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Abstract

The problem is addressed of how (different types of) funding transactions may affect the
repayment value of (credit or equity) claims; to this purpose a novel prove for the existence and
uniqueness of the payment vector, which does not make (explicit) use of the fixed point theorem
and allows for the presence of claims with different seniorities (i.e. credit and equity claims), is
proposed. Different components of the overall displacement (the reduction of repayment value),
related to i) seniority structure, ii) network of bilateral exposure and iii) imbalances between
external loss and external capital, are calculated by sequentially relaxing different constraints
in the mixed linear program used for calculating overall displacement. The possibility that
more credit may reduce overall displacement (due to borrowing-from-Peter-to-pay-Paul effect)
and more equity capital may on the contrary increase overall displacement (due to its role
in the transmission of financial displacement) is exemplified, along with the possible negative
dependence of relative displacement (the ratio between overall displacement and total claims)
on total claims.

1 Introduction, notation and references

Let us consider a set B of balance sheets of financial and non financial institutions and households.
On the left side of each balance sheet there are i) debt-type or equity-type claims towards other
balance sheets 1 and/or ii) external assets i.e. assets to which does not correspond any obligation on
the right side of other balance sheets. 2 On the right side there are liabilities toward other balance
sheets and, only in the case of households, external capital i.e. book entries which do not correspond
to claims on the asset side of other balance sheets. External capital amounts to the difference between
total assets and debt-type obligations in households’ balance sheets 3 whose set we denote by H (a

∗oinumidellarpa@gmail.com
1In the following, unless otherwise specified, the term claim will refer indifferently to both credit claims and equity

claims; overall claims to the sum of all of them.
2The concept of external assets is analogous to that of ”total assets excluding receivables” in [23]; so it is different

from that used in [19] which includes liabilities, shares, bonds and bank loans of final users of funds which are not
financial operators. As in the present contest also the balance sheets of the final users of funds are included in B,
the expression external assets refers only to physical assets, legal intangibles and possibly central bank money to the
extent that they do not correspond to liabilities on the right side of any other balance sheet [23]. Although central
bank money may be registered on the liability side of the central bank balance sheet, it may still be included in this list
as - differently from the liabilities on other balance sheets - its value is assumed to be not related to that of the items
on the asset side. In the central bank balance sheet, the items on the liability side would be considered as external
capital (see [30]), while the matching claims on the asset side of non central bank balance sheets would be considered
as external assets.

3In a network scheme, external asset would correspond to a source node, whereas external capital would correspond
to a sink node.
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subset of B). Claims are valued at their liquidation value 4 i.e. at the value they would be attributed
if all of them were to be simultaneously (and possibly before their natural expiration date) refunded:
5 their value depends on that of the asset side of the balance sheet on whose right side they are
registered as liabilities. 6 We consider

• an initial (before-the-shock 7 ) point in time in which for all of the debt-type obligations,
the liquidation value equals the amount that is due to the creditor according to the original
contractual arrangement 8 i.e. all the balance sheets are assumed to be solvent,

• a second (after-the-shock) point in time in which some of the external assets have been impaired
and as a consequence some of the balance sheets may possibly become insolvent. 9

We look at how the after-the-shock liquidation values would change in response to changes in before-
the-shock values as a result of funding transactions. So we have

xijk = before-the-shock value of the claim of balance sheet i against balance sheet j, 10 where k is
an index of seniority: 11

k =

 1 for equity-type claims
2 for uncollateralized credit-type claims
3 for fully collateralized credit-like claims

yijk = after-the-shock balance sheet value of the claim of balance sheet i against balance sheet j

uijk = yijk − xijk is the displacement of xijk

qij =
∑
k
xijk is the (equity and credit) bilateral exposure of balance sheet i to balance sheet j

vij = −
∑
k
uijk is the (negative) displacement on the bilateral exposure of balance sheet i to balance

sheet j

4Differently from external assets, whose value is assumed to be determined exogenously. In order to focus on the
accounting transmission of the displacement of claims, in the present study the problem of how the value of external
assets is determined (particularly in expanded reproduction, see [40]) as well as of its dependence in turn on those
claims (see e.g. [12, p. 188], [33]) is completely disregarded.

5The word liquidation does not have here any connection with any fire sale. Following [42],

an investment system – [defined as] any set of parties who have agreed upon a method of calculating
the obligation of each one of them to each of the others – is said to be in equilibrium if none of its parties
has an obligation to any of the others and the liquidation value at a given time of any party A of an
investment system is defined to be the net amount (with proper algebraic sign) that would be received
by A in the process of instantaneously bringing the system into equilibrium at that time.

6The absence of any reference to agents’ behavior (like in [20]) may help keep the distinction between agents and
balance sheets (so avoiding to equate – to put it as in [34, p. 11] – ”the living with the non living”)

7In the present scheme the word shock only refers to a reduction in the value of external assets (including a reduction
due to an act of consumption), with no implication as to the speed at which it occurs.

8For equity-type obligations this is always the case as in a liquidation process the underlying contractual arrangement
provides that they would be paid back only once all the debt-type obligations have been paid at their contractual value.

9In this case the new liquidation values may be seen as those which if taken as new face values (after a possible
debt-restructuring process) would make all the balance sheets pass the ”balance sheet test” which requires ”that all
liabilities which have accrued so far have to be covered by existing assets”, see [44, p. 189].

10For credit-type links this amounts to the face value of the obligation.
11We assume that xijk > 0 ⇒ xjik = 0, i.e. opposite financial obligations of the same type between two balance

sheets are offset, but between two balance sheets there can be links of opposite sign if of different seniority: h 6= k ⇒
(xijk > 0 6=⇒ xjih = 0); furthermore, we assume that even after a shock there are enough assets in the debtor’s
balance sheet to guarantee that collateralized debts are fully repaid (put in another way, xij3 is the amount up to
which the collateralization is fully effective).
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ei = before-the shock value of the external assets in balance sheet i: claims which are not the
obligation of any other element of B (physical assets are included in this category)12

li = loss on the external assets in balance sheet i

ki = before-the-shock value of the external capital in balance sheet i13

gi = loss on the external capital in balance sheet i 14

θ(.) = Heaviside step function

zi =
∑
r xri1 (with r = 1, · · · , |B|) overall amount of equity-type obligations of balance sheet i

pi =
∑
r xri2, overall amount of (uncollateralized) obligations of balance sheet i

ci =
∑
jk xijk+

∑
jk uijk+ei−li−

∑
r xri3∑

r xri2
is the cover ratio (asset/liability) of balance sheet i

� =
{
ijk : (i, j, k) ∈ {1, ..., |B|}2 × {1, 2, 3} ∧ i 6= j

}
set of the (three-element) indexes of the claims

xijk

T =
{
ij : (i, j) ∈ {1, ..., |B|}2 ∧ i 6= j

}
set of the (two-element) indexes of the exposures qij

φ : �→ {1, · · · , |�|} is a function mapping the three-element index ijk into a single-element index;
so σ = φ(ijk) 15

ψ : T→ {1, · · · , |T|} is a function mapping the two-element index ij into a single-element index; so
% = ψ(ij)

�φ(ijk) = {φ(jrt) : r ∈ {1, ..., |B|} ∧ r 6= j ∧ t ∈ {1, 2, 3}} set of the parent indexes of the index σ =
φ(ijk)

Aσ0 =
{
σk : ∃(σ0, · · · , σk) ∧ σi ∈ �σi−1 ∧ 0 < i ≤ k

}
set of the ancestor indexes of σ0

�σ0 = {σk : ∃(σ0, · · · , σk) ∧ σi ∈ �σi+1 ∧ 0 ≤ i < k} set of the descendant indexes of σ0

	σ0 = {σk : �σk = �σ0 ∧ k 6= 0} is the set of siblings indexes of the index σ0

x =
[
x1 · · ·xσ · · ·x|�|

]T 16

12In a graph scheme, that would amount to a claim towards a source node.
13Looking at the balance sheet of an individual (a physical person), k amounts to the difference between total assets

and total liabilities, i.e. to the part of the individual’s total assets which is actually its own as indeed it is not matched
by any claim on the asset side of other balance sheets. In a graph scheme that would amount to an obligation towards
a sink. Of course

∑
i ei =

∑
i ki as, summing the balance sheet equation ei +

∑
jh xijh = ki +

∑
rh
xrih (where

i, j, r = 1, · · · , |B| and h = 1, 2, 3 ) over all the balance sheets, we obtain
∑
i ei +

∑
i

∑
jh xijh =

∑
i ki +

∑
i

∑
rh
xrih

and, given that
∑
i

∑
jh xijh =

∑
i

∑
rh
xrih, we have that

∑
i ei =

∑
i ki.

