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Abstract

In support of the claim that the Nash equilibrium results from a flawed attempt to solve a game, this article studies
two modifications of the classic oligopoly model of Cournot. The common cost function is quadratic, so that marginal
cost may be increasing, constant or decreasing, and the (still linear) inverse demand functions allow for differentiated
goods. A special feature of the model, not previously noted, is that at the optimal points the profit-output ratio of the
industry is the same, regardless of the number of firms and of several other parameters. The choice of parameters is
discussed and six model variants are analysed through numerical examples. Some comments on the use of this class
of models in experimental economics are made.
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No one has the right, and few the ability, to lure economists into
reading another article on oligopoly theory without some advance
indication of its alleged contribution. The present paper accepts
the hypothesis that oligopolists wish to collude to maximize joint
profits. It seeks to reconcile this wish with facts, such as that col-
lusion is impossible for many firms and collusion is much more
effective in some circumstances than in others.

G. J. Stigler (1964, p. 44)

1. Introduction

You are about to read another article on oligopoly theory. Like Stigler’s, it accepts the hypothesis that firms wish to
collude to maximise profits, but it takes a different turn. It stresses that collusion is in fact the profit maximising strat-
egy of the firms in the artificial worlds described by many oligopoly models, as these do not contain any impediments
for collusion. The article’s main aim is to support the claim, argued at length in Nieuwenhuis (2017a) and in a nutshell
in Nieuwenhuis (2018), that the Nash equilibrium results from a mathematically flawed attempt to solve a game and
that non-cooperative game theory must be eliminated from the textbooks on (micro)economic theory. It does so by
analysing extensions of probably the most popular tool in the classroom and laboratory, the classic oligopoly model of
Cournot (1927) with one homogeneous good, a linear inverse demand function and constant marginal cost common
to all firms (henceforward to be called “the classic case”). It considers oligopolies with arbitrary numbers of firms
that produce imperfectly substitutable varieties of some good (one homogeneous good included as a special case),
sharing a quadratic cost function. The inverse demand functions are still linear; for simplicity’s sake, the specification
is symmetric in the way it treats the goods. It shows that at the optimal points the profit-output ratio of the industry is
the same, regardless of the number of firms and of several other parameters. It discusses how parameter values may be
chosen so as to obtain model variants with attractive features for use in the laboratory, and presents numerical exam-
ples to highlight the differences between and similarities of the outcomes of six model variants. Finally, it comments
on the use of this class of models in the laboratory.
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2. The model

Consider an industry with profit maximising firms i (i = 1, . . . , I), each of which produces a variety of some good.
The firms have identical quadratic cost functions,

c(qi) = c1qi +
1
2

c2q2
i , (1)

where qi is the quantity of the variety produced by Firm i. Adding fixed costs c0 affects only the labels of the iso-profit
(hyper)surfaces. The derivative of c(qi) is the linear marginal-cost function,

mc(qi) = c1 + c2qi, c1 > 0. (2)

The parameter c2 may be positive, zero or negative, corresponding to increasing, constant or decreasing marginal cost.
Because of the last possibility, I assume c1� 0.

The inverse demand functions, too, are linear:1

pi = fi(q) = d0−dQ− (t−d)qi, i = 1, . . . , I, (3)

where q is the (column) vector of quantities and Q := ∑ j q j. I shall use the entity Q as an indicator of industry output.
The parameters satisfy d0 > c1, 0 < d ≤ t.2 When t > d, the goods are imperfect substitutes. The condition d0 > c1
ensures that the prices of the goods exceed marginal cost when the firms produce nothing at all.

The symmetric specification of the inverse demand functions, next to the common cost function, implies that most
outcomes of interest are points on the ray q1 = q2 = · · ·= qI (the axis of symmetry), which keeps the analysis simple.

With differentiated goods, that is when t > d, the demand functions are

qi = gi(p) = δ0,I +δIP− (τI +δI)pi, i = 2, . . . , I, (4)

with P := ∑ j p j, and where

τI :=
(I−2)d + t(

(I−1)d + t
)
(t−d)

, I ≥ 1, (5a)

δI :=
d(

(I−1)d + t
)
(t−d)

, I ≥ 2, (5b)

δ0,I :=
d0

(I−1)d + t
, I ≥ 1. (5c)

The parameters satisfy δ0,I > 0, 0 < δI < τI .
The profit functions in quantity space are

υi = ui(q) = (d0− c1−dQ)qi− (t−d +
1
2

c2)q2
i , i = 1, . . . , I. (6)

They differ from the profit functions of the classic case only if t−d+c2/2 , 0. However, even if t−d+c2/2 = 0, the
demand functions and, hence, the profit functions in price space do differ when t > d. More generally, every triplet
(t,d,c2) that satisfies t−d + c2/2 = z yields the same profit functions in quantity space but not in price space. This
property of the model results from the linearity of both the marginal-cost function and the inverse demand functions.
It implies that to every increase of the slope of the marginal-cost function there is an equivalent decrease of the slopes
of the perceived marginal-revenue functions (for which see below).3 I shall return to the issue when discussing the
outcomes of model variants in Section 4.

