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Abstract

To illustrate that a Nash equilibrium results from a flawed attempt to solve a game, this article studies two extensions
of the classic oligopoly model of Cournot. The common cost function is quadratic, and the (still linear) inverse
demand functions allow of differentiated goods. The industry has a maximal-profit set that is characterised by a
constant profit-output ratio, independent of the number of firms and the slopes of the marginal-cost function and
inverse demand functions. The choice of parameters is discussed and six model variants are analysed numerically;
in five of them, the incentives for merger according to noncooperative game theory are at odds with the rationale of
economics. Some comments are made on the use of the model in experimental economics.

Keywords: Bertrand, Cournot, Collusion, Oligopoly, Game theory, Vector maximisation
JEL: C61, C70, D21, D43, L11, L13

No one has the right, and few the ability, to lure economists into
reading another article on oligopoly theory without some advance
indication of its alleged contribution. The present paper accepts
the hypothesis that oligopolists wish to collude to maximize joint
profits. It seeks to reconcile this wish with facts, such as that col-
lusion is impossible for many firms and collusion is much more
effective in some circumstances than in others.

G. J. Stigler (1964, p. 44)

1. Introduction

There is something weird about the notion of Nash equilibrium. Although game theory has been designed to deal
with decision problems in which the effects of each player’s actions on the outcomes for the other players cannot be
ignored, noncooperative game theory does just that: the “first-order conditions” for a Nash equilibrium ignore the
partial cross-derivatives of the payoff functions. Ignoring the cross-derivatives is in fact a grave mathematical error:
it amounts to treating the actions inconsistently and leads to contradictions. The two-page note Nieuwenhuis (2018)
merely underlines that the conditions for a Nash equilibrium are incompatible with the first-order approximations
of the payoff functions. Nieuwenhuis (2017a) exposes the error in noncooperative game theory at greater length,
arguing that a game is a vector maximisation problem from which a Nash equilibrium derives by treating variables
erroneously as constants in certain places, and illustrates the fallacy of Nash equilibrium with three examples, in
oligopoly theory, in the Prisoner’s Dilemma, and in dynamic general equilibrium models with imperfect competition
and rational expectations. As an example within the first example, the paper analyses the classic duopoly model of
Cournot (1927)—homogeneous product, linear inverse demand function and cost function—extended to the case of a
common quadratic cost function.

The present article analyses a further extension of the “classic case” to illustrate that a Nash equilibrium results
from a mathematically flawed attempt to solve a game, thus insisting on the removal of noncooperative game theory
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from the textbooks on microeconomic theory. It considers oligopolies with any number of firms that produce varieties
of some good (one homogeneous good included as a special case), sharing a quadratic cost function. The inverse
demand functions are still linear; for simplicity’s sake, the specification is symmetric in the way it treats the goods.
Like Stigler’s, the article accepts the hypothesis that firms wish to collude to maximise profits, but it takes a different
turn. It stresses that collusion is in fact the profit maximising strategy of the firms in the artificial world of the model,
as this world does not contain any impediments for collusion. It defines the maximal-profit set of an industry as the
set of points where industry profit is maximal along a ray through the origin, and shows that it is characterised by a
constant profit-output ratio, independent of the number of firms and of the slopes of the marginal-cost function and
inverse demand functions. The maximal-profit set and the Pareto optimal set have a number of points in common,
but in general do not coincide. The article discusses how parameter values may be chosen so as to obtain model
variants with attractive features for use in the laboratory, and presents numerical examples to highlight the differences
between and similarities of the outcomes of six model variants; in five variants, the incentives for merger according to
noncooperative game theory appear at odds with the tenet of rational, optimising behaviour. Finally, it comments on
the use of this class of models in the economics laboratory.

2. The model

Consider an industry with profit maximising firms i, i = 1, . . . , I, each of which produces a variety of some good.
The firms have identical quadratic cost functions,

c(qi) = c1qi +
c2

2
q2

i , (1)

with qi the quantity of the variety produced by Firm i. The linear marginal-cost function is

mc(qi) = c1 + c2qi, (2)

where c2 Q 0, so that marginal cost may be increasing, constant or decreasing. The last case requires c1 � 0 for
marginal cost to be positive over a certain range.

The inverse demand functions, too, are linear:

pi = fi(q1, . . . ,qI) = d0−dQ− (t−d)qi, i = 1, . . . , I, (3)

where Q := ∑ j q j. I shall use the entity Q as an indicator of industry output. The parameters satisfy d0 > c1, 0 < d ≤ t.
When t > d, the goods are imperfect substitutes. The condition d0 > c1 ensures that the prices of the goods exceed
marginal cost when the firms produce nothing at all. The symmetric specification of the inverse demand functions,
next to the common cost function, implies that most outcomes of interest are points on the ray q1 = q2 = · · ·= qI (the
axis of symmetry of the model), which simplifies the analysis.

