree: c; has the same dimension as dy does, ¢, has the same dimension as
d and t do. The profit functions in quantity space are

Vi =ui(qr,....q1) = (do—c1 —dQ)gi— (t—d+c2)q;,  i=1,...,I )

They differ from the profit functions of the classic case only if r —d + ¢, # 0. However, even
if t —d + ¢, = 0, the ordinary demand functions and, hence, the profit functions in price space
do differ when 7 > d. More generally, every triplet (¢,d, c;) that satisfies t —d + ¢, = 7 yields
the same profit functions in quantity space but not in price space. This property of the model
results from the linearity of the marginal-cost function and the inverse demand functions. It
means that to every increase of the slope of the marginal-cost function there corresponds a
decrease of the slopes of the perceived marginal-revenue functions (for which see below) so
as to yield the same profit functions in quantity space. The outcomes of model variants in
will illustrate the property.

The profit of Firm i is zero if ¢; = 0 or else if p; = ¢(q;)/qi. The latter condition defines
a (hyper)plane the segment of which in the nonnegative orthant will be called the zero-profit
plane of the firm. Let Z be the intersection of the ray gq; = g = --- = g; with the zero-profit
plane of any one of the firms. Then Z is either the centroid of the common zero-profit plane (if

IElsewhere I have used the term simultaneous maximum problem. 1t is inspired by | Zaccagnini| (1947|1951},
who is the first to apply vector maximisation to the oligopoly problem.

2Translations of these articles are available in Nieuwenhuis, Ate (2017), Simultaneous Maximisation in Eco-
nomic Theory. https://dx.doi.org/10.13140/RG.2.2.11452.95360

3See Nieuwenhuis| (2017, Section 2.3). Noncooperative game theory cannot deal with games in extensive
form.

4Else the eliminations would not have been permissible.
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t —d + co = 0) or else the intersection of the zero-profit planes, the unique zero-profit point.
All its coordinates equal
d do—ci

= k k:= .
=0 Ddtiter d

Define xz := qz/k, and similarly for other quantities.

The solution of a game is its Pareto Optimum. The Pareto Optimum of the oligopoly game
is given in[Appendix B] It is one of the two segments in the nonnegative orthant, the one closer
to the origin O, of a (hyper)surface with the ray g = g = --- = gy as its axis of symmetry.
In the main text the focus is on its centroid Col (for Collusion Point), which is compared to
two “equilibria” that are also points on the axis of symmetry. shows that in some
cases Col is the Joint Profit Maximum, in other cases it is the point of the Pareto Optimum
where the joint profit is minimal; if / = 1, Col is the point of maximal monopoly profit. To
find the coordinates of Col, note that along the ray q; = g» = --- = gy the profit of each firm
is a quadratic function of the common quantity ¢, and that the zeros of the parabola are at O
and Z. Therefore Col is halfway between O and Z.

Two failed attempts to solve the vector maximum problem constituted by the simultaneous
maximisation of the profit functions are those by Cournot (1927) and by Bertrand (1883). The
common trait of the attempts is that they condition on endogenous variables in the derivation
of first-order conditions for maximal profits of the firms, and they do so in such a way that even
the possibility of undoing the conditioning in a subsequent step of the optimisation process
is lacking. In a Cournot Oligopoly, each firm chooses its quantity while conditioning on the
quantities of its rivals; in a Bertrand Oligopoly, each firm chooses its price while conditioning
on the prices of its rivals. The firms in a Bertrand Oligopoly perceive the marginal-revenue
functions

1
mr?zpi—glgi(pl,---,pz) (5)

1
=ﬁ(611,---,611)—?1qz'- (5b)

If t = d (one homogeneous product), then p; = p,i =1,...,I, and 1/7; = 0, so that mrﬁ:[3 =p.
The firms in a Cournot Oligopoly perceive the marginal-revenue functions

mr$ = fiqr,....q1) —tqi (6a)
= pi—tgi(p1,---,p1)- (6b)

Subsequently equating marginal revenue according to (5b)) or (6a) to marginal cost (1b) yields
the “first-order conditions” for maximal profits, which are the Bertand and Cournot “reaction
functions” E| in quantity space in implicit form. The Bertrand Equilibrium B and the Cournot
Equilibrium C are at the intersection of the ray g; = g, = --- = gy with any one of the appro-
priate “reaction functions.”

“Reaction functions” play no role in the derivation of the Pareto Optimum. Still, like B and
C, the Pareto optimal points may be characterised by the equality of marginal cost to a notion

3Tts reaction function (also called best-response function) would tell a firm how to react optimally to the
actions of the other firms.



of marginal revenue. Col is a simple example. As explained in due to the
model’s symmetry the thought experiment of varying the quantities in unison or, alternatively,

of varying the prices in unison yields the firms at Col as if they perceive the marginal-revenue
functiond’]

mricmzf,-(ql,...,q])—((I—l)d+t)q,- (7a)
1
:Pi+mgi(P1,~-~,Pl)~ (7b)

The expressions and are equivalent, meaning that Col is unaffected by the choice
of instruments. In fact, the Pareto Optimum is unaffected by nonsingular transformations
of variables (as is the solution of every optimum problem). The Cournot Equilibrium and
Bertrand Equilibrium, by contrast, two examples of a Nash Equilibrium, will differ from one
another. In general, the Nash Equilibria of all normal forms will be different. The dependence
of a Nash Equilibrium on the arbitrary choice of instruments points to the flawed treatment of
the vector maximum problem, and is a fatal defect of noncooperative game theory as a theory
of rational behaviour. explains at length why conditioning on endogenous
variables in the way of noncooperative game theory is unwarranted.

Table 1| gives a number of outcomes. The prices are always a weighted average of c;
and dy. The outcomes of the classic case are the limits of the outcomes of the general case
when the number of firms grows without bound: the effects of non-constant marginal cost
and of product differentiation become negligible. A noteworthy feature of Col is the constant
profit-output ratio[]

Ucol _ do—ci

4Col 2 7
independent of /, the number of firms, and of ¢,, d and ¢, the slopes of the marginal-cost
function and inverse demand functions. In fact, this outcome is a special case of a more
general result, the statement of which requires a new notion.