14Similarly to footnote 13, we have that
∑
i li =

∑
i gi as, summing the after-the-shock balance sheet equation

ei− li+
∑
jh yijh = ki−gi+

∑
rh
yrih (where i, j, r = 1, · · · , |B| and h = 1, 2, 3 ) over all the balance sheets and, given

that
∑
i

∑
jh yijh =

∑
i

∑
rh
yrih, we have that

∑
i li =

∑
i gi, which amounts, for the whole set of balance sheets, to

the ”principle of capital structure irrelevance” mentioned in [28] with reference to a group of firm.
15In the following, the three-Latin-letter index or the single-Greek-letter index will be used as more convenient; so

while e.g. xijk and xσ may refer to the same claim, the former notation will be used whenever the information about
the two parties and the type of claim is relevant, whereas the latter will be used when the value of the claim only needs
to be identified as an element of a tuple (abusing notation, xijk will be used instead of xσ(ijk)).

16Vector x is obtained by putting in lexical order the elements of the three-dimensional array
[
xijk

]
{1,...,|B|}2×{1,2,3}

whose index ijk ∈ � (y, u and the following bold letter vectors are obtained in the same way from[
yijk

]
{1,...,B}2×{1,2,3},

[
uijk

]
{1,...,n}2×{1,2,3} and so on).
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y =
[
y1 · · · yσ · · · y|�|

]T
u =

[
u1 · · ·uσ · · ·u|�|

]T
q =

[
q1 · · · q% · · · q|T|

]T
v =

[
v1 · · · v% · · · v|T|

]T
e =

[
e1 · · · ei · · · e|B|

]T
` =

[
l1 · · · li · · · l|B|

]T
λ =

[
λ1 · · ·λi · · ·λ|B|

]T
k =

[
k1 · · · ki · · · k|B|

]T
g =

[
g1 · · · gi · · · g|B|

]T
Definition 1. Overall displacement is defined as the taxicab length (

∑
ijk |uijk|) of the displacement

vector u.

In Subsection 2.1 a novel prove for the existence and unicity of the displacement vector 17 is proposed,
which – while not relying on the single point theorem as it is the case in [22] and several subsequent
studies – 18 exploits the equivalence, in the transmission of displacement, between the role of equity-
claims in solvent balance sheets and that of credit-claims in insolvent balance sheets.
In Subsection 2.2 the displacement vector is calculated as the solution of a mixed linear program. Use
of linear programming as proposed in [23] was also mentioned in [22] where, however, the fictitious
default algorithm was instead adopted 19 as more efficient; 20 nevertheless, in the present contest,
the use of a mixed linear program 21 allows (in Subsection 2.3) to decompose overall displacement
into a component due to the seniority structure and a component due to the structure of bilateral
exposures (disregarding seniority); this is done by backward relaxing first the seniority and then the
bilateral exposures constraints.
In Subsection 2.3 a quantification of the different contributions to the overall displacement 22 is
provided along with some examples (in Appendix A.8) showing that larger overall displacement may
be associated with a higher as well as with a lower capitalization and with more as well as with less
total claim.
In Section 3 the reasons for this non-monotonicity are shown and exemplified looking into the possible

17The displacement vector u is related to the payment vector y, which is dealt with in [22], by the relationship
u = y − x; furthermore the definition of payment vector is here more general as it refers to all (credit and equity)
obligations so including also equity values in the terminology of [24].

18See [1] and – also accounting for different types of claims (credit and equity) – [47], [28] and [7].
19Due to a typo, the original formulation of function FFp′ in the description of the algorithm in [22] was

FFp′ ≡ Λ(p′)(ΠT (Λ(p′)p+ (I − Λ(p′)p̄)) + e) + (I − Λ(p′))p̄ instead of

FFp′ ≡ Λ(p′)(ΠT (Λ(p′)p+ (I−Λ(p′))p̄) + e) + (I−Λ(p′))p̄; in [24] the typo was corrected but a closing round bracket
was missing.

20Furthermore, as defaulting nodes (balance sheets) are added one by one in the fictitious default algorithm, it also
provides a measure of the health of each node. A similar algorithm is also adopted in a number of studies, among
which [47], [28].

21We need introducing binary (solvency) variables in order to account for a possible equity channel of contagion,
whereas a simple linear programming in [22] and [23] was adequate, given only the possibility of contagion through
uniform seniority claims considered therein.

22The idea of adding up the displacement of all exposures is taken from [10], where the amount of total available
post-bankruptcy deposits is included in a simplified calculation of social welfare.
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effects of different types of funding transactions on overall displacement.
In Subsection 3.1 the effects of small transactions on the displacement vector are described in terms
of a deformation gradient. This description differs from the one that is made in [26] (in terms of
sensitivity of the payment vector to perturbations on the matrix of bilateral),23 as in the present study
changes in the bilateral exposures, being the results of funding transactions, are always accompanied
by changes in other balance sheet items (namely external assets). Furthermore, the analysis is
not limited to the interbank market: this allows to highlight possible effects, of changes in bilateral
exposures, on external capital (which in the current scheme is typically found to the right of non-bank
balance sheets) as well as the role of the latter in decoupling displacement from claims growth.

2 Displacement24

The values for uijk are the solution to the system of |�| equations

uijk −
{
δ1 kθ(cj − 1)

pj
zj

(cj − 1) + δ2 k

[
[1− θ(cj − 1)] cj + θ(cj − 1)

]
+ δ3 k − 1

}
xijk = 0 (1)

where ijk ∈ �, δi k is the Kronecker delta and if xijk = 0 we set uijk = 0.
Mapping the three-letter index ijk into a single-letter index σ, by the one-to-one correspondence

σ : �→ {1, · · · , |�|}, the set of equations (1) may also be written as

f1

(
x1, · · · , xσ, · · · , x|�|, u1, · · · , uσ, · · · , u|�|

)
= 0

· · ·
fσ
(
x1, · · · , xσ, · · · , x|�|, u1, · · · , uσ, · · · , u|�|

)
= 0

· · ·
f|�|

(
x1, · · · , xσ, · · · , x|�|, u1, · · · , uσ, · · · , u|�|

)
= 0

(2)

By definition, collateralized claims are assumed never to be displaced (i.e. uij3 is always zero);
that means that only the part of a collateralized claim that is actually recovered after the shock
is denoted with xij3, whereas the complement to the whole original claim is included in xij2. As
a consequence there is a limit to the possible expansion of collateralized claims, i.e.

∑
r xri3 ≤∑

jk xijk +
∑
jk uijk + ei − li.

2.1 Existence and uniqueness of the displacement vector

The existence and uniqueness of the solution (and the relative conditions) are shown in this Section
without resorting to the fixed-point theorem.
Existence
As θ(cj − 1) ∈ {0, 1}, system (1) belongs to the following family of 2|B| systems of linear equations
parameterized by the parameter t = 1, · · · , 2|B|:

uijk −
{
δ1 ksj(t)

pj
zj

(cj − 1) + δ2 k

[
(1− sj(t)) cj + sj(t)

]
+ δ3 k − 1

}
xijk = 0

in which if xijk = 0 we set uijk = 0 and where ijk ∈ �, δi k is the Kronecker delta and sj(t) =[
1− b t

2j−1 c
]