With differentiated goods, that is when t > d, the ordinary demand functions are

qi = gi(p1, . . . , pI) = δ0,I +δIP− (τI +δI)pi, i = 1, . . . , I, (4)

δ0,I =
d0

(I−1)d + t
, I ≥ 1,

τI =
(I−2)d + t(

(I−1)d + t
)
(t−d)

, I ≥ 1,

δI =
d(

(I−1)d + t
)
(t−d)

, I ≥ 2,

where P := ∑ j p j. The parameters satisfy δ0,I > 0, 0 < δI < τI .
The systems of inverse or ordinary demand functions may also be partially inverted to a system of mixed demand

functions, with the prices of some goods and the quantities of the other goods as left-hand side variables. In general,
there are 2I equivalent systems of demand functions. The present, symmetric specification reduces the number of
analytically distinct cases to I+1, one case for each number of firms that use the prices of their products as instruments.
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The profit of Firm i is revenue minus cost, pi · qi− c(qi). The profits of all firms must be maximised subject to
the constraint of the cost function (1) and to the constraints of the inverse demand functions (3) or, equivalently, the
ordinary demand functions (4) or some system of mixed demand functions. These are extensive forms of the problem,
all equivalent to one another. The I problems of profit maximisation are interdependent, because the arguments of the
maximands are interrelated through the demand functions: they constitute a vector maximisation problem2 or game.
The game, in any extensive form, may be treated with the methods of De Finetti (2017a) or Kuhn and Tucker (1950,
Section 6). The alternative and more common approach is to use a system of demand functions for eliminating one
half of the number of arguments from the maximands to arrive at a normal form of the game; in each normal form,
the arguments of the maximands may be varied independently of one another. Every normal form, combined with
the matching system of demand functions, is equivalent to an extensive form; hence, all normal forms are equivalent
to one another. The choice of which variables to eliminate is arbitrary in the sense that, with a correct mathematical
treatment, it does not affect the solutions for the prices and quantities.3

The choice of which variables to eliminate is not arbitrary in every aspect. In fact, there is a most convenient
choice, which is to eliminate the prices. It yields easy to understand expressions, because the dimensions of the
parameters of the cost function and the inverse demand functions agree: c1 has the same dimension as d0 does, c2 has
the same dimension as d and t do. The profit functions in quantity space are

υi = ui(q1, . . . ,qI) = (d0− c1−dQ)qi−
(

t−d +
c2

2

)
q2

i , i = 1, . . . , I. (5)

They differ from the profit functions of the classic case only if t−d+c2/2 , 0. However, even if t−d+c2/2 = 0, the
ordinary demand functions and, hence, the profit functions in price space do differ when t > d. More generally, every
triplet (t,d,c2) that satisfies t−d + c2/2 = z yields the same profit functions in quantity space but not in price space.
This property of the model results from the linearity of the marginal-cost function and the inverse demand functions.
It means that to every increase of the slope of the marginal-cost function there corresponds a decrease of the slopes
of the perceived marginal-revenue functions (for which see below) so as to yield the same profit functions in quantity
space. I shall return to the issue when discussing the outcomes of model variants in Section 4.

The profit of Firm i is zero if qi = 0 or else if pi = c(qi)/qi. The latter condition defines a (hyper)plane the
nonnegative segment of which I simply call the zero-profit plane of the firm. Let Z be the intersection of the ray
q1 = q2 = · · · = qI with the zero-profit plane of any one of the firms. Then Z is either the centroid of the common
zero-profit plane (if t− d + c2/2 = 0) or else the intersection of the zero-profit planes, the unique zero-profit point.
All its coordinates equal

qZ =
2d

2(I−1)d +2t + c2
k, k :=

d0− c1

d
.

Other quantities of interest, too, will be expressed as fractions of k.
The solution of a vector maximisation problem is the Pareto optimal set. Here I consider mainly the centroid of

the set, which I call Col (for Collusion point). As we shall see, in some cases Col is the Joint Profit Maximum, in
other cases it is the point of the Pareto optimum where the joint profit is minimal. To find the coordinates of Col, note
that along the ray q1 = q2 = · · ·= qI the profit of each firm is a quadratic function of the common quantity q, and that
the zeros of the parabola are at the origin and at Z. Therefore Col is halfway between the origin and Z.

Two failed attempts to solve the vector maximisation problem constituted by the simultaneous maximisation of
the profit functions are those by Cournot (1927) and by Bertrand (1883). In a Cournot oligopoly, each firm chooses
its quantity while conditioning on the quantities of its rivals; in a Bertrand oligopoly, each firm chooses its price while
conditioning on the prices of its rivals. The firms in a Bertrand oligopoly perceive the marginal-revenue functions

mrB
i = pi−

1
τI

gi(p1, . . . , pI) (6a)

= fi(q1, . . . ,qI)−
1
τI

qi. (6b)

2Elsewhere I have used the term simultaneous maximum problem.
3Else the eliminations would not even have been permissible.
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When t = d (one homogeneous product), 1/τI = 0 so that mrB = p. The firms in a Cournot oligopoly perceive the
marginal-revenue functions

mrC
i = fi(q1, . . . ,qI)− tqi (7a)
= pi− tgi(p1, . . . , pI). (7b)

The firms in the “collusive” oligopoly perceive the marginal-revenue functions

mrCol
i = fi(q1, . . . ,qI)−

(
(I−1)d + t

)
qi (8a)

= pi +
1

(I−1)δI− τI
gi(p1, . . . , pI). (8b)

These expressions result from assuming respectively that the quantities or the prices move in unison. (8a) and (8b)
are equivalent, meaning that the Collusion point is unaffected by the choice of instruments. In fact, the Pareto optimal
set is unaffected by nonsingular transformations of variables (as is the solution of every optimisation problem). The
Cournot equilibrium and Bertrand equilibrium, by contrast, two examples of a Nash equilibrium, will differ from one
another. In general, the Nash equilibria of all normal forms will be different. The dependence of a Nash equilibrium
on the arbitrary choice of instruments points to the flawed treatment of the vector maximisation problem, and is a
major defect of noncooperative game theory as a theory of rational behaviour.