1One may define s := t−d and work with d and s instead. Both possibilities have advantages and disadvantages.
2The case t < d is mathematically feasible, but economically implausible: it corresponds to demand functions with positive own-price and

negative cross-price elasticities.
3For the Bertrand equilibrium the equivalent decrease differs from the one for the other points considered below.
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The profit of a firm is zero if qi = 0 or else if price equals average cost. The latter condition defines a (hyper)plane
the non-negative segment of which I simply call the zero-profit plane of the firm. Let Z be the intersection of the ray
q1 = q2 = · · · = qI with the zero-profit plane of any one of the firms. Then Z is either the centroid of the common
zero-profit plane (if t− d + c2/2 = 0) or else the intersection of the zero-profit planes, the unique zero-profit point.
All its coordinates equal

qZ =
2d

2(I−1)d +2t + c2
k, k :=

d0− c1

d
. (7)

Other quantities of interest, too, will be expressed as fractions of k.
The I problems of profit maximisation are interdependent, because all quantities are the arguments of all max-

imands: they constitute a vector maximisation problem (elsewhere I have used the term simultaneous maximum
problem). The solution of such a problem is the Pareto optimal set. Here I consider mainly the centroid of the set,
which I call Col (for Collusion point). As we shall see, in some cases Col is the Joint Profit Maximum, in other cases
it is the point of the Pareto optimum where the joint profit is minimal. To find the coordinates of Col, note that along
the ray q1 = q2 = · · ·= qI the profit of each firm is a quadratic function of the common quantity q, and that the zeros
of the parabola are at the origin and at Z. Therefore Col is halfway between the origin and Z.

Two failed attempts to solve the vector maximisation problem constituted by the simultaneous maximisation of
the profit functions are those by Cournot (1927) and by Bertrand (1883). In a Cournot oligopoly, each firm chooses
its quantity while conditioning on the quantities of its rivals; in a Bertrand oligopoly, each firm chooses its price while
conditioning on the prices of its rivals. The firms in a Bertrand oligopoly perceive the marginal-revenue functions

mrB
i = pi−

1
τI

gi(p)

= fi(q)−
1
τI

qi.

(8)

When t = d (one homogeneous product), 1/τI = 0 so that mrB = p. The firms in a Cournot oligopoly perceive the
marginal-revenue functions

mrC
i = fi(q)− tqi

= pi− tgi(p).
(9)

When the firms collude, they perceive the marginal-revenue functions

mrCol
i = fi(q)−

(
(I−1)d + t

)
qi (10a)

= pi +
1

(I−1)δI− τI
gi(p). (10b)

These formulas result from assuming respectively that the quantities or the prices move in unison. The formulas are
equivalent, meaning that the Collusion point is invariant to the choice of instrument. In fact, the Pareto optimal set is
invariant to non-singular transformations of variables (as is the solution of every optimum problem).

Equating marginal revenue to marginal cost yields the “reaction functions.” The Bertrand equilibrium B and
the Cournot equilibrium C (and also Col) are at the intersection of the ray q1 = q2 = · · · = qI with any one of the
appropriate “reaction functions.” Table 1 gives a number of outcomes. The prices are always a weighted average of
c1 and d0.4’5 The outcomes of the classic case are the limits of the outcomes of the general case when the number of
firms grows without bound: the effects of non-constant marginal cost and of product differentiation become negligible.

A noteworthy feature of the Collusion point is the constant profit-output ratio,6

υCol

qCol
=

d0− c1

2
, (11)

4With decreasing marginal cost, the weight on d0 may be negative.
5The general formulas in the table are transparant because d0 has the same dimension as c1, and d and t have the same dimension as c2. The

equivalent formulas that use the parameters of the demand functions instead of those of the inverse demand functions are less transparant.
6For the quadratic form ax2 +bx+ c the ratio of the optimum to the argument is −b/2.
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regardless of the values of d, t and c2 and of the number of firms I. In fact, this outcome is a special case of a more
general result:

The Pareto optimal set of any oligopoly of the class considered in this paper is the set of points where the profit-output
ratio of the industry equals (d0− c1)/2.

The proof is in the Appendix. The feature sets the true solution apart from the other “solution concepts.” It implies
that, within the subset of models with the same value of d0− c1, the joint profit is largest where the joint output is
largest. In Section 4 I shall use the result in the comparison of the outcomes of six model variants.