(mod 2) is the jth component of the vector valued function s :
{

1, · · · , 2|B|
}
→ {0, 1}|B|

23Sensitivity to various risk factors (external assets, risk-free interest rate, etc.) is instead dealt with in [7].
24We only use the word loss to denote a reduction of the value of external assets, whereas a decline in the value of

a financial claim would be referred to as a displacement ; this is in line with the National Wealth Approach (NWA) as
described in [29] according to which ”...wealth or net worth is by construction equal to real, nonfinancial assets, since
financial assets are conceptually equal to financial liabilities” and ”...In the aggregate, national wealth is invariant to
declines in the value of loans.”
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which provides, for every value of the parameter t, a (hypothetical) combination of solvency statuses,
one for each balance sheet. 25 The family of systems may also be written 26 as

uijk −
[
δ1 ksj(t)

xijk
zj

+ δ2 k (1− sj(t))
xijk
pj

]∑
rh

ujrh = −δ1 k [zj + sj(t) (lj − zj)]
xijk
zj
− δ2 k (1− sj(t))

xijk
pj

(lj − zj)

and, after defining a matrix M(t) such that 27

mφ(ijk),φ(qrh)(t) =



1 if qrh = ijk

−δ1 ksj(t)xijkzj − δ2 k (1− sj(t)) xijkpj if q = j ∧ δ1 kzj + δ2 kpj > 0

0 all the other cases

( where q, r, i, j = 1, · · · , |B| and h, k = 1, 2, 3)

(3)

and a vector a(t) such that 28 aσ(ijk)(t) = −δ1 k [zj + sj(t) (lj − zj)] xijkzj −δ2 k (1− sj(t)) xijkpj (lj − zj),
as

M(t)u = a(t) (4)

If system (1) does have a solution, it must be equal to the solution of that single system belonging
to the family (4) for which sj(t) = θ(cj − 1) if such a system exists. In order to prove that it does,
we consider the system S : M(2|B|)u = b(2|B|;λ) where b(2|B|;λ) is obtained by replacing in a(t)
the constant vector ` with a variable vector λ ∈ [0, `] and setting t = 2|B| ; we start moving 29

λ from 0 (corresponding to the before-the-shock situation when all the balance sheets are solvent,
i.e. t = 2|B|) towards ` up to (and included) the value where for one balance sheet (say the jth)

the asset/liability ratio becomes one (
∑
ik xjik+

∑
ik ujik+ej−λj−

∑
i xij3∑

i xij2
= 1); this happens just before

t = 2j−1 (if the jth balance sheet is the first to become insolvent along the chosen path) 30 so we call
λt=2j−1 the correspondent value of λ; as long as no balance sheet is insolvent, 31 u is a monotone non

25The notation b.c stands for the floor function.
26In case of claims on the right side of household balance sheets (which may be only credit-claims), the corresponding

equations are instead uij2 − (1− sj(t))
xij2
pj

∑
rk ujrk = − (1− sj(t))

xij2
pj

(lj − kj).
27Matrix M(t) shares all the properties of matrix Fu in Section 3.1.3, which in the following will be referred to when

needed, including non-singularity (see the paragraph on Uniqueness at the end of this Subsection).
28Again, it would be aσ(ijk)(t) = − (1− sj(t))

xijk
pj

(lj − kj) in case of claims to the right of household balance

sheets.
29We make the assumption that the set of balance sheets which are insolvent at a level of external asset losses

(`) element-wise lower or equal to its actual level (λ) is a subset of the actual set of insolvent balance sheets; as a
consequence the actual path is not relevant as long as it traces a continuous curve from 0, which is a vector of all

zeros to ` =
[
l1 · · · li · · · l|B|

]T
: different paths may only change the order in which different balance sheets will show

an asset-liability ratio equal to one.
30In general, if the set of the indexes of the insolvent balance sheets is �, the value of t corresponding to the actual

solvency situation is t =
∑
j∈� 2j−1. These procedure should not be confused with the fictitious default algorithm in

[22] where the spread of contagion is divided into several stages and a new default occurs every time the effect of the
(full amount of) the original shock is transmitted from one balance sheet to another; in the present proof, instead, the
solution is approached by adding further fractions of the original shock step by step.

31The value of λt=2j−1 sets the limit beyond which the displacement would become irreversible as it would start
affecting also credit claims, which – differently from equity claims accounted for to the right of solvent balance sheets –
would not recover their original value once the external losses were removed; this limit is analogous to what in plasticity
theory is called an elastic limit, which in this case would define the elastic region [0,λt=2j−1 ] (on plasticity theory see
[39] p. 60).
As a consequence, while equity claims do transmit displacement not differently from credit claims, they make the
system more resilient; as long as the external losses are within the elasticity region, a reduction of the value of equity
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positive function 32 of λ, so at that point 33 a (partial) displacement u[2|B|,λt=2j−1 ] may be calculated

as the solution of M(t)u = b(t;λ) after setting t = 2|B| and λ = λt=2j−1 . We consider then a new
(before-the-shock) system S′ : M′(t)u = b′(t;λ) where, starting from S, we incorporate this first
partial displacement into the before-the-shock values of the claims: x′ = x + u[2|B|,λt=2j−1 ], the first

partial loss λ[t=2j−1] into the external assets e′ = e− λ[t=2j−1] (resetting variable λ lambda to zero:

λ = 0) and rename 34 each credit claim to the right of the jth balance sheet x′ij2 (i = 1, ..., |B|) as

x′(ij2/ij1).
35

At this point in S′ we set t = 2|B| and start again moving λ from 0 towards `′ = `− λ[t=2j−1] up to

(and included) the point λ[t=2r−1] where for a second balance sheet (say the rth) the asset/liability
ratio becomes one and here we can calculate the displacement u′

[2|B|,λt=2r−1 ]
as the solution to S′ in

which again we have set 36 t = 2|B| and λ = λ[t=2r−1]; we repeat the process until in the S[n] system
we have that λ[n] = `−

∑
i∈� λ[t=2i−1] where � is the set of the indexes of the balance sheets whose

asset/liability ratios happened to become one in the process of increasing λ; so in the end the total

displacement vector will amount to u = u[2|B|,λt=2j−1 ] +u′
[2|B|,λt=2r−1 ]

+ · · ·+u
[n−1]

[2|B|,λt=2q−1 ]
+u

[n]

[2|B|,λ[n]]

(if q is the index of the balance sheet whose asset/liability ratio was the last to become one).
Uniqueness
In order to prove that the system defined by Eq. (1) has a unique solution it would suffice to show
that this is the case for every system belonging to family of systems defined by Eq. (4); for each value
of t we get a particular system M̄u = ā in which matrix M̄ shares the same properties of matrix Fu
in Section 3.1.3 (but for the fact that it does not need Assumption 2) including non-singularity (see
Proposition 3), provided that the assumption (analogous to Assumption 4) is made that at least one
of the (credit-type or equity-type) obligations 37 included in each strongly connected component of
G
(
M̄
)

is recorded on the liability side of a balance sheet which has also some other obligation not
included in the same strongly connected component.

claims – the only claims affected in this region – does not imply insolvency (i.e. the extinction of the balance sheet
on whose right side the claims are accounted for): the higher their amount the wider the possibility that total claims
return to their original value, once external losses have been recovered.
These results are consistent with [35], which (in the case of banks) finds that there is ”no association between more
capital and less risk of banking crisis” but ”...economies with better capitalized banking systems recover more quickly
from financial crises”.

32Given that
∂bj(t;λj)

∂λj
≤ 0 and M−1(t) is nonnegative (see the proof of Proposition 3 in Section 3.1.3).

33As well as at all the previous points λ < λt=2j−1
34This is justified by the fact that for the newly insolvent balance sheet j in absence of equity claims on the right

side, the credit claims de facto may be considered as equity. The notation, which follows the convention introduced in
[49] for a variable substitution (according to which α/β means substitution of the variable β for the variable α), allows
to keep track of the former seniority of a claim now downgraded to equity; in this case it stands for substitution of the
index ij1 for the index ij2; correspondingly we also substitute the new index σ′ for the synthetic index σ (introduced
on page 5), where σ′ is defined by x′

(σ/σ′) = x′
σ(ij2/ij1)

.
35It should be noted that as a consequence M′(t) 6= M(t) and b′(t;λ) 6= b(t;λ) even if they are all calculated at

t = 2|B|; more specifically M′(2|B|) = M(2j−1): while balance sheet solvency status does not change over the different
systems, conventional before-the-shock amounts and seniority of claims do.

36As a matter of fact we always deal with a set of solvent balance sheets, as switching from solvency to insolvency
is avoided by renaming as equity the credit claims towards the insolvent balance sheet.