Subsequently equating marginal revenue according to the functions (6b), (7a) or (8a) to marginal cost (2) yields
the “reaction functions” in implicit form. The Bertrand equilibrium B and the Cournot equilibrium C (and also Col)
are at the intersection of the ray q1 = q2 = · · · = qI with any one of the appropriate “reaction functions.” Table 1
gives a number of outcomes. The prices are always a weighted average of c1 and d0. The outcomes of the classic
case are the limits of the outcomes of the general case when the number of firms grows without bound: the effects of
nonconstant marginal cost and of product differentiation become negligible.

A noteworthy feature of the Collusion point is the constant profit-output ratio,4

υCol

qCol
=

d0− c1

2
,

independent of I, the number of firms, and of c2, d and t, the slopes of the marginal-cost function and inverse demand
functions. In fact, this outcome is a special case of a more general result. Define the maximal-profit set of an industry
as the set of points where industry profit is maximal along the rays α1q1 = α2q2 = . . .= αIqI , αi ≥ 0 for all i. There
holds

FACT: The maximal-profit set of every oligopoly in this paper is the set of points where the profit-output ratio of the
industry equals (d0− c1)/2.

The maximal-profit set and the Pareto optimal set have the Collusion points of the included oligopolies in common,
but they do not coincide; the Appendix delves deeper into this matter. Still it is true that, within the Pareto optimal
sets of the oligopolies with the same value of d0− c1, the joint profit is largest where the joint output is largest. In
Section 4 I shall use the result in the comparison of the outcomes of six model variants.

3. Choice of parameters: the classic case

Numerical examples help to reveal the information that the expressions in Table 1 contain. The present section
discusses the choice of values for the parameters c1, d0 and d of the classic case, because it takes a central place. The
next section will show the impact of nonconstant marginal cost and product differentiation on the outcomes.

Conveniently, choosing values for the parameters can be done in three steps. First, scale the quantities through the
choice of k (:= (d0− c1)/d). Second, fix the price at the Collusion point through the choice of c1 +d0. Third, make
an assumption about the elasticity of the inverse demand function at the Collusion point to identify c1, d0 and d.

4For the quadratic form ax2 +bx, the ratio of the extremum to its argument is b/2.
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Table 1: Main outcomes

General formula The classic case

Zero-profit point

– quantity÷k
2d

2
(
(I−1)d + t

)
+ c2

1
I

– price
2
(
(I−1)d + t

)
c1 + c2d0

2
(
(I−1)d + t

)
+ c2

c1

Bertrand equilibrium

– quantity÷k
d

(I−1)d + t + τ
−1
I + c2

1
I

– price

(
(I−1)d + t

)
c1 +(τ−1

I + c2)d0

(I−1)d + t + τ
−1
I + c2

c1

– profit
( 1

τI
+

c2

2

)
q2

B 0

Cournot equilibrium

– quantity÷k
d

(I−1)d +2t + c2

1
I +1

– price

(
(I−1)d + t

)
c1 +(t + c2)d0

(I−1)d +2t + c2

Ic1 +d0

I +1

– profit
(

t +
c2

2

)
q2

C dq2
C

Collusion point

– quantity÷k
d

2
(
(I−1)d + t

)
+ c2

1
2I

– price

(
(I−1)d + t

)
c1 +

(
(I−1)d + t + c2

)
d0

2
(
(I−1)d + t

)
+ c2

c1 +d0

2

– profit
(
(I−1)d + t +

c2

2

)
q2

Col Idq2
Col

Table 2 gives the unchanging pattern in the outcomes for 1–5 firms. I want to transform the table into a numerical
example with certain desirable properties, which make the model suitable for application in the laboratory. One wish
is that the Bertrand equilibrium B, Cournot equilibrium C and Collusion point Col be clearly separated; given the
fixed ratios between the outcomes, this property can only be obtained by choosing the scale “sufficiently” large. A
sufficiently large scale also helps to constrain the relative deviation from the true outcomes introduced by rounding
them to the nearest integer, a practice that seems advisable in the laboratory. On the other hand, the figures must not
be “unduly” large. It would also be nice for the outcomes to have a somewhat “realistic” flavour.

The admittedly vague desiderata leave ample room for other considerations. I have imposed the constraint that the
parameters yield only integer outcomes for the cases of 1–5 firms. As to the quantities, it requires k to be a multiple
of 120 (= 23 ·3 ·5). It does not seem necessary to choose k larger than 120. As to the prices, it requires c1 +do to be
a multiple of 60 (= 22 ·3 ·5). The value of 60 implies pCol = 30. Given the need to choose c1 well in excess of 0 (to
allow of decreasing marginal cost), this value leaves a rather small interval for the prices. So let’s double it.
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Table 2: The classic case: pattern in the outcomes

Number of firms (I) 1 2 3 4 5

Quantities÷k

– qZ 1 1/2 1/3 1/4 1/5
– qB 1/2 1/2 1/3 1/4 1/5
– qC 1/2 1/3 1/4 1/5 1/6
– qCol 1/2 1/4 1/6 1/8 1/10

Prices
– pZ c1 c1 c1 c1 c1

– pB
c1 +d0

2
c1 c1 c1 c1

– pC
c1 +d0

2
2c1 +d0

3
3c1 +d0

4
4c1 +d0

5
5c1 +d0

6

– pCol
c1 +d0

2
c1 +d0

2
c1 +d0

2
c1 +d0

2
c1 +d0

2

Lastly, the wish for a somewhat “realistic” flavour. Observe that the elasticity of the inverse demand function at
the Collusion point, eCol, is given by (c1−d0)/(c1 +d0). A value of c1 close to d0 yields a value of eCol close to zero
and hence a low markup of price over (marginal) cost, whereas a value of c1 close to zero yields a value of eCol close
to −1 and hence a high markup. Steering away from both extremes, I choose eCol = −0.5, which yields a markup
of 2 and implies d0 = 3c1. In this way I arrive at c1 = 30, d0 = 90 and d = 0.5. Table 3 gives the outcomes for the
quantities and prices with this choice of parameters. Note that the parameter d may be used to scale the quantities.
For example, halving the value of d doubles all quantities: the change represents a pure demand shift, with the same
relative rise of demand at every price.