Table 1: Main outcomes

General formula The classic case

Zero-profit point

– quantity÷k
2d

2
(
(I−1)d + t

)
+ c2

1
I

– price
2
(
(I−1)d + t)

)
c1 + c2d0

2
(
(I−1)d + t)

)
+ c2

c1

Bertrand equilibrium

– quantity÷k
d

(I−1)d + t + τ
−1
I + c2

1
I

– price

(
(I−1)d + t

)
c1 +(τ−1

I + c2)d0

(I−1)d + t + τ
−1
I + c2

c1

– profit
( 1

τI
+

c2

2

)
q2

B 0

Cournot equilibrium

– quantity÷k
d

(I−1)d +2t + c2

1
I +1

– price

(
(I−1)d + t

)
c1 +(t + c2)d0

(I−1)d +2t + c2

Ic1 +d0

I +1

– profit
(

t +
c2

2

)
q2

C dq2
C

Collusion point

– quantity÷k
d

2
(
(I−1)d + t

)
+ c2

1
2I

– price

(
(I−1)d + t

)
c1 +

(
(I−1)d + t + c2

)
d0

2
(
(I−1)d + t

)
+ c2

c1 +d0

2

– profit
(
(I−1)d + t +

c2

2

)
q2

Col Idq2
Col
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3. Choice of parameters: the classic case

Numerical examples help to reveal the information that the formulas in Table 1 contain. In this section I discuss
the choice of values for the parameters d0, d and c1 of the classic case, because it takes a central place. The next
section will show the impact of non-constant returns to scale and product differentiation on the outcomes.

Conveniently, choosing values for the parameters can be done in three steps. First, scale the quantities through the
choice of k (:= (d0− c1)/d). Second, fix the price at the Collusion point through the choice of c1 +d0. Third, make
an assumption about the elasticity of the inverse demand function at the Collusion point to identify c1, d0 and d.

Table 2 gives the unchanging pattern in the outcomes for 1–5 firms. I want to transform the table into a numerical
example with certain desirable properties, which make the model suitable for application in the laboratory. One wish
is that the Bertrand equilibrium B, Cournot equilibrium C and Collusion point Col be clearly separated; given the
fixed ratios between the outcomes, this property can only be obtained by choosing the scale “sufficiently” large. A
sufficiently large scale also helps to constrain the relative deviation from the true outcomes introduced by rounding
them to the nearest integer, a practice that seems advisable in the laboratory. On the other hand, the figures must not
be “unduly” large. It would also be nice for the outcomes to have a somewhat “realistic” flavor.

Table 2: The classic case: pattern in the outcomes

Number of firms (I) 1 2 3 4 5

Quantities÷k

– qZ 1 1/2 1/3 1/4 1/5
– qB 1/2 1/2 1/3 1/4 1/5
– qC 1/2 1/3 1/4 1/5 1/6
– qCol 1/2 1/4 1/6 1/8 1/10

Prices
– pZ c1 c1 c1 c1 c1

– pB
c1 +d0

2
c1 c1 c1 c1

– pC
c1 +d0

2
2c1 +d0

3
3c1 +d0

4
4c1 +d0

5
5c1 +d0

6

– pCol
c1 +d0

2
c1 +d0

2
c1 +d0

2
c1 +d0

2
c1 +d0

2

These admittedly vague desiderata leave ample room for other considerations. I have imposed the constraint that
the parameters yield only integer outcomes for the cases of 1–5 firms. As to the quantities, it requires k to be a multiple
of 120 (= 23 ·3 ·5). It does not seem necessary to choose k larger than 120. As to the prices, it requires c1 +do to be
a multiple of 60 (= 22 ·3 ·5). The value of 60 implies pCol = 30. Given the need to choose c1 well in excess of 0 (to
allow for decreasing marginal cost), this value leaves a rather small interval for the prices. So let’s double it.

Lastly, the wish for a somewhat “realistic” flavor. Observe that the elasticity of the inverse demand function at the
Collusion point, eCol, is given by −(d0− c1)/(d0 + c1). A value of c1 close to d0 yields a value of eCol close to zero
and hence a low markup of price over (marginal) cost, whereas a value of c1 close to zero yields a value of eCol close
to −1 and hence a high markup. Steering away from both extremes, I choose eCol = −0.5, which yields a markup
of 2 and implies d0 = 3c1.7 In this way I arrive at d0 = 90, c1 = 30 and d = 0.5. Table 3 gives the outcomes for the
quantities and prices with this choice of parameters. Note that the parameter d may be used to scale the quantities.
For example, halving the value of d doubles all quantities: the change represents a pure demand shift, with the same
relative rise of demand at every price.