37As in Section 3.1.3, we say that an obligation is included in a subgraph of G if its relative share (M̄ [ijk, jmv] =

δ1 k
xijk
zj

+ δ2 k
xijk
pj

(with i, j,m = 1, · · · , |B| and k, v = 1, 2, 3)) is the weight of an edge of the subgraph. We refer to

Section 3.1.3 also for the notions of G
(
M̄
)
, the graph of a matrix and of strongly connected component of a graph.
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2.2 Solving Eq. (1) as a mixed linear programming problem

In order to have positive decision variables in the linear programming problem we introduce the set of variables
{wijk}ijk∈�, defined as follows

wijk = −uijk
We minimize the absolute value of the overall displacement subject to constraints stemming from the balance
sheet identity, seniority rules and the need to guarantee the level playing field among same seniority siblings: 38

minimize
∑
ijh

wijh

subject to

(balance sheet)
∑
ih

wijh −
∑
rh

wjrh + gj = lj

(seniority)



wij2 + xij2sj ≤ xij2
wij1 + xij1sj ≥ xij1
wij1 ≤ xij1
wij3 = 0

gj + kjsj ≥ kj
gj ≤ kj

(siblings)wijh −
xijh∑
r xrjh

∑
r

wrjh = 0

wijh ≥ 0

sj ∈ {0, 1}
i, j, r = 1, ..., |B|

h = 1, 2, 3

(5)

Given that Eq. (1) has a unique solution, there would be no need to minimize an objective function (the
solutions would be found by maximizing the objective as well), however (beside allowing to make the calculation
by means of a mixed linear programming application 39 ) this underlines the role that seniority rules may have
in increasing the overall displacement. As in a kind of benchmarking exercise, the next section shows how a
better solution to the optimization problem (i.e. smaller overall absolute displacement) may be found by lifting
the seniority constraint (i.e. by ex-post adopting those seniority rules which minimize the overall absolute
displacement).

38Of course, in what follows, j ∈ H =⇒ gj ≥ 0 ∧ wih1 = 0 and j /∈ H =⇒ gj = 0 ∧ wik1 ≥ 0 (in subscripts, the letter k is
replaced by the letter h when needed to avoid confusion with the notation for external capital).

39As in the examples in Appendix A.8.
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2.3 Total displacement decomposition

In order to look into a possible best seniority structure, we find out what the overall displacement
would be when lifting the seniority and siblings constraints in the linear programming problem de-
scribed in the previous section; to do that we define the set of variables {vij} - representing the
(negative) displacement of bilateral exposure - as

vij = −
∑
k

uijk

and the ”new” (mixed) linear programming problem as 40

minimize
∑
ij

vij

subject to

(balance sheet)
∑
i

vij −
∑
r

vjr + gj = lj

(lower seniority of external capital)


vij + sj

∑
h xijh ≤

∑
h xijh

gj + sjkj ≥ kj
gj ≤ kj

vij ≥ 0

sj ∈ {0, 1}
i, j, r = 0, 1, ..., |B|

h = 1, 2, 3

(6)

which, if solved starting from the same data of the first example in Appendix A.8.1 (though disre-
garding seniority), would produce the following solution:

v =





15 v14

56.7 v15

11.2 v21

8 v31

0 v43

0 v56

53 v71

0 v73

g =





0 g1

11.2 g2

8 g3

0 g4

0 g5

2.25 g6

53 g7

40In this formulation the seniority constraint has no bearing on the displacement of bilateral exposures but only
accounts for the necessarily lower seniority of the external capital.
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from which we can define an optimal claims vector e.g. by setting 41

x∗ij1 = v̄ij
x∗ij2 =

∑
k

xijk − v̄ij for j /∈ {1, · · · ,H}

and

x∗ij2 = v̄ij
x∗ij3 =

∑
k

xijk − v̄ij for j ∈ {1, · · · ,H}

x∗ =





15 x∗141

15 x∗142

56.7 x∗151

26.3 x∗152

11.2 x∗211

18.8 x∗212

8 x∗311

32 x∗312

15 x∗432

20 x∗562

53 x∗711

20 x∗732

The new claims vector x∗ differs from the one of A.8.1 only for the seniority attributed to the claims
while keeping unchanged the size of the total flows from the ith to the jth balance sheet; the associ-
ated overall displacement

∑
ijk |u∗ijk| = 143.9 is 5% lower than that of the original seniority structure:

the percentage reduction in the overall displacement which can result from an optimized seniority
structure may be expressed as42

1−
∑
ijk |u∗ijk|∑
ijk |uijk|

41The value for v̄ij is the result of the mixed linear programming problem in 6. The optimal claims vector x∗ijk of

course is not unique; e.g. x∗ could be defined instead by minimizing its (euclidean or taxicab) distance from x:

minimize
∑
ijk∈�

∣∣∣x∗ijk − xijk∣∣∣
subject to∑
k

x∗ijk =
∑
k

xijk∑
k

u∗ijk = −v̄ij

u∗ij1 = −min
(
v̄ij , x

∗
ij1

)
u∗ijk =

x∗ijk∑
r

x∗rjk

∑
r

u∗rjk

i, j, r = 1, ..., |B|
k = 1, 2, 3

(7)

42If for a given loss vector ` this seniority-related overall displacement is small, any reduction of the overall displace-
ment potentially obtainable by changing the seniority structure (e.g. through regulatory interventions) would also be
small; on the other hand, the effect of adding further constraints to the ”new” mixed linear program in 6 (such as
those brought about by regulatory interventions) would be, if any, to make its result worse (possibly even worse than
the result of the original program 5).
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Furthering the reasoning, we may find what the minimum level of overall displacement would be
- given only e (external assets), ` (external asset losses), k (external capital) and total claims
(
∑
ijk xijk = 291); in order to do that, we redefine the (mixed) linear programming problem de-

scribed in 6 introducing, as a new variable, the overall (debt and equity) bilateral exposure qij :

minimize
∑

i,j∈{1,··· ,|B|}

vij

subject to

(balance sheet)
∑
i

vij −
∑
s

vjs + gj = lj∑
i

qij −
∑
s

qjs = ej − kj

(total claims)
∑
ij

qij = 291

(total external loss)
∑
j

gj =
∑
j

lj

(lower seniority of external capital) gj = min

(∑
s

vjs + lj , kj

)
0 ≤ vij ≤ qij

i, j, r, s = 1, ..., |B|

(8)

Solving problem 8, starting from the same data of A.8.1 (i.e. given e, k, l, B and total claims), would
result in an overall displacement of the bilateral exposures of

∑
ij vij = 72.4:

q =





22.3 q14

1.9 q15

8.3 q16

2.7 q21

40.5 q23

11.2 q24

21.2 q25

3 q26

35.6 q31

6.5 q34

6.6 q35

4.4 q36

2.3 q45

27.9 q46

23.7 q65

4.1 q71

48.6 q72

7.6 q73

5.2 q74

7.4 q75

v =





0 v14

0 v15

0 v16

0.2 v21

0 v23

9.4 v24

20.9 v25

0 v26

0.2 v31

1.8 v34

6.1 v35

0 v36

0 v45

0 v46

22.8 v65

0.2 v71

0 v72

0 v73

3.8 v74

7 v75

To sum up, overall displacement (
∑
ijk |uijk| = 151.1 in example A.8.1) may be decomposed into
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• a component related to the seniority structure of the system, which amounts to the difference
between the optimal value of the objective function in the fully constrained mixed linear pro-
gramming problem (5) and that of problem (6), in which the seniority constraints have been
relaxed (this component amounts to 5% of overall displacement in example A.8.1);

• a component related to the structure of bilateral exposure, amounting to the difference
between the optimal value of the objective function in the seniority relaxed problem (6) and
that of problem (8), in which also the bilateral exposure constraints have been relaxed (this
component amounts to 47% of overall displacement in example A.8.1);

• a component representing the minimum level of overall displacement for a given k, l and e,
which can be calculated as the optimal value of the objective function in problem (8) or more
simply as the sum of that part of the external losses on the left side of each balance sheet
which is not absorbed by the external capital on the right side of the same balance sheet, i.e.∑
i max (li − ki, 0) , i = 1, ..., |B| ; (48% of overall displacement in example A.8.1). 43

2.4 Relative displacement

In problem (8) a total exposure constraint has been added in order to make the results as close as
possible to those of example A.8.1 after removing bilateral exposures from the list of parameters.
However the same result in terms of overall displacement (i.e.