Table 3: The classic case: a numerical example

I 1 2 3 4 5

Quantities
– qZ 120 60 40 30 24
– qB 60 60 40 30 24
– qC 60 40 30 24 20
– qCol 60 30 20 15 12
Prices
– pZ 30 30 30 30 30
– pB 60 30 30 30 30
– pC 60 50 45 42 40
– pCol 60 60 60 60 60
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4. Six variants

I am now ready to consider model variants with nonconstant marginal cost (c2 , 0) and/or differentiated goods
(t > d). It is convenient to choose c2 and t− d in proportion to d: this practice yields all quantities as fractions of k
that are independent of d, so that a change of d still represents a pure demand shift. For c2 I consider the values of
d/2, 0 and −d/2, for t−d the values of 0 and d/4. Table 4 gives the labels of the six model variants, or industries.

Table 4: Six model variants

Nature of the good(s) Marginal cost

Increasing Constant Decreasing

(c2 = d/2) c2 = 0 (c2 =−d/2)

Homogeneous: t−d = 0 HoIn HoCon HoDe

Heterogeneous (t−d = d/4) HeIn HeCon HeDe

One element in the discussion of the outcomes is the comparison within an industry across the numbers of firms,
which have been treated as exogenous so far. Such a comparison naturally leads to the question what the assumption
of joint profit maximisation implies. To answer it, the Tables 5–10 contain, next to the prices, the outcomes for total
output Q and total profit U of the industries. I shall use the property of the model that within the Pareto optimal set,
industry profit is largest where total output is largest. To avoid the infinite and infinitesimal, I assume that there is
some non-zero minimal firm size and that firms can enter an industry only at the minimal size.

Let me begin with the outcomes of the classic case, Industry HoCon, in Table 7. A Bertrand duopoly produces
twice the monopoly quantity, which is a generic outcome of the classic case. The price equals marginal cost at half
the monopoly price (a consequence of the specific choice of parameters), and profits are down to zero. A further
increase of the number of firms changes neither the total output nor the price. As the number of firms rises, the
Cournot equilibrium moves gradually from the monopoly outcome towards the Bertrand equilibrium and the zero-
profit competitive outcome; the increase from one firm to ten firms closes most of the gap between the monopolistic
and competitive outcomes.5 Actually, the Cournot oligopoly owes its popularity to this gradual transition, as it agrees
with the intuition of many economists. Another way of looking at the same pattern, however, is that the firms in the
Cournot oligopoly perceive an incentive to merge or to collude: industry profit rises as the number of firms declines.
But the true profit maximising strategy for the firms is in fact to charge the monopoly price and to jointly produce the
monopoly output. Because in the Pareto optimal set the profit-output ratio of this industry is the same over the whole
range of firm sizes and numbers of firms, the joint profit is constant, too: the assumption of joint profit maximisation
does not select a specific size distribution of firms. Nonconstant marginal cost and/or product differentiation usually
change this outcome, as will appear below.

Let me next turn to Industry HoIn in Table 5. When marginal cost is increasing, the firms in the Bertrand oligopoly
earn positive profits. The joint profit of Bertrand duopolists is substantially below the monopolist’s profit, but has not
fallen all the way down to zero; further increases of the number of firms drive the joint profit down to zero at a slower
pace. Note that the joint profit of Cournot duopolists exceeds the monopolist’s profit; the cost savings obtained by
spreading production over two firms outweigh the depressing effect of the additional firm on the price of the good.
From two firms onward industry profit declines towards zero, again at a slower pace than in the Bertrand oligopoly.6

The behaviour of industry profit in the “collusive” oligopoly is quite different: it moves upwards, back to its level in
the classic case, as the number of firms increases. As shown in the Appendix, the Pareto optimal set of this industry
is concave to the origin. The centroid Col is its point where industry output and profit are largest: dividing total

5For all three models in all six industries, most outcomes for the decapoly are close to the limiting values.
6Stated differently, industry profit rises faster in the Bertrand oligopoly than in the Cournot oligopoly when the number of firms declines. The

difference may be related to the finding in the laboratory that ‘Bertrand colludes more than Cournot.’ For more on this matter, see Suetens and
Potters (2007).
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Table 5: Industry HoIn

I 1 2 3 4 5 10

QZ 96 107 111 113 114 117
QB 48 96 103 107 109 114
QC 48 69 80 87 92 104
QCol 48 53 55 56 57 59

pZ 42 37 35 34 33 31
pB 66 42 39 37 35 33
pC 66 56 50 46 44 38
pCol 66 63 62 62 61 61

UB 1440 576 441 356 298 163
UC 1440 1469 1333 1190 1065 681
UCol 1440 1600 1662 1694 1714 1756

Table 6: Industry HeIn

I 1 2 3 4 5 10

QZ 80 96 103 107 109 114
QB 40 75 88 95 99 109
QC 40 60 72 80 86 100
QCol 40 48 51 53 55 57

pZ 40 36 34 33 33 31
pB 65 48 43 40 38 34
pC 65 56 51 48 45 39
pCol 65 63 62 62 61 61