7A lower value of the markup, for example by choosing d0 = 80 and c1 = 40 (with d = 1/3), would be more “realistic,” but would shorten the
interval for prices more than I like for the purpose of laboratory experiments.
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Table 3: The classic case: a numerical example

I 1 2 3 4 5

Quantities
– qZ 120 60 40 30 24
– qB 60 60 40 30 24
– qC 60 40 30 24 20
– qCol 60 30 20 15 12

Prices
– pZ 30 30 30 30 30
– pB 60 30 30 30 30
– pC 60 50 45 42 40
– pCol 60 60 60 60 60

4. Six variants

I am now ready to consider model variants with non-constant returns to scale (c2 , 0) and/or differentiated goods
(t > d). It is convenient to choose c2 and t− d in proportion to d: this practice yields all quantities as fractions of k
that are independent of d, so that a change of d still represents a pure demand shift. For c2 I consider the values of
d/2, 0 and −d/2, for t− d the values of 0 and d/4. Table 4 is a survey of the six model variants, or industries, and
their self-explanatory labels.

One element in the discussion of the outcomes is the comparison within an idustry across the numbers of firms,
which have been treated as exogenous so far. Such a comparison naturally leads to the question what the assumption
of joint profit maximisation implies. To answer it, the Tables 5–10 contain, next to the prices, the outcomes for total
output and total profit of the industries. I shall often use the property of the model that the profit-output ratio of an
industry is the same in every point of the Pareto optimal set. To avoid the infinite and infinitesimal I assume that there
is some non-zero minimal firm size, and that firms can enter an industry only at the minimal size.

Table 4: Six model variants

Marginal cost Nature of the good(s)

Homogeneous Differentiated

Increasing c2 = d/2 c2 = d/2
t−d = 0 t−d = d/4
Label: HI Label: DI

Constant c2 = 0 c2 = 0
t−d = 0 t−d = d/4
Label: HC Label: DC

Decreasing c2 =−d/2 c2 =−d/2
t−d = 0 t−d = d/4
Label: HD Label: DD
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Let me begin with the outcomes of the classic case, Industry HC, in Table 7. The pattern in the outcomes will be
familiar to students of the “oligopoly problem.” Two Bertrand oligopolists produce twice the monopoly quantity (a
generic outcome of the classic case) at half the price (a consequence of the specific choice of parameters); the price
equals marginal cost, and profits are down to zero. A further increase of the number of firms changes neither the total
output nor the price. As the number of firms rises, the outcomes of the Cournot equilibrium move gradually from the
monopoly outcome towards those of the Bertrand equilibrium and the zero-profit competitive outcome. The increase
from one firm to ten firms closes most of the gap between the monopolistic and competitive outcomes;8 actually, the
Cournot equilibrium owes its popularity to this gradual transition, as it agrees with the intuition of many economists.
Another way of looking at the same pattern is that the firms in the Cournot oligopoly perceive an incentive to merge
or to collude: industry profit rises as the number of firms declines. The true profit maximising strategy for the firms,
however, is to charge the monopoly price and to jointly produce the monopoly output. Because in the Pareto optimal
set the profit-output ratio of the industry is the same over the whole range of firm sizes and numbers of firms, the joint
profit is constant, too: the assumption of joint profit maximisation does not select a specific size distribution of firms.
Non-constant returns to scale and/or product differentiation change this outcome, as we are about to see.

Let us next turn to Industry HI in Table 5. When marginal cost is increasing, the firms in the Bertrand oligopoly
earn positive profits. The joint profit of two Bertrand oligopolists is substantially below the monopolist’s profit, but
has not fallen all the way down to zero; further increases of the number of firms drive the joint profit down to zero at a
slower pace. Remarkably, the joint profit of two Cournot oligopolists exceeds the monopolist’s profit; the cost savings
obtained by spreading production over two firms outweigh the depressing effect of the additional firm on the price of
the good. From two firms onward industry profit declines towards zero, again at a slower pace than in the Bertrand
oligopoly.9 The behaviour of industry profit in the “collusive” oligopoly is quite different: it moves upwards, back
to its level in the classic case, as the number of firms increases. We know from the Appendix that the Pareto optimal
set of this industry is concave to the origin. The centroid Col is its point where industry output and profit are largest:
dividing total demand evenly among the firms is the most profitable arrangement of the industry. Firms that enter
the industry wish to stay small, because in that way they avoid the adverse effects of increasing marginal cost. An
increase of demand, for example through a drop of the value of d, is most profitably met by the entry of firms, not by
the growth of existing firms.

The value of t−d in Industry DC is half the value of c2 in Industry HI, so that the industries have identical profit
functions in quantity space. Therefore a number of rows of Table 8 are identical to the corresponding rows of Table 5,
those for UCol, UC, QCol, QC and QZ , to be precise. However, the matching prices do differ, because the industries
have different inverse demand functions. The Bertrand equilibrium is at a different point in both quantity space and
price space. As to the “collusive” oligopoly, just like firms that enter Industry HI, firms that enter Industry DC wish
to stay small, but for a different reason: by producing new varieties in small quantities they avoid the adverse effects
of (relatively) fast decreasing marginal revenue.