∑
i,j∈{1,··· ,|B|} vij = 72.4) could be

associated with a very different vector of bilateral exposures q. 44 In the same way, overall displace-
ment in example A.8.1 (

∑
ijk |uijk| = 151.1) may be associated with a much higher total exposure,

as in the following example where, taking the same values for k, l and e of example A.8.1, a different
exposure vector (whose taxicab length is

∑
ij qij = 1000) would still be associated with a overall

displacement 45 of
∑
ij vij = 151.1:

43Of course these imbalances include the ones in household balance sheets, which are referred to in [6], [9] and [38],
but also those in all the other balance sheets, in which by definition there is no external capital (and as a consequence
any external asset loss would necessarily be greater than external capital).

44In System (8) bilateral exposures only set upper bounds to displacements.
45It should be noted that this is not trivially due to an increase of the exposures which suffer no displacement.
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q =





150.7 q13

69 q14

53.5 q15

2.7 q16

4 q21

4.1 q23

9.6 q24

9.5 q25

2.9 q26

112.1 q31

56.4 q34

64.7 q35

4.4 q36

152.8 q41

67.9 q43

36.8 q45

0.1 q46

125.6 q54

0.1 q56

17 q71

10 q73

12.1 q74

24.1 q75

9.8 q76

v =





7.2 v13

6.7 v14

18.5 v15

0 v16

2.4 v21

2.5 v23

7.1 v24

7 v25

0 v26

9.4 v31

9.1 v34

13 v35

0 v36

8.6 v41

7.7 v43

2.8 v45

0 v46

3.8 v54

0 v56

12.5 v71

6.1 v73

7.5 v74

19.2 v75

0 v76

Of course more claims may be the result of more intermediation 46 and, given the mechanism of claims
generation through financial transactions - as described in Section 3 -, the presence of cycles makes it
always possible to expand total claims without limits; 47 however, even though the exposure network
sets the channels through which the displacement may spread, a structure of bilateral exposures
with more cycles does not necessarily imply higher overall displacement. 48 Possible cycles in the
exposure network, involving household balance sheets, 49 may not necessarily provide displacement
amplifier channels, if the external capital of those household balance sheets is large enough to absorb
the incoming displacement (along with their own external losses). 50 As a result the ratio between

overall displacement and total claims
∑
ij vij∑
ij qij

would be very different in the two systems (0.52 in

example A.8.1 and 0.15 in the example above). 51

* * *

46See [2] on the building of long intermediation chains.
47This is shown in Appendix A.1; in general the distinction may be done between claims expansion through new

links and claims expansion due to more financial flow through already existing links between balance sheets - see [17,
p. 11].

48See Appendix A.3.
49Intermediation may also take place de facto through household balance sheets, see e.g. [14], [15], [16, pp. 300-301],

[45, p. 10], [43, p. 71], [46], [48, p. 44].
50A possible reduction of relative displacement is one of the accounting effects of household balance sheet involvement

in intermediation (and cycles), the other being a reallocation of external capital losses between household balance sheets;
both effects are exemplified in Appendix A.2.

51In this case the assertion that more finance may reverse its function of facilitating the management of risk (as in
[5]) does not apply as long as overall displacement is not increased.
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Given the amount of total external assets 52
∑
j ej =

∑
j kj , moving from one element of the set

of possible (before-the-shock) claims vectors to another is the result of funding transactions. The
effect of the external asset losses on this set may be described as its deformation, in analogy with
the deformation of a set of material points (body) due to an external shock in continuous mechanics.
53 In the following, the deformation will be dealt with, first with reference to small transactions and
then to finite transactions.

3 Funding transactions

Funding transactions may be seen as those sets of balancing changes in the involved balance sheets
which include the (synchronic 54) change of at least one claim (∆xijk). Their effects on the
involved balance sheets depend on the nature of the claim xijk (uncollateralized credit, equity,
fully collateralized credit), and on its accounting counterparties (external assets, other claims).
However the analysis may be restricted to the effects of those funding transactions in which a
claim changes in the context of the transfer of external assets. 55 Funding transactions in which
the counterparty to the claim change (increase) is a change (decrease) of another claim (credit-
type or equity-type) may always be expressed as the result of a sequence of transactions, fund-
ing the transfer of external assets. E.g., a funding transaction resulting in the transfer to the
jth balance sheet of a credit that the ith balance sheet originally held toward another balance
sheet (say the mth) – expressed by the set {−∆xim2,+∆xijk,+∆xjm2} – amounts to the sequence
{−∆xim2,+∆ei,−∆em} , {+∆xijk,−∆ei,+∆ej} , {+∆xjm2,−∆ej ,+∆em}.

3.1 Small transactions

In describing a small funding transaction between balance sheets i and j, we may express the external
assets ei and ej on left side of the involved balance sheets as a function of the claim xijk against

which they play the role of the counterparty (where ∂ei
∂xijk

= −1 and
∂ej
∂xijk

= 1). In order to avoid

that a reduced overall displacement – e.g., if this happens to be the result of more credit – 56 might
be attributed to a post-transaction reduction of the external losses, it is assumed that the loss on
external assets is a non-negative function of the amount of those assets 57 (furthermore it is assumed
that it may not grow more than that amount): 58

Assumption 1. 0 ≤ ∂lj
∂ej
≤ 1.

52See footnote 13.
53See [39], in particular the first pages of Chapter 8, from which the setting followed, by analogy, in the next section

is taken: we have here before-the-shock (x) and after-the-shock (y = x + u) claims vectors, instead of the ”material”
and ”displaced configuration” points dealt with in [39].

54A financial claim xijk may undergo two types of changes: a change due to a financial transaction (dxijk) and a
change due to the displacement (uijk) which occurs as we go from a before-the-shock to an after-the-shock point in
time. Borrowing terminology from [18], we may call the first one a synchronic change and the second a diachronic
change.

55They may be physical assets or legal intangibles as in a sale (trade credit) or money as in a loan.
56See Eq. (10).
57In example A.8.1 the simplifying assumption is also made that the relation between ei and li is linear and equal

for both the balance sheets involved in the transaction.
58If the increase of external loss related to an increase of external assets were to be greater than the latter, the sign

of the impact of a claim on the value of its siblings (See Subsection 3.1.2 - Eq.(10)) could never be positive: the second

part of the assumption (
∂lj
∂ej
≤ 1) allows us to focus attention on cases where the sign of this impact could instead be

positive.
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Furthermore, in order to differentiate the system of equations (1) 59, we assume that wherever it
has a solution the asset/debt ratio cj is not one and that pj is positive and – unless on the right side
of a household balance sheet – also zj is always positive:

Assumption 2. For every solution ūijk∈� of the system of equations (1) we have that
∑
jk xijk +∑

jk ūijk + ei − li −
∑
r xri3 6=

∑
r xri2

Assumption 3. pj > 0 for j ∈ B and zj > 0 for j ∈ B \ H

We may now define Fx =
[
∂fρ
∂xσ

]
|�|×|�|

and Fu =
[
∂fρ
∂uσ

]
|�|×|�|

so that, if det Fu 6= 0, 60 the

displacement gradient H =
[
∂uρ
∂xσ

]
|�|×|�|

may be defined as

H = −F−1
u Fx (9)

3.1.1 Deformation and displacement gradients

Given a combination of (before-the-shock) financial claims x, corresponding to y in terms of (after-
the-shock) balance sheet value, we may wonder how y changes as we move from x to x + d x. For
a small move d x we have that d y = (H + I) d x, where (H + I) is the deformation gradient. If
d y = d x (i.e. H = 0|�|×|�| where 0|�|×|�| is the null matrix) this means that the two points (x and
x + d x) are equivalent in terms of displacement due to a negative shock.61 If for some σ it happens
that d yσ ≤ dxσ, that means that, following a negative shock, the new point would face a greater
absolute displacement in his σ-th component than the one from which we started. We move from x
to x + d x through a set of funding transactions, so the deformation gradient (H + I) describes the
effect produced on after-the-shock balance sheet values by changes in x due to funding transactions.
This effect depends on the displacement gradient H, that in turn may be decomposed into two
components: −Fx that accounts for the initial impact of these transactions on the displacement of
the liabilities in the balance sheets directly involved in the transaction 62 and F−1

u that accounts for
network effect (the transmission of the displacement from one claim to another).