DEFINITION 1 (MAXIMAL-PROFIT SET) The maximal-profit set of an industry is the set of

points where industry profit is maximal along rays ot;q; = Opq2 = ... = Q;qy, where a; > 0
and) ;o > 0.

THEOREM 1 The maximal-profit set of the oligopoly with cost function (Ia) and inverse
demand functions is the set of points where the profit-output ratio of the industry equals

(d()—Cl)/Z.

The proof is in The maximal-profit set and the Pareto Optimum have the Collu-
sion Points of the included oligopolies in common, but in general do not coincide;
delves deeper into this matter. Still it is true that, within the Pareto optimal sets of the
oligopolies with the same value of dy — ¢y, the joint profit is largest where the joint output
is largest. In[Section 4] the result will be used in the comparison of the outcomes of six model
variants.

%As 11 = 1/t, @)—(7)) are equivalent for a monopoly.
"For the quadratic form ax? + bx, the ratio of the extremum to its argument is /2.



Table 1: Main outcomes

General formula The classic case
Prices
((I* 1)d+l‘)C1 + cady
- Pz 1
(I— 1)d+l+C2
(I=1)d+1t)cr+ (77 +2c2)do a
_pB 1 C1
(I—1)d+t+7"42¢;
((I—l)d+t)cl+(t+2C2)do Ici+dy
pc (I—1)d+2(t+c2) I+1
((1—l)d—i-t)cl—l-((1—1)d+t+2C2)d0 c1+doy
beol 2(I—1)d+1+c) 2
Quantities+k
d 1
__x e — —
’ (I-1)d+t+ca 1
d e
_x —_—
? (I—D)d+t+1 " +2c, 1
d 1
_x —_—
¢ (I—1)d+2(t +c) I+1
d 1
— XCol a7
2(I—-1)d+1t+c) 21
b
Profits
— up (7' +c2)gp 0
—uc (t+c2)qz dgg
— UCol ((I - 1)d+t+cz)qéol quéol

2 For I = 1, the collusive outcome applies.
b Revenue and cost have the form h(g) = ag® + bg, for which gh'(q) = h(q) + aq*.

3 Choice of parameters: the classic case

Numerical examples help to reveal the information that the expressions in[Table I|contain. The
present section discusses the choice of values for the parameters ¢y, dp and d of the classic
case, because it takes a central place. The next section will show the impact of non-constant
marginal cost and product differentiation on the outcomes.

Conveniently, choosing values for the parameters can be done in three steps. First, scale
the quantities through the choice of k (:= (dy — ¢1)/d). Second, fix the price at Col through
the choice of c¢; 4+ dy. Third, make an assumption about the elasticity of the inverse demand
function at Col to identify ¢y, dp and d.

gives the unchanging pattern in the outcomes for 1-5 firms. The table must be
transformed into a numerical example with certain desirable properties, which make the model



Table 2: The classic case: pattern in the outcomes

Number of firms (1) 1 2 3 4 5

Prices

—Pz C1 C1 C1 C1 C1
c1+do

—PB > C1 C1 C1 C1
c1+dy 2c1+dy 3ci+dy 4ci+do Sci+dy

~be 2 3 4 5 6
c1+dy c1+dy c1+dy c1+dy c1+do

Pl 2 2 2 2 2

Quantities+k

—Xxz 1 172 1/3 1/4 1/5

—XB 172 172 1/3 1/4 1/5

—Xc 172 1/3 1/4 1/5 1/6

— XCol 172 1/4 1/6 1/8 1/10

suitable for application in the economics laboratory. One wish is that B, C and Col be clearly
separated; given the fixed ratios between the outcomes, this property can only be obtained by
choosing the scale “sufficiently” large. A sufficiently large scale also helps to constrain the
relative deviation from the true outcomes introduced by rounding these to the nearest integer,
a practice that seems advisable in the laboratory. On the other hand, the figures must not be
“unduly” large. It would also be nice for the outcomes to have a somewhat “realistic” flavour.

The admittedly vague desiderata leave ample room for other considerations. The choice
has been further limited to parameters that yield integer outcomes for the cases of 1-5 firms.
As to the quantities, it requires k to be a multiple of 120 (= 23-3-5). It does not seem
necessary to choose k larger than 120. As to the prices, it requires c| +d, to be a multiple of
60 (=22-3-5)if ¢; = 0. The value of 60 implies pc,; = 30. Given the need to choose ¢; well
in excess of 0 (to allow of decreasing marginal cost), this value leaves a rather small interval
for the prices. So let’s double it.

Lastly, the wish for a somewhat “realistic” flavour. Observe that the elasticity of the
inverse demand function at Col, ecq, is given by (¢ —dp)/(c1 +dp). A value of ¢; close
to dp yields a value of ec close to zero and hence a low markup of price over (marginal)
cost, whereas a value of ¢ close to zero yields a value of ec close to —1 and hence a high
markup. To steer clear of both extremes, choose eco = —0.5, which yields a markup of 1 and
implies dyp = 3c;. The ensuing parameter values are ¢; = 30, dy = 90 and d = 0.5.
gives the outcomes for the prices and quantities with this choice of parameters. Note that the
parameter d may be used to scale the quantities. For example, halving the value of d doubles
all quantities: the change represents a pure demand shift, with the same relative rise of demand
at every price.