Industry DI combines increasing marginal cost with “fast” decreasing marginal revenue, which may be typical
of many traditional industries. As we have seen, both changes from Industry HC affect the quantities in the same
direction. The figures in Table 6 confirm that the deviations of the quantities from their HC-counterparts are similar
to, and larger than with one of the changes separately. As a consequence, this observation applies to the profits of the
“collusive” oligopoly,

The picture changes drastically when we move on to Industry HD, which produces one homogeneous good using
a technology with decreasing marginal cost (see Table 9). Bertrand oligopolists suffer losses as long as their number
exceeds one. Merger increases the losses of the industry, unless all firms merge at once into one firm, which then starts
acting as a monopolist and makes a large profit. A given number of Cournot oligopolists (more than one) perceive an
incentive to merge that is stronger than in any other industry here considered. The firms in the “collusive” oligopoly,
too, perceive an incentive to merge, albeit less strongly than the Cournot oligopolists; the reason is that their profit
at the (exogenously fixed) initial number of firms is already optimal and exceeds by far the joint profit of the same
number of Cournot oligopolists. We know from the Appendix that the Pareto optimal set of this industry is convex to

8For all three models in all six industries, the outcomes for the decapoly are close to the limiting values.
9Stated differently, industry profit rises faster in the Bertrand oligopoly than in the Cournot oligopoly when the number of firms declines. The

difference may be related to the finding in the laboratory that ‘Bertrand colludes more than Cournot.’ For more on this matter, see Suetens and
Potters (2007).
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Table 5: Industry HI

I 1 2 3 4 5 10 100

QZ 96 107 111 113 114 117 120
QB 48 96 103 107 109 114 119
QC 48 69 80 87 92 104 118
QCol 48 53 55 56 57 59 60

pZ 42 37 35 34 33 31 30
pB 66 42 39 37 35 33 30
pC 66 56 50 46 44 38 31
pCol 66 63 62 62 61 61 60

UB 1440 576 441 356 298 163 18
UC 1440 1469 1333 1190 1065 681 87
UCol 1440 1600 1662 1694 1714 1756 1796

Table 6: Industry DI

I 1 2 3 4 5 10 100

QZ 80 96 103 107 109 114 119
QB 40 75 88 95 99 109 119
QC 40 60 72 80 86 100 118
QCol 40 48 51 53 55 57 60

pZ 40 36 34 33 33 31 30
pB 65 48 43 40 38 34 30
pC 65 56 51 48 45 39 31
pCol 65 63 62 62 61 61 60

UB 1200 984 781 645 548 312 35
UC 1200 1350 1296 1200 1102 750 104
UCol 1200 1440 1543 1600 1636 1714 1791

Table 7: Industry HC (The classic case)

I 1 2 3 4 5 10 100

QZ 120 120 120 120 120 120 120
QB 60 120 120 120 120 120 120
QC 60 80 90 96 100 109 119
QCol 60 60 60 60 60 60 60

pZ 30 30 30 30 30 30 30
pB 60 30 30 30 30 30 30
pC 60 50 45 42 40 35 31
pCol 60 60 60 60 60 60 60

UB 1800 0 0 0 0 0 0
UC 1800 1600 1350 1152 1000 595 71
UCol 1800 1800 1800 1800 1800 1800 1800

Table 8: Industry DC

I 1 2 3 4 5 10 100

QZ 96 107 111 113 114 117 120
QB 48 89 100 105 108 114 119
QC 48 69 80 87 92 104 118
QCol 48 53 55 56 57 59 60

pZ 30 30 30 30 30 30 30
pB 60 40 36 34 33 32 30
pC 60 51 47 44 42 37 31
pCol 60 60 60 60 60 60 60

UB 1440 889 598 449 360 180 18
UC 1440 1469 1333 1190 1065 681 87
UCol 1440 1600 1662 1694 1714 1756 1796

Table 9: Industry HD

I 1 2 3 4 5 10 100

QZ 160 137 131 128 126 123 120
QB 80 160 144 137 133 126 121
QC 80 96 103 107 109 114 119
QCol 80 69 65 64 63 62 60

pZ 10 21 25 26 27 28 30
pB 50 10 18 21 23 27 30
pC 50 42 39 37 35 33 30
pCol 50 56 57 58 58 59 60

UB 2400 -1600 -864 -588 -444 -199 -18
UC 2400 1728 1322 1067 893 490 53
UCol 2400 2057 1964 1920 1895 1846 1805

Table 10: Industry DD

I 1 2 3 4 5 10 100

QZ 120 120 120 120 120 120 120
QB 60 109 116 118 119 120 120
QC 60 80 90 96 100 109 119
QCol 60 60 60 60 60 60 60

pZ 15 23 25 26 27 29 30
pB 53 29 27 27 28 29 30
pC 53 45 41 39 38 34 30
pCol 53 56 58 58 59 59 60

UB 1800 595 248 133 83 19 0
UC 1800 1600 1350 1152 1000 595 71
UCol 1800 1800 1800 1800 1800 1800 1800
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the origin. The centroid Col is its point where industry output and profit are smallest. They reach their maximum at
any of the monopoly points, because decreasing marginal cost is exploited maximally by concentrating all production
in one firm. An increase of demand, for example through a drop of the value of d, is most profitably met by increasing
the output of this one firm.