3.1.2 Impact of funding transactions on the allocation of external asset losses (-Fx)

The entries of the displacement gradient H describe the impact of a funding transaction on the
displacement of a given claim. The opposite of the second factor of the right side of Eq. (9), i.e.
−Fx, refers to the initial impact of a funding transaction (dxijk) on the displacements (du∗j∗ and
du∗i∗) of the items to the right of the two balance sheets (the ith and the jth ones) directly involved
in the transaction; they may be classified according to the kinship relation that links the impacted
displacement (durst) to the claim change brought about by the funding transaction (dxijk). These

relations may be self relations − ∂fijk
∂xijk

, sibling relations − ∂frjt
∂xijk

and parent-children relations − ∂frit
∂xijk

.63

Self-relation

59As formalized in Eq. (2).
60The conditions for that are specified in 3.1.3.
61This situation (corresponding to one case of rigid body in continuum mechanics) would occur (e.g.) if the original

loss or its reallocation, which occurs as we move from x to x + d x, only affected the external capital with no effect on
the displacement of claims.

62We call initial the impact on the displacement of a given claim which is not the (second round) consequence of
the impact of the funding transaction on a different claim.

63Children may have more than two parents here.
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− ∂fij1
∂xij1

= θ (cj − 1)
[(

1− xij1
zj

)
pj
zj

(cj − 1) +
xij1
zj

(
1− ∂lj

∂ej

)]
− 1 ≤ 0

− ∂fij2
∂xij2

= [1− θ (cj − 1)]
[(

1− xij2
pj

)
cj +

xij2
pj

(
1− ∂lj

∂ej

)]
+ θ (cj − 1)− 1 ≤ 0

Sibling-relations (where m 6= i)

− ∂fij1
∂xmj1

= θ (cj − 1)
xij1
zj

[
1− pj

zj
(cj − 1)− ∂lj

∂ej

]
R 0

− ∂fij2
∂xmj1

= [1− θ (cj − 1)]
xij2
pj

(
1− ∂lj

∂ej

)
≥ 0

− ∂fij1
∂xmj2

= −θ (cj − 1)
xij1
zj

∂lj
∂ej
≤ 0

− ∂fij2
∂xmj2

= [1− θ (cj − 1)]
xij2
pj

(
1− cj − ∂lj

∂ej

)
R 0

− ∂fij1
∂xmj3

= −θ (cj − 1)
xij1
zj

∂lj
∂ej
≤ 0

− ∂fij2
∂xmj3

= − [1− θ (cj − 1)]
xij2
pj

∂lj
∂ej
≤ 0

(10)

Child-relations (k ∈ {1, 2, 3})

− ∂fij1
∂xjmk

= θ (cj − 1)
xij1
zj

∂lj
∂ej
≥ 0

− ∂fij2
∂xjmk

= [1− θ (cj − 1)]
xij2
pj

∂lj
∂ej
≥ 0

By definition collateralizated claims may not be displaced so
∂fij3
∂xmrk

= 0 for i, j,m, r ∈ {1, 2, ... |B|}
and k ∈ {1, 2, 3}, whereas on uncollateralized credit claims and equity-type claims it all depends on
kinship and seniority.64

Proposition 1. In terms of the initial reallocation of the external asset loss in the balance sheets in
which it is recorded, a (small) increase in an uncollateralised claim has an impact which is

• non positive on its own displacement and on that of its lower seniority siblings, 65

• non negative on its children and its higher seniority siblings displacement,

• mixed on same seniority siblings displacement.

The impact on same seniority siblings is positive if the increase in the external-assets loss due
the higher external assets (

∂lj
∂ej

) is lower than the fraction of same seniority claims not covered by

total assets – i.e. (1− cj) for credit claims to the right of insolvent balance sheets and 1− pj
zj

(cj − 1)

for equity claims to the right of solvent balance sheets – a condition which may be verified e.g. if

64Even in the original field of linguistic anthropology, in which they have been firstly developed (with reference to
inheritance rights), the concepts of kinship and seniority tend to complement each other. So e.g. in Fanti language
the distinction is made between nua panyin (senior sibling) and nua kakraba (junior sibling); see [37, p. 305].

65Of course this is nothing new, e.g. in [4] ”...the use of collateral in repos withdraws securities from the pool of
assets that would be available to unsecured creditors in the event of a bankruptcy”.
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the external asset which is the counterpart in the funding transaction is money. 66 In general due
to network effects H [ρ, σ] 6= −Fx [ρ, σ], however in absence of feedback effects −Fx also provide
a measure of the final impact of a claim change on its own displacement as well as on that of its
siblings, 67 i.e.,

(det Fu = 1) =⇒ H [ijk, rjt] = −Fx [ijk, rjt] (11)

where the [ijk, rjt] entries are those related to self and siblings relations (with i, j, r = 1, · · · , |B| and k, t =
1, 2, 3)). 68

3.1.3 Network amplification (F−1
u )

The only entries of Fu that are not zero are those referring to self-relations (which are equal to one)
and to parent-children relations, i.e.

∂fijk
∂urst

=



1 if rst = ijk

−δ1 kθ(cj − 1)
xijk
zj
− δ2 k [1− θ(cj − 1)]

xijk
pj

if r = j ∧ δ1 kzj + δ2 kpj > 0

0 all the other cases

(where i, j, r, s = 1, · · · , |B| and k, t = 1, 2, 3)

(12)

Following [13], in order to calculate the inverse of Fu, we consider G (Fu) the flow graph of Fu
which is a |�|-node, weighted, labeled, directed graph such that if Fu [σ, ρ] 6= 0, there is an edge
(ρ, σ) directed from nodes ρ to σ with associated weight Fu [σ, ρ]. If Fu [σ, ρ] = 0, there is no edge
directed from nodes ρ to σ. A directed path from node ρ to node σ, Pρσ = (ρ, γ1)(γ1, γ2) · · · (γµ, σ),
where ρ, σ, γτ (with τ = 1, 2, · · · , µ) are (all distinct) nodes in G (Fu), has weight

w (Pρ,σ) = Fu [σ, γµ] Fu [γµ, γµ−1] , · · · ,Fu [γ2, γ1] Fu [γ1, ρ] (13)

(In general, if T is a subgraph of G, then w(T ) amounts to the product of the weights of the edges of
T ). If ρ and σ coincide, we have a directed circuit. A directed circuit consisting only of one edge is
called a self-loop. A 1-factorial connection from ρ to σ is a subgraph which includes all the nodes of
G (Fu) and contains (a) a directed path P from ρ to σ and (b) a set of node-disjoint directed circuits
that include all the nodes of G (Fu) except those contained in P . A 1-factor is a set of directed
disjoint circuits which include all nodes of G (Fu). A directed graph is called strongly connected if
there is a path in each direction between each pair of vertices of the graph; a strongly connected
component of a directed graph G is a subgraph that is strongly connected and is maximal with
the property that no additional edges or vertices from G can be included in the subgraph without
breaking its property of being strongly connected.
From equation (12) we have that there is one 1-factor which consists only of self-loops. Its weight is

66As pointed out by Graeber (see [31]), the case where credit transactions are beneficial to siblings credit claims is
already mentioned by Rabelais in Gargantua and Pantagruel (see Book 3, Chapter III): ”...he [the creditor] will always
speak good of you in every company, ever and anon purchase new creditors unto you; to the end, that through their
means you may make a shift by borrowing from Peter to pay Paul...”.

67The reason for that will become clearer in Subsection 3.2, after describing network effects in Subsection 3.1.3,
which will also show (see Eq. (17)) that, in absence of feedback, det Fu = 1.