Table 3: The classic case: a numerical example

1 1 2 3 4 5
Prices

- pz 30 30 30 30 30
- DB 60 30 30 30 30
- pc 60 50 45 42 40
— PCol 60 60 60 60 60
Quantities

-qz 120 60 40 30 24
—qB 60 60 40 30 24
-qc 60 40 30 24 20
— {Col 60 30 20 15 12

4 Six variants

The stage is now set for model variants with non-constant marginal cost (¢ # 0) and/or dif-
ferentiated goods (r > d). It is convenient to choose ¢; and r — d in proportion to d: with this
practice, a change of d affects neither the prices nor the ratios g;/k, so that it still represents a
pure demand shift. For ¢, the values of d/4, 0 and —d /4 are considered, for ¢ — d the values
of 0 and d /4. The six model variants, or industries, will be indicated with names that com-
bine Ho or He with In, Con or De; for example, Industry Holn produces a homogeneous good
(t —d = 0) under the condition of increasing marginal cost (0 < ¢;; in particular, ¢, = d /4).

One element in the discussion of the outcomes is the comparison within an industry across
the numbers of firms, which have been treated as exogenous so far. Such a comparison natu-
rally leads to the question what the assumption of joint profit maximisation implies. To answer
it, the Tables contain, next to the prices, the outcomes for total output Q and total profit
U of the industries. The discussion uses the results on the Pareto Optimum in
specifically that industry profit is largest where total output is largest.

Consider first the outcomes of the classic case, Industry HoCon, in Table @ A Bertrand
duopoly produces twice the monopoly quantity, which is a generic outcome of the classic
case. The price equals marginal cost at half the monopoly price (a consequence of the specific
choice of parameters), and profits are down to zero. A further increase of the number of
firms changes neither the total output nor the price. As the number of firms rises, C moves
gradually from the monopoly outcome towards B and Z; the increase from one firm to ten
firms closes most of the gap between the monopolistic and zero-profit outcomes Actually,
the Cournot Oligopoly owes its popularity to this gradual transition, as it agrees with the
intuition of many economists. Another way of looking at the same pattern, however, is that
the firms in the Cournot Oligopoly perceive an incentive to merge or to collude: industry profit
rises as the number of firms declines. But the true profit maximising strategy for the firms is
in fact to charge the monopoly price and to jointly produce the monopoly output. As shown in

8For all three models in all six industries, most outcomes for the decapoly are close to the limit values.



in this industry the Pareto Optimum is flat and coincides with the maximal-profit
set. The optimal profit-output ratio being the same over the whole range of firm sizes and
numbers of firms, the joint profit is constant, too: the assumption of joint profit maximisation
does not select a specific size distribution of firms. Non-constant marginal cost and/or product
differentiation usually change this outcome, as will appear below.

Consider next Industry Holn in Table dl When marginal cost is increasing, the firms in
the Bertrand Oligopoly earn positive profits. The joint profit of Bertrand duopolists is sub-
stantially below the monopolist’s profit, but has not fallen all the way down to zero; further
increases of the number of firms drive the joint profit down to zero at a declining pace. Note
that the joint profit of Cournot duopolists exceeds the monopolist’s profit; the cost saving
obtained by spreading production over two firms exceeds the loss of revenue through the de-
pressing effect of the additional firm on the price of the good. From two firms onward industry
profit declines towards zero, at a slower pace than in the Bertrand Oligopoly. The behaviour
of industry profit in the “collusive” oligopoly is quite different: it moves upwards, back to its
level in the classic case, as the number of firms increases. As shown in[Appendix B| the Pareto
Optimum of this industry is concave to the origin. Col is its point where industry output and
profit are largest: dividing total demand evenly among the firms is the most profitable arrange-
ment of the industry. The firms wish to stay small, because in that way they avoid the adverse
effects of increasing marginal cost. An increase of demand, for example through a drop of the
value of d, is most profitably met by the entry of firms, not by the growth of existing firms.

The value of t —d in Industry HeCon equals the value of ¢, in Industry Holn, so that
the industries have identical profit functions in quantity space. Therefore a number of rows
of Table [7] are identical to the corresponding rows of Table 4] those for Uc,;, Uc, Qcor. Qc
and Qyz, to be precise. The matching prices do differ, because the industries have different
inverse demand functions. The Bertrand Equilibrium is at a different point in both quantity
space and price space. As to the “collusive” oligopoly, just like the firms in Industry Holn,
the firms in Industry HeCon wish to stay small, but for a different reason: they want to avoid
the adverse effects of (relatively) fast decreasing marginal revenue. An increase of demand
is most profitably met by the entry of firms that bring new varieties to the market, not by
producing more of existing varieties.

Industry Heln combines increasing marginal cost with “fast” decreasing marginal revenue,
which may be typical of many traditional industries. As just discussed, both changes from
Industry HoCon affect the quantities in the same direction. The figures in Table[5|confirm that
the deviations of the quantities from their HoCon-counterparts are similar to, and larger than
with one of the changes separately. As a consequence, this observation applies to the profits
of the “collusive” oligopoly, too.

The picture is completely different for Industry HoDe, which produces one homogeneous
good using a technology with decreasing marginal cost (see Table [8]). Bertrand oligopolists
suffer losses as long as their number exceeds one. Merger increases the losses of the industry,
unless all firms merge at once into one firm, which then starts acting as a monopolist and
makes a large profit. A given number of Cournot oligopolists (more than one) perceive a
stronger incentive to merge than in any other industry here considered. The firms in the