UB 1200 984 781 645 548 312
UC 1200 1350 1296 1200 1102 750
UCol 1200 1440 1543 1600 1636 1714

Table 7: Industry HoCon

I 1 2 3 4 5 10

QZ 120 120 120 120 120 120
QB 60 120 120 120 120 120
QC 60 80 90 96 100 109
QCol 60 60 60 60 60 60

pZ 30 30 30 30 30 30
pB 60 30 30 30 30 30
pC 60 50 45 42 40 35
pCol 60 60 60 60 60 60

UB 1800 0 0 0 0 0
UC 1800 1600 1350 1152 1000 595
UCol 1800 1800 1800 1800 1800 1800

Table 8: Industry HeCon

I 1 2 3 4 5 10

QZ 96 107 111 113 114 117
QB 48 89 100 105 108 114
QC 48 69 80 87 92 104
QCol 48 53 55 56 57 59

pZ 30 30 30 30 30 30
pB 60 40 36 34 33 32
pC 60 51 47 44 42 37
pCol 60 60 60 60 60 60

UB 1440 889 598 449 360 180
UC 1440 1469 1333 1190 1065 681
UCol 1440 1600 1662 1694 1714 1756

Table 9: Industry HoDe

I 1 2 3 4 5 10

QZ 160 137 131 128 126 123
QB 80 160 144 137 133 126
QC 80 96 103 107 109 114
QCol 80 69 65 64 63 62

pZ 10 21 25 26 27 28
pB 50 10 18 21 23 27
pC 50 42 39 37 35 33
pCol 50 56 57 58 58 59

UB 2400 -1600 -864 -588 -444 -199
UC 2400 1728 1322 1067 893 490
UCol 2400 2057 1964 1920 1895 1846

Table 10: Industry HeDe

I 1 2 3 4 5 10

QZ 120 120 120 120 120 120
QB 60 109 116 118 119 120
QC 60 80 90 96 100 109
QCol 60 60 60 60 60 60

pZ 15 23 25 26 27 29
pB 53 29 27 27 28 29
pC 53 45 41 39 38 34
pCol 53 56 58 58 59 59

UB 1800 595 248 133 83 19
UC 1800 1600 1350 1152 1000 595
UCol 1800 1800 1800 1800 1800 1800
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demand evenly among the firms is the most profitable arrangement of the industry. Firms that enter the industry wish
to stay small, because in that way they avoid the adverse effects of increasing marginal cost. An increase of demand,
for example through a drop of the value of d, is most profitably met by the entry of firms, not by the growth of existing
firms.

The value of t−d in Industry HeCon is half the value of c2 in Industry HoIn, so that the industries have identical
profit functions in quantity space. Therefore a number of rows of Table 8 are identical to the corresponding rows of
Table 5, those for UCol, UC, QCol, QC and QZ , to be precise. The matching prices do differ, because the industries have
different inverse demand functions. The Bertrand equilibrium is at a different point in both quantity space and price
space. As to the “collusive” oligopoly, just like firms that enter Industry HoIn, firms that enter Industry HeCon wish
to stay small, but for a different reason: they want to avoid the adverse effects of (relatively) fast decreasing marginal
revenue. An increase of demand is most profitably met by the entry of firms that bring new varieties to the market,
not by producing more of existing varieties.

Industry HeIn combines increasing marginal cost with “fast” decreasing marginal revenue, which may be typical
of many traditional industries. As we have seen, both changes from Industry HoCon affect the quantities in the same
direction. The figures in Table 6 confirm that the deviations of the quantities from their HoCon-counterparts are
similar to, and larger than with one of the changes separately. As a consequence, this observation applies to the profits
of the “collusive” oligopoly, too.

The picture changes drastically when we move on to Industry HoDe, which produces one homogeneous good
using a technology with decreasing marginal cost (see Table 9). Bertrand oligopolists suffer losses as long as their
number exceeds one. Merger increases the losses of the industry, unless all firms merge at once into one firm, which
then starts acting as a monopolist and makes a large profit. A given number of Cournot oligopolists (more than
one) perceive a stronger incentive to merge than in any other industry here considered. The firms in the “collusive”
oligopoly, too, perceive an incentive to merge, albeit less strongly than the Cournot oligopolists do; the reason is that
industry profit at the (exogenously fixed) initial number of firms is already maximal and exceeds by far the joint profit
of the same number of Cournot oligopolists. As shown in the Appendix, the Pareto optimal set of this industry is
convex to the origin. The centroid Col is its point where industry output and profit are smallest. They reach their
maxima at any of the monopoly points, because decreasing marginal cost is exploited maximally by concentrating all
production in one firm. An increase of demand, for example through a drop of the value of d, is most profitably met
by increasing the output of this one firm.

Industry HeDe, with decreasing marginal cost and product differentiation, may be characteristic of many modern
industries. The values of t − d and c2/2 that I have chosen are such that their sum is zero: the profit functions in
quantity space are identical to those in Industry HoCon. I will not repeat the part of the discussion of Industry HeCon
on this matter. In the “collusive” oligopoly, the amount of profit is constant across the number of firms; once more,
joint profit maximisation does not select a specific size distribution of firms.

The flawed treatment of the vector maximisation problems by noncooperative game theory results in distorted
incentives for merger: in five of the six industries, the Bertrand oligopoly and the Cournot oligopoly yield other out-
comes for the optimal number of firms than the “collusive” oligopoly does. In my opinion, the “collusive” oligopoly
agrees best with a cursory view of the world. But of course, this observation carries no weight in a dispute on a
mathematical issue.