Industry DD, with decreasing marginal cost and product differentiation, may be characteristic of many modern
industries. The values of t − d and c2/2 that I have chosen are such that their sum is zero: the profit functions in
quantity space are identical to those in Industry HC. I do not repeat here the part of the discussion of Industry DC on
this matter. In the “collusive” oligopoly, the amount of profit is constant across the number of firms; once more, joint
profit maximisation does not select a specific size distribution of firms.

In five of the six industries, the Bertrand oligopoly and the Cournot oligopoly yield other outcomes for the optimal
number of firms than the “collusive” oligopoly does. I leave it to the reader to judge which of the three models agrees
best with a cursory observation of the world.

5. Some comments on laboratory experiments

Oligopoly models like the ones studied here are popular tools in the economics laboratory for testing theories of
behaviour in situations of few, interacting participants. In contrast to what the use of the term “laboratory” suggests,
however, the proceedings in the economics laboratory differ fundamentally from those in the physics laboratory.
Whereas in the physics laboratory the participants (for example, elementary particles) “know” the laws of nature and
the experimenters are struggling to find out what the laws are, in the economics laboratory the experimenters have
set the “laws of nature” and the participants (often undergraduate students) are struggling to find them out. How
reasonable is it to expect from amateurs that they are able to grasp, within an hour or so, the mechanics of an artificial
world that has taken professional economists almost two centuries to fully understand?

It will surely help to give the amateurs a head start by instructing them extensively, on the model and the means
at their disposal to reach good decisions. A concern of the designer of the experiment is to supply the participants
with adequate information without unveiling the solution. However, I think that suggesting certain procedures for
attacking the problem is quite justified. The procedures need not be sophisticated; after all, Huck et al. (2004) have
shown that a simple trial-and-error method often leads to the centroid of the Pareto optimal set. Meanwhile, the
designer must beware of leading the endeavors of the participants in a particular direction. This aspect gains weight in
connection with another one. Participants in experiments have often been, and in future experiments will be recruited
from undergraduate students. Many of them, I suspect, will be economics students, with prior exposure to economic
theory and, even worse, maybe also to the fallacy of Nash equilibrium.

Even when prospective participants have received extensive instructions, it may be a good idea to familiarise them
as monopolists with the model and the experimental setting. A bad performance of some participant as a monopolist
puts into perspective the outcomes of her later plays of games.

My last, but not least important comment on current practice in the economics laboratory is this. In the physics
lab, the experimenters create the conditions in which the phenomena predicted by their models are likely to occur.
Experimenters in the economics lab, however, have frequently failed to do so. The first instruction that the participants
in an oligopoly game receive goes often like this:

During the experiment you are not allowed to talk to other participants. If something is not clear, please
raise your hand and one of us will help you.

Nash (1951) is to blame for this ban on communication. He suggested a new “solution concept” for a game, which
would apply when the players of the game were unable to communicate and cooperate. Essentially, Nash replaced a
simultaneous maximum problem by a set of conditional maximum problems by postulating that each player conditions
on the (endogeneous) actions of the other players; when applied to an oligopoly game, the Nash equilibrium is the
Bertrand equilibrium or the Cournot equilibrium, depending on whether the firms use the prices or the quantities as
instruments. Mathematically, the postulate amounts to ignoring the non-zero partial cross derivatives of the profit
functions when the first-order conditions for a solution are derived.10 On top of this obvious mathematical flaw, the

10See Nieuwenhuis (2017a) for an extensive treatment of issues concerning the Nash equilibrium.
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ban on communication is not in keeping with the specification of the model. Variables corresponding to the actions of
communication and cooperation are not present in the model, let alone constraints on such actions. Certain constraints
may be lurking in the background, but in the model under empirical scrutiny their Lagrange multipliers are zero. Stated
differently, communication and cooperation are free actions in the artificial world of the model. Therefore, the first
instruction better be replaced by something like this:

The experiment consists of a number of plays of a game. During the experiment, you and the other
players have access to a chatroom, where you may discuss any issues concerning the plays of the game.
However, if you have questions concerning the experimental setting, please raise your hand and one of us
will help you.

The objection above is not to deny the interest of experiments in which the participants may not communicate. It
merely stresses that the model does not apply to this situation, and that the Nash equilibrium is not a mathematically
consistent yardstick to judge the outcomes.