Table 4: Industry Holn

Table 5: Industry Heln

1 1 2 3 4 5 10 1 1 2 3 4 5 10
Pz 42 37 35 34 33 31 Pz 40 36 34 33 33 31
DB 66 42 39 37 35 33 DB 65 48 43 40 38 34
pc 66 56 50 46 44 38 pc 65 56 51 48 45 39
Pcol 66 63 62 62 61 61 PCol 65 63 62 62 61 61
0z 96 107 111 113 114 117 0z 80 96 103 107 109 114
Op 48 96 103 107 109 114 Op 40 75 88 95 99 109
Oc 48 69 80 87 92 104 Oc 40 60 72 80 86 100
QOcol 48 53 55 56 57 59 Qcol 40 48 51 53 55 57
Up 1440 576 441 356 298 163 Up 1200 984 781 645 548 312
Uc 1440 1469 1333 1190 1065 681 Uc 1200 1350 1296 1200 1102 750
Ucot 1440 1600 1662 1694 1714 1756 Ucot 1200 1440 1543 1600 1636 1714
Table 6: Industry HoCon Table 7: Industry HeCon
1 1 2 3 4 5 10 1 1 2 3 4 5 10
Pz 30 30 30 30 30 30 Pz 30 30 30 30 30 30
DB 60 30 30 30 30 30 DB 60 40 36 34 33 32
pc 60 50 45 42 40 35 pc 60 51 47 44 42 37
Pt 60 60 60 60 60 60 P 60 60 60 60 60 60
0 120 120 120 120 120 120 0z 96 107 111 113 114 117
Op 60 120 120 120 120 120 0} 48 89 100 105 108 114
Oc 60 80 90 96 100 109 Oc 48 69 80 87 92 104
Ocol 60 60 60 60 60 60 QOcol 48 53 55 56 57 59
Up 1800 0 0 0 0 0 Up 1440 889 598 449 360 180
Uc 1800 1600 1350 1152 1000 595 Uc 1440 1469 1333 1190 1065 681
Ucot 1800 1800 1800 1800 1800 1800 Ucot 1440 1600 1662 1694 1714 1756
Table 8: Industry HoDe Table 9: Industry HeDe
1 1 2 3 4 5 10 1 1 2 3 4 5 10
pz 10 21 25 26 27 28 Pz 15 23 25 26 27 29
DB 50 10 18 21 23 27 DB 53 29 27 27 28 29
pc 50 42 39 37 35 33 pc 53 45 41 39 38 34
Pcol 50 56 57 58 58 59 PCol 33 56 58 58 59 59
0z 160 137 131 128 126 123 Qz 120 120 120 120 120 120
OB 80 160 144 137 133 126 OB 60 109 116 118 119 120
Oc 80 96 103 107 109 114 Oc 60 80 90 96 100 109
Oco 80 69 65 64 63 62 Qcq 60 60 60 60 60 60
Us 2400 -1600 -864 -588 -444 -199 Up 1800 595 248 133 83 19
Uc 2400 1728 1322 1067 893 490 Uc 1800 1600 1350 1152 1000 595
Ucot 2400 2057 1964 1920 1895 1846 Uco 1800 1800 1800 1800 1800 1800

10



“collusive” oligopoly, too, perceive an incentive to merge, albeit less strongly than the Cournot
oligopolists do; the reason is that industry profit at the (exogenously fixed) initial number of
identical firms is already maximal and exceeds by far the joint profit of the same number of
Cournot oligopolists. As shown in[Appendix B] the Pareto Optimum of this industry is convex
to the origin. Col is its point where industry output and profit are smallest. They reach their
maxima at any of the monopoly points, as decreasing marginal cost is exploited maximally by
concentrating all production in one firm. An increase of demand, for example through a drop
of the value of d, is most profitably met by increasing the output of this one firm.

Industry HeDe, with decreasing marginal cost and product differentiation, may be charac-
teristic of many modern industries. The sum of t —d and c; of the industry is zero: the profit
functions in quantity space are identical to those in Industry HoCon. The remarks made for
Industry HeCon on this matter apply here as well. In the “collusive” oligopoly, the joint profit
is constant across the number of firms; once more, joint profit maximisation does not select a
specific size distribution of firms.

The flawed treatment of the vector maximum problems by noncooperative game theory
results in distorted incentives for merger: in five of the six industries, the Bertrand Oligopoly
and the Cournot Oligopoly yield other outcomes for the joint-profit maximising number of
firms than the “collusive” oligopoly does. Whatever the slopes of the marginal-revenue func-
tion and marginal-cost function, in a Bertrand Oligopoly the optimal number of firms is always
one, in a Cournot Oligopoly it is at most two. The “collusive” oligopoly agrees better with
a cursory view of the world. For example, consider the issue of the number of restaurants
downtown: why are there so many, why is there not one large eating-house, or maybe two
of them? No industrial economist will want to exclude product differentiation and increas-
ing marginal cost, as in Industry Heln, from the list of explanatory factors. But of course,
empirical performance carries no weight in a dispute on a mathematical issue.

5 Some comments on laboratory experiments

Oligopoly models like the ones studied here are popular tools in the economics laboratory
for testing theories of behaviour in situations with few, interacting participants. In contrast to
what the use of the term “laboratory” suggests, however, the proceedings in the economics
laboratory differ fundamentally from those in the physics laboratory. Whereas in the physics
laboratory the participants (for example, elementary particles) “know” the laws of nature and
the experimenters are struggling to find out what the laws are, in the economics laboratory the
experimenters have set the “laws of nature” and the participants (often undergraduate students)
are struggling to find them out. Can one rationally expect beginners to grasp, within an hour
or so, the mechanics of an artificial world that has been a source of confusion for almost two
centuries?

It will surely help to give the beginners a head start by instructing them extensively, on
the model and the means at their disposal to reach good decisions. A concern of the designer
of the experiment is to supply the participants with adequate information without unveiling
the solution. However, suggesting certain procedures for attacking the problem seems quite
justified. The procedures need not be sophisticated; after all, Huck, Normann and Oechssler
(2004) have shown that, for the industries HoCon and Holn, a simple noisy trial-and-error
method always leads to the centroid of the Pareto Optimum. Meanwhile, the designer must
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beware of leading the endeavours of the participants in a particular direction. This aspect
gains weight in connection with another one. Participants in experiments have often been,
and in future experiments will be recruited from undergraduate students. Probably many of
them will be economics students, with prior exposure to economic theory and the fallacy of
Nash Equilibrium.

Even when prospective participants have received extensive instructions, it may be a good
idea to familiarise them as monopolists with the model and the experimental setting. A bad
performance of some participant as a monopolist puts into perspective the outcomes of her
later plays of games.

The last, but not least important comment on current practice in the economics laboratory
is this. In the physics lab, the experimenters create the conditions in which the phenomena
predicted by their models are likely to occur. Experimenters in the economics lab, however,
have frequently failed to do so. The first instruction that the participants in an oligopoly game
receive goes often like this:

During the experiment you are not allowed to talk to other participants. If some-
thing is not clear, please raise your hand and one of us will help you.