68A sufficient, but not necessary, condition would be that det (I−P) = 1 where I is the identity matrix, P is the

|�| × |�| matrix of the contractual links between claims whose only non-zero entries are P [ijk, juv] = δ1 k
xijk
zj

+

δ2 k
xijk
pj

(with i, j, u = 1, · · · , |B| and k, v = 1, 2, 3).
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1 as it amounts to the product of the diagonal terms. We call a cycle a directed circuit which is not
a self-loop. In the case of G (Fu), if we consider a cycle C of ν elements, we have

C = (i1j1k1, i2j2k2)(i2j2k2, i3j3k3) · · · (iν−1jν−1kν−1, iνjνkν)(iνjνkν , i1j1k1) (14)

so,
the weight of a cycle is

w (C) = (−1)
ν
∣∣∣ ∂fi1j1k1∂ui2j2k2

∂fi2j2k2
∂ui3j3k3

· · · ∂fiµ−1jµ−1kµ−1

∂uiµjµkµ
· · · ∂fiν−1jν−1kν−1

∂uiνjνkν

∂fiνjνkν
∂ui1j1k1

∣∣∣
or, given that if the weight is not zero it must be that jµ−1 = iµ,

w (C) = (−1)
ν
∣∣∣ ∂fi1i2k1∂ui2j2k2

∂fi2i3k2
∂ui3j3k3

· · · ∂fiµ−1iµkµ−1

∂uiµjµkµ
· · · ∂fiν−1iνkν−1

∂uiνjνkν

∂fiνi1kν
∂ui1j1k1

∣∣∣
and, reflecting the feedback character of a cycle,

w (C) = (−1)
ν ∣∣x̂i1i2k1 x̂i2i3k2 · · · · · · x̂iµ−1iµkµ−1

x̂iµiµ+1kµ · · · · · · x̂iν−1iνkν−1
x̂iνj1k1 | (15)

where

x̂ijk =

{
−δ1 kθ(cj − 1)

xijk
zj
− δ2 k [1− θ(cj − 1)]

xijk
pj

(if δ1 kzj + δ2 kpj > 0)

0 (otherwise)
.

From [13], we have that 69

det Fu = (−1)
|�|∑

h

(−1)
Lh w(h) (16)

where

h is a 1-factor which includes all the nodes in G (Fu)
Lh is the number of directed circuits in h

If h′ is a 1-factor which includes at least one cycle and Lh′ is the number of directed circuits in
h′ the previous equation may be rewritten as

det Fu = 1 + (−1)
|�|∑

h′

(−1)
Lh′ w(h′)

as for the 1-factor which includes only self-loops (h0) we have that |�| = Lh0
and (−1)

2|�|
= 1.

Given that the weight of all the self-loops included in h′ is 1, if Ch′ is a cycle included in h′, νCh′
is its number of edges and νh′ =

∑
Ch′

νCh′ , we have that

w (h′) =
∏
Ch′

[(−1)
νC
h′ |w (Ch′)|]

= (−1)
νh′
∏
Ch′
|w (Ch′)|

Given that Lh′ is the sum of (a) the number of cycles LCh′ and (b) the number of self loops LSh′
and that |�| = νh′ + LSh′ , we have that

(−1)
|�|+Lh′+νh′ = (−1)

2νh′+2LS
h′

+LC
h′ = (−1)

LC
h′

so
det Fu = 1 +

∑
h′ (−1)

|�|+Lh′+νh′ ∏
Ch′
|w (Ch′)|

= 1 +
∑
h′ (−1)

LC
h′
∏
Ch′
|w (Ch′)|

(17)

69See Theorem 1 in [13].
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Definition 2. An uncollateralized-credit (equity) obligation is actual if it is accounted for to the
right of an insolvent (solvent) balance sheet.

Definition 3. A path (cycle) is actual if all of the obligations out of which it is built are actual. A
path (cycle) is potential if it is not actual.

Assumption 4. At least one of the (credit-type or equity-type) actual obligations 70 included in each
strongly connected component of G (Fu) is recorded on the liability side of a balance sheet which has
also some other actual obligations not included in the same strongly connected component. 71

Proposition 2. Under Assumption 4, 0 < detFu ≤ 1.

Proof. If Fu is reducible – after row and column permutations – it may be partitioned into a triangular
block matrix with the diagonal blocks corresponding to the strongly connected components of G (Fu);
72 so, given that det Fu amounts to the product of the determinants of the diagonal blocks (of the
permutated matrix), we only need proving the above mentioned bounds for the determinant of any
of these blocks. Given Assumption 4, each of these blocks is an irreducibly diagonally dominant
matrix with positive diagonal entries, so the real part of its eigenvalues is positive73, furthermore,
as all of its off-diagonal entries are non-positive, all its leading principal minors are positive 74, so
also det Fu is positive. If instead Fu may not be partitioned into a triangular block matrix, it is
itself an irreducible diagonally dominant matrix to which all the properties mentioned above for the
diagonal block also apply, including det Fu > 0. Given that, from Eq. (17), if G (Fu) has no cycles
det Fu = 1, in order to prove that det Fu ≤ 1 it suffices to show that det Fu decreases monotonically
as the absolute value of the weight of any of the cycles included in G (Fu) increases i.e. ∂ detFu

∂|w(C)| < 0:

let K be the set of all the cycles included in G (Fu), K \ {C} the set of the cycles included in K but
C, K6∩C the set of the cycles included in K which are pairwise disjoint from (i.e share no node with)
C, 75 then, making explicit the contribution of C from Eq. (17), det Fu may be rewritten as76

det Fu = det Fu �K\{C} − |w (C)|det Fu �K 6∩C (18)

where Fu �K\{C} (resp. Fu �K 6∩C ) is the matrix obtained from Fu, by setting to zero all the off-
diagonal entries whose corresponding edges are not included in any of the cycles in K \ {C} (resp.
K6∩C). Given that Fu �K 6∩C has the same structure as Fu, i.e. it is a square matrix with ones on
the main diagonal, non-positive off-diagonal entries and non-negative (but for at least one column
positive) column sums, det Fu �K 6∩C > 0 and ∂ detFu

∂|w(C)| < 0.

Proposition 3. F−1
u [ρ, σ] ≥ 0 with ρ, σ = 1, 2, · · · , |Σ|.

Proof. This is another consequence of the fact that the real part of the eigenvalues of Fu is positive
77

70Abusing language, we say that an obligation is included in a subgraph of G if its relative share (P [ijk, juv] =

δ1 k
xijk
zj

+ δ2 k
xijk
pj

(with i, j, u = 1, · · · , |B| and k, v = 1, 2, 3)) is the weight of an edge of a subgraph of G.
71This condition amounts to Assumption 2 in [19] where it is made to ensure the uniqueness of a historical cost

propagation.
72See Proposition 1 and Theorem 2 in [11]; the original matrix – after possible rows and column permutations –

may be partitioned by simultaneous permutation of rows and columns leaving unchanged diagonal entries - see also
[27, p. 176].

73See Theorem 1.21. in [52]
74See Theorem 2.1 in [41]
75Of course as C is not disjoint from itself, K6∩C does not include C.
76See Appendix A.4
77See Theorem 2.1 [41]
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Proposition 4. a) Any ρ,σ entry of F−1
u amounts to the sum of the absolute value of weights of all

the paths from node ρ to node σ each one possibly amplified by a (greater than one) multiplier if the
path shares a node with some cycle, i.e.

F−1
u [ρ, σ] =

∑
Pρσ

[
|w(Pρσ)|

detFu �K 6∩Pρσ
detFu

]
(19)

where K6∩Pρσ is the set of all the cycles which are disjoint from (i.e. share no node with) Pρσ and
Fu �K 6∩Pρσ is the matrix obtained from Fu, by setting to zero all the off-diagonal entries not corre-

sponding to edges of cycles in K6∩Pρσ b) Each multiplier is positively related to the absolute value of
the weights of the cycles which are joint to the given path.