5. Some comments on laboratory experiments

Oligopoly models like the ones studied here are popular tools in the economics laboratory for testing theories of
behaviour in situations with few, interacting participants. In contrast to what the use of the term “laboratory” suggests,
however, the proceedings in the economics laboratory differ fundamentally from those in the physics laboratory.
Whereas in the physics laboratory the participants (for example, elementary particles) “know” the laws of nature and
the experimenters are struggling to find out what the laws are, in the economics laboratory the experimenters have
set the “laws of nature” and the participants (often undergraduate students) are struggling to find them out. Can
one rationally expect beginners to grasp, within an hour or so, the mechanics of an artificial world that many an
accomplished economist still does not understand properly?

It will surely help to give the beginners a head start by instructing them extensively, on the model and the means at
their disposal to reach good decisions. A concern of the designer of the experiment is to supply the participants with
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adequate information without unveiling the solution. However, I think that suggesting certain procedures for attacking
the problem is quite justified. The procedures need not be sophisticated; after all, Huck et al. (2004) have shown that,
for the industries HoCon and HoIn, a simple noisy trial-and-error method always leads to the centroid of the Pareto
optimal set. Meanwhile, the designer must beware of leading the endeavors of the participants in a particular direction.
This aspect gains weight in connection with another one. Participants in experiments have often been, and in future
experiments will be recruited from undergraduate students. Many of them, I suspect, will be economics students, with
prior exposure to economic theory and the fallacy of Nash equilibrium.

Even when prospective participants have received extensive instructions, it may be a good idea to familiarise them
as monopolists with the model and the experimental setting. A bad performance of some participant as a monopolist
puts into perspective the outcomes of her later plays of games.

My last, but not least important comment on current practice in the economics laboratory is this. In the physics
lab, the experimenters create the conditions in which the phenomena predicted by their models are likely to occur.
Experimenters in the economics lab, however, have frequently failed to do so. The first instruction that the participants
in an oligopoly game receive goes often like this:

During the experiment you are not allowed to talk to other participants. If something is not clear, please
raise your hand and one of us will help you.

Nash (1951) is to blame for this ban on communication. He suggested a new “solution concept” for a game, which
would apply when the players of the game were unable to communicate and cooperate. Essentially, Nash replaced a
simultaneous maximum problem with a set of conditional maximum problems by postulating that each player con-
ditions on the endogeneous actions of the other players; when applied to an oligopoly game, the Nash equilibrium
is the Bertrand equilibrium (Cournot equilibrium) when the firms use the prices (quantities) as instruments. Mathe-
matically, the postulate amounts to ignoring the partial cross-derivatives of the profit functions when the first-order
conditions for a solution are derived, as if they are zero.7 The resulting conditions are incompatible with the first-order
approximations of the profit functions, for—when evaluated at a Nash equilibrium—the cross-derivatives turn out to
be non-zero. We have a prime example of a contradiction here; oddly enough, in economic theory and game theory
this familiar result has not been recognised as the sign of a logical flaw. Regardless of this mathematical error, the ban
on communication in experiments is not in keeping with the specification of the model. Variables corresponding to the
actions of communication and cooperation are not present in the model, let alone constraints on such actions. Certain
constraints may be lurking in the background, but in the model under empirical scrutiny their Lagrange multipliers
are zero. Stated differently, communication and cooperation are free activities in the artificial world of the model.
Therefore, the first instruction better be replaced by something like this:

The experiment consists of a number of plays of a game. During the experiment, you and the other
players have access to a chatroom, where you may discuss any issues concerning the plays of the game.
However, if you have questions concerning the experimental setting, please raise your hand and one of us
will help you.

The criticism above is not to deny the interest of experiments in which the participants may not communicate. It
merely stresses that the model does not apply to this situation, and that a Nash equilibrium is not a mathematically
consistent yardstick to judge the outcomes. Elements of reality absent from the model cannot affect the solution.
Impediments for collusion must be modeled explicitly, for example along the lines suggested by Stigler (1964).

6. Concluding remarks

Ever since Cournot (1838), economists have built multi-agent models in the following way. First, they derived the
first-order conditions of each agent’s conditional maximum problem, treating only the agent’s actions as endogenous
and conditioning on the actions of the other agents. Next, they assembled all first-order conditions into one system
of equations, adding some new (!) constraints (the market equilibrium conditions) if needed. Von Neumann and

7See Nieuwenhuis (2018) for a brief exposition, or Nieuwenhuis (2017a) for an extensive treatment of issues concerning the Nash equilibrium.
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Morgenstern (1947), and De Finetti (1937a,b) before them, noted that the conditional maximum problems were in-
terdependent and actually constituted a vector maximisation problem, or game. Shortly after, Nash (1951) postulated
that the agents, when they were unable to cooperate, would in fact condition on the endogenous actions of their rivals;
thus he disassembled the game into the old set of conditional maximum problems. However, the justification of the
postulate relies on a particular interpretation of the problem. To see the fallacy of the notion of Nash equilibrium,
just concentrate on the mathematics and solve the game devoid of any interpretation. The classic oligopoly model of
Cournot and its simple extensions serve well as examples in an introduction to the method of vector maximisation,
meanwhile exposing the flaw in noncooperative game theory.