Nash| (1951) is to blame for this ban on communication. He suggested a new “solution con-
cept” for a game, which would apply when the players of the game were unable to communi-
cate and cooperate. Essentially, [Nash|replaced a simultaneous maximum problem with a set
of conditional maximum problems by postulating that each player conditions on the endoge-
nous actions of the other players; when applied to an oligopoly game, the Nash Equilibrium is
the Bertrand Equilibrium (Cournot Equilibrium) when the firms use the prices (quantities) as
instruments. Mathematically, the postulate amounts to ignoring the partial cross-derivatives
of the profit functions when the first-order conditions for a solution are derived, as if they
are zemﬂ The resulting conditions are incompatible with the first-order approximations of
the profit functions, for—when evaluated at a Nash Equilibrium—the cross-derivatives turn
out to be non-zero. Here is a prime example of a contradiction; oddly enough, in economic
theory and game theory this familiar outcome has not been recognised as the sign of a logi-
cal flaw. Regardless of this mathematical error, the ban on communication in experiments is
not in keeping with the specification of the model. Variables corresponding to the actions of
communication and cooperation are not present in the model, let alone constraints on such ac-
tions. Certain constraints may be lurking in the background, but in the model under empirical
scrutiny their Lagrange multipliers are zero. Stated differently, communication and coopera-
tion are free activities in the artificial world of the model. Therefore, the first instruction better
be replaced by something like this:

The experiment consists of a number of plays of a game. During the experiment,
you and the other players have access to a chatroom, where you may discuss
any issues concerning the plays of the game. However, if you have questions
concerning the experimental setting, please raise your hand and one of us will
help you.

9See|Appendix A.2|for a summary of issues concerning the Nash Equilibrium.
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The criticism above is not to deny the interest of experiments in which the participants may
not communicate. It merely stresses that the model does not apply to this situation, and that
a Nash Equilibrium is not a mathematically consistent yardstick to assess the outcomes with.
How in real life the impossibility of communication may affect the outcomes is a question
that surpasses the boundaries of the model as it has been posed. Impediments for collusion
must be modelled explicitly, for example along the lines suggested by Stigler (1964).

6 Concluding remarks

Ever since Cournot (1838), economists have built multi-agent models in the following way.
First, they derived the first-order conditions of each agent’s conditional maximum problem,
treating only the agent’s actions as endogenous and conditioning on the actions of the other
agents. Next, they assembled all first-order conditions into one system of equations, adding
some new (!) constraints (the market equilibrium conditions) if needed. [Von Neumann and
Morgenstern| (1947), and De Finetti| (1937alb) before them, noted that the conditional maxi-
mum problems were interdependent and actually constituted a vector maximum problem, or
game. Shortly after, Nash! (1951)) postulated that agents unable to cooperate would in fact con-
dition on the endogenous actions of their rivals; thus he disassembled the game into the old set
of conditional maximum problems. However, the justification of the postulate relies on a par-
ticular interpretation of the problem. To see the fallacy of Nash Equilibrium, just concentrate
on the mathematics and solve the game devoid of any interpretation. The generalised Cournot
Oligopoly analysed in the present article may serve well as an example in an introduction
to the method of vector maximisation, meanwhile exposing the flaw in noncooperative game
theory and the greater part of economic theory.

Nash| (1951)) uses a fixed-point theorem to prove the existence of a Nash Equilibrium;
its status of fixed point of some mapping gives the Nash Equilibrium an aura of stability.
Here, the existence of a Nash Equilibrium is shown constructively, by solving a system of
linear equations. Because the games are simple, it is easy to study the properties of a Nash
Equilibrium. Its dependence on the arbitrary choice of instruments nullifies any claim of
stability: The prices at the Cournot Equilibrium do not constitute a Nash Equilibrium in price
space, so that (according to noncooperative game theory itself) the firms will be tempted to
change their prices until they arrive at the Bertrand Equilibrium, where they observe that the
implied quantities do not constitute a Nash Equilibrium in quantity space, so that ..., and so
on.

In a review of the experimental literature, [Haan, Schoonbeek and Winkel| (2006)) find that
The ability to communicate among sellers has a strong and positive effect on the ability to col-
lude. The finding is good news for the proponents of the rationality postulate as the starting
point of economic theory. Deliberate coordination of actions is observed in real life a lot more
often than is compatible with noncooperative game theory. Because an experimental setting
that allows of easy communication is a better approximation of many real-world situations
than the alternative, the finding is consistent with this observation. Individually rational deci-
sion makers seem to understand well that in many situations they serve their private interests
best by acting in unison with others.

‘There is such a thing as being just plain wrong’ (Richard Dawkins in The Selfish Gene),
and that’s what noncooperative game theory is. Economics cannot hold on to a failed so-
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lution of a vector maximum problem as its prediction of the outcome of rational behaviour
in situations where actions are interdependent. The theory now known as cooperative game
theory is the basis of the theory of rational decision making, unqualified by adjectives like
“cooperative” versus “noncooperative,” or “individual” versus “collective.”

A Pareto Optimum versus Nash Equilibrium

A.1 Pareto Optimum
Equivalence of forms of a game

Section [2] identifies the oligopoly game as a vector maximum problem with equality con-
straints. The problem is an example of a game in extensive form. Unlike optimisation theory,
noncooperative game theory cannot deal with games in extensive form. It does not need to,
because it may first transform an extensive form into a normal form. The defining property
of a normal form—the notion of Nash Equilibrium is inextricably bound to it—is that the
arguments of the maximands may be varied independently of one another. It allows the game
theorist to assign each argument to a different player as the one controlling it. Still, the as-
signment is just part of a particular interpretation of the problem, which does not affect its
solution. The game theorist cannot ignore the issue of equivalence of the various forms that
arises in the transformation: all forms must yield the same outcome, else the transformation
is not permissible. Nonsingularity of the transformation guarantees equivalence of the forms.