6. Concluding remark

In a review of the experimental literature, Haan et al. (2006) find that The ability to communicate among sell-
ers has a strong and positive effect on the ability to collude. The finding is good news for the proponents of the
rationality postulate as the starting point of economic theory. In real life, there appears to be more coordination of
actions than is compatible with non-cooperative game theory. Because an experimental setting that allows for easy
communication is a better approximation of many real-world situations than the alternative, the finding is consistent
with this observation. Individually rational decision makers seem to understand well that in many situations they
serve their private interests best by acting in unison with others. The theory now known as cooperative game theory
is the basis of the theory of rational decision making, unqualified by adjectives like “individual” versus “collective,”
or “non-cooperative” versus “cooperative.”
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Appendix A. The Pareto optimal set

The oligopoly problem without the assumption of joint profit maximisation is a vector maximisation problem.
Here I present the solution and prove the proposition in Section 2,

The Pareto optimal set of any oligopoly of the class considered in this paper is the set of points where the profit-output
ratio of the industry equals (d0− c1)/2.

To prepare the way, write the profit functions in quantity space as

υi = ui(q) = (d0− c1−dQ)qi− zq2
i , i = 1, . . . , I, (A.1)

z := t−d +
1
2

c2. (A.2)

This way of writing them covers the cases of both (non-)constant marginal cost and product differentiation, and any
of their combinations. The formulas for qCol and uCol in the new notation are

qCol =
d0− c1

2(Id + z)
, (A.3a)

uCol = (Id + z)q2
Col. (A.3b)

I shall give a proof only for a duopoly, which enables me to use the results of Nieuwenhuis (2017a, Section 4.1)
(from which I have also adopted Figure A.1). The method of proof applies to any number of firms. The short proof is
followed by a lenghtier exposition of the Pareto optimal set.

One part of the first-order conditions of the problem of maximising I (continuously differentiable) functions of
J ≥ I continuous variables is that the matrix of first-order derivatives of the functions have deficient row rank. I do
not consider the other part of the first-order conditions here, nor the second-order conditions. Let U be the matrix
of first-order derivatives of the profit functions. In the present case the condition amounts to |U| = 0; geometrically,
the set of points satisfying the condition is the variety where the iso-profit curves of the firms have a tangent line
in common. The non-negative quadrant contains two segments of the variety; the Pareto optimal set is the segment
closer to the origin. The monopoly points of the firms and the Collusion point belong to the set; at these points the
profit-output ratios of the firms and the industry do indeed equal (d0− c1)/2.

I must show that if P is any point of the Pareto optimal set, the profit-output ratio of the industry equals (d0−c1)/2
at P. To this end, consider the industry’s profit along the ray q2 = αq1. The point on the ray where industry profit is
largest is a point of the Pareto optimal set, as the summation vector [1 1] is a left eigenvector of U with eigenvalue 0
and hence |U|= 0 at the point. Substitute q2 = αq1 in the profit functions of the firms:

υ1 = v1(q1,α) := (d0− c1)q1−
(
(1+α)d + z

)
q2

1, (A.4a)

υ2 = v2(q1,α) := α(d0− c1)q1−
(
(α +α

2)d +α
2z
)
q2

1, (A.4b)

so that
υ1 +υ2 =: ϒ =Vα(q1,α) := (1+α)(d0− c1)q1−

(
(1+α)2d +(1+α

2)z
)
q2

1. (A.4c)

The ratio of the maximum to its argument, ϒ∗/q∗1, is (1+α)(d0− c1)/2, so that the profit-output ratio of the industry
is in fact (d0− c1)/2. From the very nature of the problem it is clear that there are no other points along the ray
q2 = αq1 where the profit-output ratio of the industry is (d0− c1)/2. End of proof.

To gain a better understanding of the result, rewrite (A.4b) and (A.4c) to

w2(q1,α) := (d0− c1)q1−
(
(1+α)d +αz

)
q2

1, (for α > 0) (A.4b’)

Wα(q1,α) := (d0− c1)q1−
(
(1+α)d +

1+α2

1+α
z
)

q2
1. (A.4c’)
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(A.4a), (A.4b’) and (A.4c’) are quadratic functions of the form ax2 + bx with a common value of b but different
values of a. The value of a in the third function is a weighted average of its values in the first two functions, with
weights of 1/(1+α) and α/(1+α), respectively. Therefore the point on the ray where industry profit is maximal
is generally in between the points where the profits of the firms reach their maxima. As the ray q2 = αq1 revolves
around the origin from the q1-axis (α = 0) towards the q2-axis (α = ∞), the weight of Firm 1’s profit function
declines from 1 to 0. Simultaneously, the intersection of the ray with the zero-profit line of Firm 1, Z1,α , moves from
the point Z1 = Z1,0 := [(d0− c1)/(d + z),0)] towards the point B1 = Z1,∞ := [0,k], where k := (d0− c1)/d. Parallel
to this line (segment), at half the distance from the origin, is the maximal-profit line of Firm 1; along the line, profit
declines linearly from the monopoly profit at C1 = P1,0 := [(d0−c1)/2(d+ z),0] towards zero at P1,∞ := [0,k/2]. The
maximal-profit line of Firm 2 is the mirror image of the one of Firm 1 with respect to the ray q1 = q2.