Nash (1951) uses a fixed-point theorem to prove the existence of a Nash equilibrium; its status of fixed point
of some mapping gives the Nash equilibrium an aura of stability. In our oligopoly games, the existence of a Nash
equilibrium is shown constructively, by solving a system of linear equations. The simplicity of the games makes it easy
to study the properties of a Nash equilibrium. Its dependence, as noted, on the arbitrary choice of instruments nullifies
any claim of stability: The prices at the Cournot equilibrium do not constitute a Nash equilibrium in price space, so
that (according to noncooperative game theory itself) the firms will be tempted to change their prices until they arrive
at the Bertrand equilibrium, where they observe that the implied quantities do not constitute a Nash equilibrium in
quantity space, so that . . . , and so on.

In a review of the experimental literature, Haan et al. (2006) find that The ability to communicate among sellers
has a strong and positive effect on the ability to collude. The finding is good news for the proponents of the rationality
postulate as the starting point of economic theory. In real life, there appears to be more coordination of actions than is
compatible with noncooperative game theory. Because an experimental setting that allows of easy communication is a
better approximation of many real-world situations than the alternative, the finding is consistent with this observation.
Individually rational decision makers seem to understand well that in many situations they serve their private interests
best by acting in unison with others.

‘There is such a thing as being just plain wrong’ (Richard Dawkins in The Selfish Gene), and that’s what non-
cooperative game theory is. Economics cannot hold on to a failed solution of a vector maximisation problem as
its prediction of the outcome of rational behaviour in situations where actions are interdependent. The theory now
known as cooperative game theory is the basis of the theory of rational decision making, unqualified by adjectives
like “cooperative” versus “noncooperative,” or “individual” versus “collective.”
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Appendix A. The solution of the game

The oligopoly problem without the assumption of joint profit maximisation is a vector maximisation problem.
Here I present the solution. To simplify the formulas, let us change the units of measurement. Define the scaled
quantities xi := qi/k, i = 1, . . . , I, k := (d0− c1)/d, and divide the profit functions (5) by k2/d to redefine them to

υi = ui(x1, . . . ,xI) = (1−X)xi− rx2
i , i = 1, . . . , I, (A.1)

r =
t−d + c2/2

d
,

where X := ∑ j x j. The expressions for xCol and υCol are

xCol =
1

2(I + r)
, (A.2a)

υCol = (I + r)x2
Col. (A.2b)

According to (A.2), −1 < r must hold for optimal monopoly output and profit to be positive and finite.

The maximal-profit set
Let me first show the equivalent of the fact stated in Section 2, p. 4,

FACT: The maximal-profit set of oligopoly (A.1) is the set of points where the industry’s profit-output ratio equals 1/2.

PROOF: The proof is for a duopoly, but the method of proof applies to any number of firms. Consider the industry’s
profit along the ray x2 = αx1. Substitute x2 = αx1 in the profit functions of the firms and add the results:

υ1,α = v1(x1|α) := x1− (1+α + r)x2
1, (A.3a)

υ2,α = v2(x1|α) := αx1−
(
α +α

2(1+ r)
)
x2

1, (A.3b)

ϒα := υ1,α +υ2,α = (1+α)x1−
(
(1+α)2 +(1+α

2)r
)
x2

1. (A.3c)

The ratio of the maximum to its argument, ϒ∗α/x∗1, is (1+α)/2, so that the profit-output ratio of the industry is in
fact 1/2. Because the profit-output ratio is a strictly decreasing function of industry output, there is no other point
along the ray x2 =αx1 where the profit-output ratio of the industry is 1/2. Q.E.D.

To gain a better understanding of the result, rewrite (A.3b) and (A.3c) to

w2(x1|α) := x1−
(
1+α(1+ r)

)
x2

1, α > 0, (A.3b’)

W (x1|α) := x1−
(

1+α +
1+α2

1+α
r
)

x2
1. (A.3c’)

(A.3a), (A.3b’) and (A.3c’) are quadratic functions of the form ax2+bx with a common value of b but different values
of a. The value of a in the third function is a weighted average of its values in the first two functions, with the weights
of 1/(1+α) and α/(1+α), respectively. Therefore the point on the ray where industry profit is maximal is generally
in between the points where the profits of the firms reach their maxima. As the ray x2 = αx1 revolves around the
origin from the x1-axis (α = 0) towards the x2-axis (α = ∞), the weight of Firm 1’s profit function declines from
1 to 0. Simultaneously, the intersection of the ray with the zero-profit line of Firm 1, Z1,α , moves from the point
Z1 = Z1,0 := [1/(1+ r),0)] towards the point B1 = Z1,∞ := [0,1]. Parallel to this line (segment), at half the distance
from the origin, is the maximal-profit line of Firm 1; along the line, profit declines linearly from the monopoly profit
at C1 = P1,0 := [1/

(
2(1+r)

)
,0] towards zero at P1,∞ := [0,1/2]. The maximal-profit line of Firm 2 is the mirror image

of the one of Firm 1 with respect to the ray x1 = x2.
In the classic case, or more generally when r = 0, the maximal-profit lines coincide, and the line 1− 2X = 0

constitutes the Pareto optimal set; along the line, industry output and profit are constant. Only in this case is the ray
x2 = αx1 the common tangent line of the isoprofit curves at every point of the Pareto optimal set.
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In the general case of r , 0, the maximal-profit lines intersect at Col. The industry has a maximal-profit curve,
which runs from C1 through Col to C2, the mirror image of C1 with respect to x1 = x2; the intermediate segments of
the curve are in between the maximal-profit lines. The ray x2 = αx1 is tangent to an isoprofit curve of the industry
at P1,α ; it is generally not the common tangent line of the isoprofit curves of the firms, as these profits usually reach
their maxima at other points of the ray.