A first-order condition

The mathematician deals with the Cournot Oligopoly by considering the first-order approx-
imation Udq = dv, where U := [du;/dgj]. The first-order conditions for a Pareto Optimum
consist of two parts. One necessary condition for the point q* to be (weakly or strongly)
Pareto optimal is that the matrix U(q*) have deficient row rank (else a solution of Udq = dv
with a strictly positive or positive vector d ¥ certainly exists). Therefore the Pareto Optimum
is (a part of) the variety on which |U| = 0. At a Pareto optimal point a vector dq exists such
that Udq = 0. The geometric interpretation is that the iso-profit curves have a tangent line in
common at Pareto optimal points. The other part of the first-order conditions is not needed
for the present purpose, nor are the second-order conditions.

The derivation varies all quantities simultaneously, and it varies every quantity in all
places where it occurs. Not doing so would be a grave mathematical mistake.

In the case of a single maximand, the condition that the (1 x I)-dimensional matrix, or
row vector of partial first-order derivatives have deficient rank amounts to the condition that
all first-order derivatives vanish. The condition that derivatives parallel to the coordinate axes
be zero does not move over from scalar to vector maximisation.

Invariance of the solution

Let vi(p1,...,pr),i = 1,...,1, be the profit functions in price space. Define V := [dv;/dp;],
F :=[df;/dqj|, and G := [dg;/dp;]. Application of the chain rule yields U= VF and V = UG.
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Because |U| = |V| - |F| and |F| # 0 (or, because |V| = |U|- |G| and |G| # 0), |U| =0 <—
|[V| = 0: the quantity-setting oligopoly and price-setting oligopoly yield the same outcomes,
because tangency of iso-payoft surfaces is preserved. In fact, the solution of every optimum
problem is invariant under nonsingular transformations of variables.

“Conjectural variations”

Take a point where Udq = 0, and let U have rank / — 1. Then dq is unique up to a factor and
proportional to the vector of cofactors |U;;|* of the elements of a row of U, for ¥ u;;|U;;|* =
|U| =0,i=1,...,I. Define §;; :== dg;/dg; = |U;;|*/|Us|*, the marginal rate of substitution
between g and g; along the common tangent line to the level curves of the maximands at the
point. Obviously, &jx&x = &ji i, j,k =1,...,1. The matrix E := [£};] has rank 1, and all its
diagonal elements are 1: each column & ; of E is a differently scaled version of the vector in
the nullspace of U.

In oligopoly theory the entities §j; are known under the misnomer of “conjectural varia-
tions,” with the interpretation that they tell the change of the action of Firm j that Firm i thinks
is induced by a one-unit change of its own action. They are treated as parameters, which may
be given alternative values to represent different ways of behaviour. In fact, their values are
determined endogenously as part of the solution of the vector maximum problem, and they
vary from point to point of the Pareto Optimum. The first-order conditions of a “conjectural
variations” oligopoly are just the condition Udq = 0 in disguise

In a symmetric oligopoly model like the one studied here, Ut = 0 (where 1’ :=[1...1])
at the Collusion Point and at no other point (the directional derivatives of the profit functions
along the symmetry axis are zero at Col). This outcome explains why the thought experiment
on Page [5 of varying the quantities in unison (i.e., dq = €1; all “conjectural variations” equal
to 1) leads to Col.

A.2 Nash Equilibrium
Definition

Inspired by the economic interpretation of the problem (‘The only thing that a firm gets to
control is its own output, not the output of other firms.”), noncooperative game theory postu-
lates u;; = 0,i = 1,...,1, as the first-order conditions for maximal profits of the firms. At a
Nash Equilibrium, the iso-profit curves are perpendicular instead of tangent.

Please note that, against the very nature of mathematics, the classic vindication of the
Nash Equilibrium relies on a specific interpretation of the vector maximum problem. In fact,
the interpretation has just led the game theorist astray. The inadequacy of the reasoning may
be argued in several ways.

Internal inconsistency

As noted on Page the cross-derivatives of the profit functions, implicitly set to zero in the
definition of Nash Equilibrium, turn out nonzero at the Cournot Equilibrium. Here is a prime
example of a contradiction.

10See Nieuwenhuis| (2017, Sections 2.2.3, 2.3.4 and 4.1.5) for more on “conjectural variations.”
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Flawed derivation

The approach of the mathematician adds to the reasoning of the game theorist. A firm will
reflect on how alternative levels of its output affect its profit. A change of its output level
affects the profits of its competitors as well, and its competitors, too, will reflect on changes
in their output levels that affect its own profit. There is no point in ignoring these effects.
Thus all firms arrive at a problem identical to that of the mathematician. Starting from some
position, the firms may go looking for win-win moves until no such move is left.

Clearly, that each firm controls only its own output is not a valid argument for neglecting
the cross-derivatives of the profit functions. In fact, varying a variable at one place while
holding it constant at other places is just a grave mathematical mistake, for which no excuse
exists at all.

Another sophism in the story telling that surrounds the Nash Equilibrium is that the play-
ers condition on the actions of their rivals because they cannot communicate and cooperate.
Again, mathematics comes to the rescue and dismantles it. As was pointed out in Section [5]
communication and cooperation are free activities in the model because their shadow prices
are zero.

The predominance of noncooperative game theory justifies a variation on Edgeworth| (1881,
p. 127, fn. 3): To treat variables as constants is the characteristic vice of the wsmathematical
economist.

Faulty outcome

A Nash Equilibrium is not Pareto optimal. The domains of the arguments contain points
where all profit functions have larger values. In the terms of game theory: the firms may all
increase their profits by moving to some other point in their action possibility sets, for the
model contains no restrictions that keep them from doing so. Noncooperative game theory
does not describe profit maximising behaviour. What motive, then, guides the behaviour of
the firms?