In the classic case, that is when z= 0, the maximal-profit lines coincide, and the line segment constitutes the Pareto
optimal set; along the line segment, industry output and profit are constant. Only in this case is the ray q2 = αq1,
tangent to an iso-profit curve of the industry, also the common tangent line of the iso-profit curves of the firms at every
point of the Pareto optimal set.

In the general case of z , 0, the maximal-profit lines intersect at Col. The industry has a maximal-profit curve,
the Pareto optimal set, that runs from C1 through Col to C2, the mirror image of C1 with respect to q1 = q2; the
intermediate segments of the curve are in between the maximal-profit lines of the firms. Because the profits of the
firms are generally not maximal at the same point of q2 = αq1, the ray is generally not the common tangent line.

It remains to see how industry output and profit evolve along the curve. Compare the output of a firm at Col,

qCol =
d0− c1

2(2d + z)
, (A.3a’)

to the output of a firm halfway between C1 and C2 , which equals half the monopolist’s output:

qmono/2 =
d0− c1

4(d + z)
. (A.5)

If z > 0, then qCol > qmono/2, so that the curve is concave to the origin; it proves to be a segment of a hyperbola. Col
is the point of the curve where industry output and profit are largest. If z < 0, then qCol < qmono/2, so that the curve is
convex to the origin; it proves to be a segment of an ellipse. Col is the point of the curve where industry output and
profit are smallest, they are largest at any of the monopoly points.

If the profit-output ratios of all firms equal (d0−c1)/2, the matrix U has a special form. For qi , 0, the profit-output
ratio of Firm i is

πi :=
ui(q)

qi
= d0− c1−dQ− zqi, i = 1, . . . , I. (A.6)

Then
πi =

d0− c1

2
⇐⇒ d0− c1 = 2(dQ+ zqi), i = 1, . . . , I. (A.7)

The first-order derivatives of the profit functions are ∂ui/∂qj =: ui j =−dqi, j = 1, . . . , I, i , j, and

∂ui

∂qi
=: uii = d0− c1−dQ− (2z+d)qi, i = 1, . . . , I. (A.8)

From (A.7) and (A.8),

πi =
d0− c1

2
⇐⇒ uii = d(Q−qi), i = 1, . . . , I. (A.9)

Substitute this expression in the matrix U. For the triopoly (just as an example) the outcome is

U = d

Q−q1 −q1 −q1
−q2 Q−q2 −q2
−q3 −q3 Q−q3

 . (A.10)

Adding the second and third row to the first one yields a row of zeros, so that |U|= 0.
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Figure A.1: Solution and “equilibria” when z = c2/2 = d/4 (homogeneous product and increasing marginal cost)

Notes: The curve through B1, B and B2 solves |U |= 0, but is not part of the Pareto optimum. The curve through C1 and C2 solves |U |= 0,
and is the Pareto optimum; its midpoint is the Collusive equilibrium. [BiZi] is the Zero-profit line of Firm i. Z is the Zero-profit point,
Bi
′ the end point of Firm i’s Bertrand reaction function, Ci the end point of Firm i’s Cournot reaction function (also Firm i’s monopoly

point), B the Bertrand equilibrium and C the Cournot equilibrium.
Source: Nieuwenhuis (2017a, Figure 4).

What does the Pareto optimal set look like when the number of firms exceeds two? In a triopoly, there are three
monopoly points and three curves like C1C2 connecting them. The Pareto optimal set is the surface area, topologically
a triangle, enclosed by the curves. The surface area is convex to the origin, flat, or concave to the origin for z < 0,
z = 0, or z > 0, respectively. For a tetrapoly, the Pareto optimal set is a volume, topologically a tetrahedron, the four
faces of which are the “triangles” of the included triopolies. And so on, beyond graphical representation, for still
larger numbers of firms. We have a perfect example of a result, for the first time stated and proved by De Finetti
(2017, Section 12),

The locus of “optimum” points with respect to n functions is, topologically, a simplex of n−1 dimensions, the n faces
of which are the loci of “optimum” with respect to n−1 <of the> functions, the

(n
2

)
edges of which those for n−2

<of the> functions, and so on, up to the n vertices, “optimum” points with respect to the n functions separately.

Here, the “locus of “optimum” points” is what we call the Pareto optimal set nowadays.
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