It remains to see how industry output and profit evolve along the maximal-profit curve. Compare the output of a
firm at Col,

xCol =
1

2(2+ r)
, (A.2a’)

to the output of a firm halfway between C1 and C2 , which equals half the monopolist’s output,

xmono

2
=

1
4(1+ r)

.

If r > 0, then xCol > xmono/2, so that the curve is concave to the origin; it proves to be a segment of an ellipse (see
below). Col is the point of the curve where industry output and profit are largest. If r < 0, then xCol < xmono/2, so that
the curve is convex to the origin; it proves to be a segment of a hyperbola (see below). Col is the point of the curve
where industry output and profit are smallest, they are largest at any of the monopoly points.

For any number of firms, putting the sum of the profit functions equal to X/2 yields the equation of the maximal-
profit (hyper)surface,

2X2 +2r∑
j

x2
j −X = 0. (A.4)

If r = 0, the quadric surface reduces to X(2X − 1) = 0. Because X , 0, the solution equals the Pareto optimal set
2X−1 = 0. For a duopoly, the Discriminant ∆ of the cone section is−16r(2+r). If r > 0 (and if r <−2), then ∆ < 0:
the equation represents an ellipse. If−2 < r < 0, then ∆ > 0: the equation represents a hyperbola. For larger numbers
of firms, the maximal-profit (hyper)surfaces are ellipsoids or hyperboloids of revolution.

The Pareto optimal set
Let me next turn to the Pareto optimal set. One part of the first-order conditions of the problem of maximising I

(continuously differentiable) functions of J ≥ I continuous variables is that the matrix of first-order derivatives of the
functions have deficient row rank. I do not consider the other part of the first-order conditions here, nor the second-
order conditions. Let U be the matrix of first-order derivatives of the profit functions. In the present case the condition
amounts to |U|= 0; geometrically, the set of points satisfying the condition is the variety where the isoprofit curves of
the firms have a tangent line in common.8 The nonnegative quadrant contains two segments of the variety; the Pareto
optimal set is the segment closer to the origin.

When there are I firms, |U| is a polynomial of degree I in I variables. If r = 0, the condition |U| = 0 reduces
to (1−X)I−1(1− 2X) = 0, which represents the Pareto optimal set and Zero-profit set; the Pareto optimal set and
maximal-profit set coincide. For a duopoly, the Discriminant ∆ of the cone section is 16(1+ r)2r(2+ r). If r > 0
(and if r <−2), then ∆ > 0: the equation represents a hyperbola. If −2 < r < 0, then ∆ < 0: the equation represents
an ellipse. The Pareto optimal set and maximal-profit set do not coincide. They do have the Collusion points of the
included oligopolies in common, but at the intermediate segments the maximal-profit set is slightly farther away from
the origin than the Pareto optimal set. The property of a constant profit-output ratio applies only to the maximal-profit
set. Still, the evolutions of industry profit and output along the Pareto optimal curve and maximal-profit curve are
qualitatively similar. Figure A.1) sketches the solution of |U|= 0 for the duopoly HoIn.

What does the Pareto optimal set look like when the number of firms exceeds two? In a triopoly, there are three
monopoly points and three curves like C1C2 connecting them. The Pareto optimal set is a surface area, topologically

8At a point where |U| = 0, there exists a vector of variations dx such that Udx = 0; the differential quotients dxi/dx j derived from the vector,
in the literature known under the misnomer of conjectural variations, are the marginal rates of substitution along this common tangent line.
Noncooperative game theory ignores the off-diagonal elements of U and defines a Nash equilibrium by the conditions uiidxi = 0, i = 1, . . . , I: at a
Nash equilibrium, the isoprofit curves are perpendicular instead of tangent. Contrary to tangency, perpendicularity is not generally invariant under
nonsingular transformations of variables.
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Figure A.1: Industry HoIn (r = c2/2d = 1/4)

Notes: The curve through B1, B and B2 solves |U|= 0, but is not part of the Pareto optimum. The curve through C1 and C2 solves |U|= 0,
and is the Pareto optimum; its midpoint is the Collusive equilibrium. [BiZi] is the Zero-profit line of Firm i. Z is the Zero-profit point, Bi

′

the end point of Firm i’s Bertrand reaction function, Ci the end point of Firm i’s Cournot reaction function (also Firm i’s monopoly point).
At the Bertrand equilibrium B the isoprofit curves have a tangent line in common, but still they intersect. At the Cournot equilibrium C
the isoprofit curves are perpendicular to one another.
Source: Nieuwenhuis (2017a, Figure 4).

a triangle, the three sides of which are the curves of the included duopolies. The surface area is convex to the origin,
flat, or concave to the origin for r < 0, r = 0, or r > 0, respectively. For a tetrapoly, the Pareto optimal set is a volume,
topologically a tetrahedron, the four faces of which are the “triangles” of the included triopolies. And so on, beyond
graphical representation, for still larger numbers of firms. We have a perfect example of a result, for the first time
stated and proved by De Finetti (2017b, Section 12),

The locus of “optimum” points with respect to n functions is, topologically, a simplex of n−1 dimensions, the n faces
of which are the loci of “optimum” with respect to n−1 <of the> functions, the

(n
2

)
edges of which those for n−2

<of the> functions, and so on, up to the n vertices, “optimum” points with respect to the n functions separately.

Here, the “locus of “optimum” points” is what we call the Pareto optimal set nowadays.
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