Because they are mathematically equivalent forms of a vector maximum problem, the
quantity-setting oligopoly and the price-setting oligopoly must yield the same outcomes. As
shown above, they do when treated correctly. Noncooperative game theory, however, results in
the Cournot Equilibrium and Bertrand Equilibrium, which are not identical; unlike tangency,
perpendicularity of iso-payoff surfaces is not preserved in all nonsingular transformations.

May we one day welcome a new ““solution concept” for the problem of budget-constrained
utility maximisation, one that yields a different outcome for every other choice of argument
to be eliminated from the utility function?

(Lack of) stablility

The classic defence of the notion of Nash Equilibrium is that it would be stable, or self-
enforcing: a Nash Equilibrium is a point no firm wants to deviate from given what other
firms are doing. As pointed out on Page [I3] it fails because a Nash Equilibrium depends
on the frame of reference. The prices at the Cournot Equilibrium do not constitute a Nash
Equilibrium in price space, nor do the quantities at the Bertrand Equilibrium constitute a Nash
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Equilibrium in quantity space. According to noncooperative game theory itself, at a Cournot
Equilibrium each firm would regret its choice of price and want to change it unilaterally, and
similarly at a Bertrand Equilibrium the firm would regret its choice of quantity and want to
change it unilaterally.

The classic attaque of noncooperative game theory on the Collusion Point Col is that
it would not be self-enforcing: if firms found themselves there, then each would have the
incentive to unilaterally deviate from that output level. This is certainly correct, but it is a
feature, not a bug of the notion of Pareto optimality. As noted in the condition
that derivatives parallel to the coordinate axes be zero does not move over from scalar to vector
maximisation. In fact, just like the classic defence of the Nash Equilibrium fails, so does the
classic attaque on Col. In both cases, the argument relies on a specific interpretation of the
mathematical problem and involves unwarranted conditioning on endogenous variables.

To see the odd behaviour that noncooperative game theory imposes on the firms, put
quantity-setting firms of Industry Holn at Col, which is the industry’s Joint Profit Maximum,
and see where it leads them to. When all firms yield to the incentive of deviation, they go
down Profit Hill. They persevere in the direction that lowers their profits till they reach the
Cournot Equilibrium. Price-setting firms will, after arrival at the Cournot Equilibrium, crash
even further down to the Bertrand Equilibrium (so much for the Cournot Equilibrium being
self-enforcing). The simple trial-and-error method of Huck et al. (2004), however, lets all
firms change their output levels by a small amount. The firms that, as the outcome of the
simultaneous move, notice a fall of their profits make a U-turn in the next step, and so on.
Starting from any point, for example a Nash Equilibrium, the firms arrive at Col. Which
approach describes rational, optimising behaviour?

Stepwise maximisation done (in)correctly

In scalar optimum problems, the method of stepwise maximisation may be convenient; ex-
amples are concentrating the likelihood function, and cost minimisation conditional on some
unspecified output level, which is yet to be determined in a subsequent step of profit maximisa-
tion. As noted on Page] the derivation of the “first-order conditions” for a Nash Equilibrium
is not the first step in such a procedure. The subsequent step of undoing the conditioning is
never made, simply because such a step is impossible.

Still, there is a stepwise method also in vector maximum problems. Take a duopoly game
as an example. In the first step, Firm 1 picks one of its iso-profit curves and allows Firm 2 to
choose the point on the curve where its profit is maximal; in subsequent steps, the firms repeat
this exercise for all permissible values of the first firm’s profit. They may exchange their roles
just to find that they arrive at the same solution, the Pareto Optimum. The procedure works
because each firm, rather than condition on what the rival firm does, conditions on what it
wants. Like in a detective, the crucial issue is motive.
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B The solution of the oligopoly game

B.1 New units of measurement

A change of the units of measurement simplifies the formulas of model and solution. Using
x; = q;/k, k := (dy — c1)/d, divide the profit functions (@) by dk? to redefine them to

v =ui(x1,..x) = (1= X)x; —rx?, i=1,...,1, (8)
t—d+c
ri=————>=,
d

where X :=}_;x;. The expressions for xco and Uco; are

1
XCol = m, (9a)
1
Vol = <I+ r)x%fol = 4(1—|— r) . (9b)

According to (9)), —1 < r must hold for optimal monopoly output and profit to be positive and
finite. The expression for pco, may be written as

(I+r—s)c1+ (I+r+s)dy
2(I+r) ’

PCol =

where s := ¢, /d. The larger is ¢, the smaller is the weight of ¢; and the larger is the weight
of dy, and hence the higher is the price at Col.

B.2 The maximal-profit set

Consider first the equivalent of Theorem |I]in Section 2] p.[5]

THEOREM 2 The maximal-profit set of oligopoly (8)) is the set of points where the industry’s
profit-output ratio equals 1/2.

PROOF The proof is for a duopoly, but the method of proof applies to any number of firms.
Consider the industry’s profit along the ray x, = ox, @ > 0. Substitute x, = ox; in the profit
functions of the firms and add the outcomes:

1)1=V1(X1,0C)=)CI—(1+OC+I’)X%, (10a)
1)2:1/2()61,06):06)(1— (OC—I—OCZ(I—}—I‘))X%, (10b)
Y=V(x,a) =(1+a)x — ((1+a)?+(1+a®)r)xd. (10c)

Let Y be the maximal Y along the ray x, = ax;, reached when x| = x . The ratio Y¢ /X1 ¢,
is (14 )/2, so that the profit-output ratio of the industry is in fact 1/2. Because the profit-
output ratio is strictly decreasing in industry output, there is no other point along the ray where
the profit-output ratio of the industry is 1/2. UJ
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To better understand the outcome, rewrite (10b) and to
wz(xl,oc):xl—(l+(x(1+r))x%, o >0, (10B)
2

W(xl,a)le—(l—ka—l—iig r)x%. (10cT)
(T0al), (TOB[]) and (TOc])) are quadratic functions of the form ax? + bx with a common value of
b but different values of a. The value of a in the third function is a weighted average of its
values in the first two functions, with the weights of 1/(1 + ) and a/(1 + ), respectively.
Therefore the point on the ray where industry profit is maximal is generally in between the
points where the profits of the firms reach their maxima. As the ray x, = ox; revolves around
the origin from the x;-axis (@ = 0) towards the xp-axis (¢ = o), the weight of Firm 1’s
profit function declines from 1 to 0. Simultaneously, the intersection of the ray with the
zero-profit line of Firm 1, Z; 4, moves from the point Z; = Z; o := [1/(1 +r),0)] towards the
point B; = Z . := [0, 1] (see Figure [I| which concerns Industry HoIn). Parallel to this line
(segment), at half the distance from the origin, is the maximal-profit line of Firm 1; along the
line, profit declines linearly from the monopoly profitat C; = P; o :=[1/(2(1+r)),0] towards
zero at Py o, := [0,1/2]. The maximal-profit line of Firm 2 is the mirror image of the one of
Firm 1 with respect to the ray x; = x3.

If r = 0, the maximal-profit lines of both firms are 1 —2X = 0, which is the maximal-profit
set and Pareto Optimum. Along the line, industry output and profit are constant. One may
show that, at every point of the line, the ray x, = ox; through the point is the common tangent
line of the iso-profit curves of the firms.

In the general case of r # 0, the maximal-profit lines intersect at Col. The industry has
a maximal-profit curve, which runs from C; through Col to C,, the mirror image of C; with
respect to x; = xp; the intermediate segments of the curve are in between the maximal-profit
lines. The ray x, = ax; is tangent to an iso-profit curve of the industry where it intersects the
maximal-profit curve. The iso-profit curves of the firms do not have a common tangent line at
the intersection, unless it is at Col or a monopoly point.

How do industry output and profit evolve along the maximal-profit curve? Compare the
output of a firm at Col,

1
XCol = m, ©a)
to the output of a firm halfway between C; and C, , which equals half the monopolist’s output,
Xmono _ 1
2 4(14r)

If » > 0, then xcol > Xmono/2, SO that the curve is concave to the origin; it proves to be a
segment of an ellipse (see below). Col is the point of the curve where industry output and
profit are largest. If r < 0, then xco] < Xmono/2, SO that the curve is convex to the origin; it
proves to be a segment of a hyperbola (see below). Col is the point of the curve where industry
output and profit are smallest, they are largest at any of the monopoly points.

For any number of firms, putting the sum of the profit functions equal to X /2 yields the
equation of the maximal-profit (hyper)surface,

—2X2—2r2x§+xzo. (11)
J
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If r =0, the quadric surface reduces to X(1 —2X) = 0. Because X # 0, the solution is
1 — 2X = 0 (which in this case is the Pareto Optimum). For a duopoly, the Discrimi-
nant A of the conic section is —16r(2+r). If r > 0 (and if r < —2), then A < 0: the equation
represents an ellipse. If —2 < r < 0, then A > 0: the equation represents a hyperbola. For
larger numbers of firms, the equation represents ellipsoids or hyperboloids of revolution.

B.3 The Pareto Optimum

Turn next to the Pareto Optimum. When there are I firms, |U| is a polynomial of degree /
in I variables. If r = 0, the condition [U| = 0 reduces to (1 —X)/~1(1 —2X) = OH which
represents the Pareto Optimum and Zero-profit set; the Pareto Optimum and maximal-profit
set coincide. For a duopoly, the Discriminant A of the conic section is 16(1 4 r)?r(2 +r). If
r > 0 (and if r < —2), then A > 0: the equation represents a hyperbola. If —2 < r < 0, then
A < 0: the equation represents an ellipse. The Pareto Optimum and maximal-profit set do not
coincide. They do have the Collusion Points of the included oligopolies in common; at the
intermediate segments the maximal-profit set is slightly farther away from the origin than the
Pareto Optimum. The property of a constant profit-output ratio does not apply to the Pareto
Optimum. Still, the evolutions of industry profit and output along the Pareto optimal curve
and maximal-profit curve are qualitatively similar. Figure 1| sketches the solution of |U| =0
for the duopoly Holn.

What does the Pareto Optimum look like when the number of firms exceeds two? In a
triopoly, there are three monopoly points and three curves like C;C> connecting them. The
Pareto Optimum is a surface area, topologically a triangle, the three sides of which are the
curves of the included duopolies. The surface area is convex to the origin, flat, or concave
to the origin for r < 0, r = 0, or r > 0, respectively. For a tetrapoly, the Pareto Optimum
is a volume, topologically a tetrahedron, the four faces of which are the “triangles” of the
included triopolies. And so on, beyond graphical representation, for still larger numbers of
firms. Here is a prime example of a result, for the first time stated and proved by De Finetti
(1937al Section 12; translation of the author),

The locus of “optimum” points with respect to n functions is, topologically, a
simplex of n — 1 dimensions, the n faces of which are the loci of “optimum” with
respect to n — 1 <of the> functions, the (g) edges of which those for n —2 <of
the> functions, and so on, up to the n vertices, “optimum” points with respect to
the n functions separately.

The “locus of “optimum” points” is what nowadays is called the Pareto Optimum.

U From each column of U for this case, subtract its successor. To each row of the new matrix, add its pre-
decessors. The resulting upper-triangular matrix has diagonal elements of 1 — X save the last element, which is
1-2X.
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Figure 1: Industry Holn (r = ¢ /d = 1/4)

Notes: The curve through By, B and B solves |U| = 0, but is not part of the Pareto Optimum. The curve
through C; and C; solves |U| = 0, and is the Pareto Optimum; its midpoint is the Collusion Point. [B;Z;]
is the Zero-profit line of Firm i. Z is the Zero-profit point, B;’ the end point of Firm i’s Bertrand reaction
function, C; the end point of Firm i’s Cournot reaction function (also Firm i’s monopoly point). At the
Bertrand Equilibrium B the iso-profit curves have a tangent line in common, but still they intersect. At
the Cournot Equilibrium C the iso-profit curves are perpendicular to one another.

Source: [Nieuwenhuis| (2017}, Figure 4).
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