Proof. See Appendix A.5

Proposition 5. The weight of a cycle C which shares no node with Pρσ has a bearing on the multiplier

µ =
detFu�K6∩Pρσ

detFu
in Eq. (19), which is a) zero, if the cycle is not strongly connected with any cycle C̃

which in turn shares some node with Pρσ, b) non-negative if it is strongly connected with a cycle C̃

Proof. det Fu �K 6∩Pρσ (resp. det Fu) may be expressed as the product of the determinants of the

irreducible components of its matrix Fu �K 6∩Pρσ (resp. Fu). If C and C̃ belong to different strongly

connected components of G
(
Fu �K 6∩Pρσ

)
(resp. G (Fu)), the determinant of the corresponding irre-

ducible component in Fu �K 6∩Pρσ (resp. Fu) which C belongs to is a factor of both the numerator
and the denominator, so it has no bearing on their ratio. If this is not the case, making explicit the
contribution of a cycle C as in Eq. (18), we have that 78

µ =
det Fu �K 6∩Pρσ\{C} − |w (C)|det Fu �K 6∩Pρσ,C

det Fu �K\{C} − |w (C)|det Fu �K 6∩C

and
∂µ

∂|w (C)|
=
−det Fu �K 6∩Pρσ,C det Fu + det Fu �K 6∩Pρσ det Fu �K 6∩C

(det Fu)
2

which is non-negative if

det Fu �K 6∩Pρσ,C det Fu ≤ det Fu �K 6∩Pρσ det Fu �K6∩C (20)

To show that this is always true, let for any subset A of {1, · · · , |�|} the principal minor on the rows
and columns of Fu indexed by A be denoted by Fu (A). The rows and columns of Fu corresponding
to the nodes of G (Fu) which are included in the cycles in K6∩Pρσ are indexed by A1, those included
in K6∩C are indexed by A2 and those included in K \

(
K6∩Pρσ ∪ K6∩C

)
are indexed by A3. As Fu is an

M-matrix,79 the following inequality holds: 80

det Fu (A1 ∩ A2) det Fu (A1 ∪ A2) ≤ det Fu (A1) det Fu (A2) (21)

and, given that
det Fu (A1 ∩ A2) = det Fu �K 6∩Pρσ,C
det Fu (A1) = det Fu �K 6∩Pρσ

78K 6∩Pρσ,C denotes the set of the set of all the cycles which are disjoint from both Pρσ and C.
79See Theorem 2.1 in [41]
80The result follows from Ineq. (5) and Theorem 2 in [25] where we put the unit matrix in place of matrix B.
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det Fu (A2) = det Fu �K 6∩C and
det Fu (A1 ∪ A2) ≥ det Fu (A1 ∪ A2 ∪ A3) = det Fu (as det Fu decreases monotonically as the absolute
value of the weight of any of the cycles included in G (Fu) increases), so inequality (20) is always
true.

3.1.4 Combining external loss allocation and network effect

The generic term
∂uijk
∂xrst

is a weighted sum of the initial impacts of a claim change dxrst on the
balance sheets directly involved in a funding transaction; each weight in particular equals the sum
of the weights of the paths from xrst to xijk each one possibly amplified by (the weights of) the
cycles which share some element with the path 81 . Given the initial impact −Fx, the overall effect
of a claim increase due to a funding transaction will depend on the structure of paths and cycles
linking the different claims (i.e. on Fu). In terms of the initial impact, a funding transaction may
always have a negative impact on the displacement of some claims, along with a possible positive
impact on some others; this means that, e.g., more credit claims (higher leverage) may result in
a reduced overall absolute displacement (Σijk |uijk|) after the shock, whereas more equity capital
(lower leverage) may have the opposite effect. As pointed out in the previous section, the relevant
paths and cycles are those built out of actual obligations depending on the solvency status of the
balance sheet which, by definition, small funding transaction may not alter. Although the existence
of a contractual obligation is a necessary condition for that of a actual obligation, it may be the
case that more numerous contractual obligations give rise to a less connected network (i.e. with less
numerous actual paths and/or cycles) as the example in A.8.1 shows; this may happen when we move
from small transactions to finite transactions which is the argument of the following section.

3.2 Finite transactions

The analysis of small transactions has shown that the displacement of a given financial claim uijk may
increase or decrease as a result of a move from point x to point x + d x, depending on initial impact
−Fx and network effects Fu; in finite transactions the additional possibility of changing balance
sheet solvency status further widens the range of possible results, which may also include a reduction
of overall displacement 82 as a consequence of increased credit transactions and higher leverage or,
conversely, more acute displacement following an increase in capital financing. An attempt to reduce
overall displacement by changing the seniority structure – e.g. allocating most of the displacement
to less connected balance sheets – 83 might be frustrated by the fact that the relevant links are not
the contractual links, but the actual ones and the latter may be even reduced by an increase in
contractual connections. 84

In order to look more closely into the finite transaction case we define the over -allocation 85 of

81And indirectly by the cycles to which those cycles are in turn strongly connected.
82And also of credit claims displacement.
83E.g. in [21, p. 129] ”...a wide distribution of bail-inable instruments outside the banking sector is preferable”.
84See Appendix A.8.1
85While in a given balance sheet, e.g. the jth, the sum

∑
ik āijk (to which we add, for household balance sheets, the

external capital absorption hj = −kj−θ(cj−1) (lj − kj)) amounts to the (negative) external loss (
∑
ik āijk+hj = −lj),

the reallocation for a specific claim may be higher/lower (in absolute value) than the external loss of the balance sheet
on whose liability side it is registered, due to possible transfers to/from its siblings of higher/lower seniority (or from
external capital); so it is an over -reallocation. The term āijk may be seen as the sum of two components, the allocation
of the external asset loss and a transfer between siblings of different seniority:

āijk =
xijk

δ1 kzj + δ2 kpj

−δ1 k min {lj , zj}+ δ2 k min {0, (zj − lj)}︸ ︷︷ ︸
external asset loss allocation

+ (δ2 k − δ1 k) [1− θ(cj − 1)] max {0, (zj − lj)}︸ ︷︷ ︸
transfer between siblings of different seniority


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the external assets losses āijk on the original claim xijk as

āijk = −δ1 k [zj + θ(cj − 1) (lj − zj)]
xijk
zj
− δ2 k [1− θ(cj − 1)]

xijk
pj

(lj − zj)

or, for household balance sheets,

āij2 = − [1− θ(cj − 1)]
xij2
pj

(lj − kj)

and putting the terms āijk in lexical order ā =
[
ā1 · · · āσ · · · ā|�|

]T
. So from Eq. (1) we obtain

u = M̄
−1

ā (22)

where M̄ and ā are those particular matrix 86 and vector belonging respectively to M(t) and a(t) of
Section 2.1 for which sj(t) = θ(cj − 1). Under Assumption 4, Eq. (22) has a solution which may be
found by solving a linear programming problem as shown in Section 2.2. 87

As in the case of small transactions also the displacement of finite transactions may be seen as the
the product of two components: one describing the effect of the transaction on the allocation of both
external assets losses and (pre-transaction) displacement, i.e. (∆ā −∆M̄u0), the other accounting

for the network effect, i.e. M̄
−1
1 . So from Eq. (22) we have (see Appendix A.6)

∆u = M̄
−1
1 (∆ā−∆M̄u0) (23)

where ∆u = u1 − u0, ∆ā = ā1 − ā0, ∆M̄ = M̄1 − M̄0, and subscripts 0 and 1 refer respectively to
point x and x + d x. Eq. (23) may be seen as the finite transaction counterpart of Eq. (9) (times
d x), 88 but differently from (what happens with a column of) −Fx, in (∆ā − ∆M̄u0) the impact
of the transaction is not limited to the two involved balance sheets as it also includes the effects of
changes in solvency status which may be induced also in other balance sheets. For self and siblings,
the boundaries to the sign of the entries of −Fx set in Proposition 1 also apply to the correspondent
entries of (∆ā − ∆M̄u0) 89 and – in analogy with the case of small transaction – in absence of
feedback

(∆x = [0 · · ·∆xrjt · · · 0]
T ∧ (I−P)

−1
[jsl, pjh] = 0) =⇒ ∆u [ijk] = (∆ā−∆M̄u0) [ijk] (24)

(where i, j, p, r, s = 1, · · · , |B| and h, k, l, t = 1, 2, 3)
I.e., if there are no feedback effects from any of the claims to the right of jth balance sheet – a
funding transaction {∆xrjt,+∆ej ,−∆er} generating (or increasing) a claim to the right side of the
jth balance sheet may not have any effect on an entry of (∆ā − ∆M̄u0) corresponding to a node

or, for entries on the liability side of households balance sheets:

āij2 =
xij2

pj

min {0, (kj − lj)}︸ ︷︷ ︸
external asset loss

+ [1− θ(cj − 1)] max {0, (kj − lj)}︸ ︷︷ ︸
transfer from external capital


86Matrix M̄ amounts to Fu (but for the fact that it does not need Assumption 2 to be defined) so it shares all the

properties of the latter as described in Section 3.1.3.
87Of course Eq. (22) does not provide an explicit solution for u, which besides appearing explicitly to the left of the

equal sign is also an argument of M̄ and ā.
88Again differently from the case of small transactions, Eq. (23) does not provide an explicit solution for ∆u, which

given u0 is an argument of M̄ and ∆M̄; while the solution may be found by solving a (mixed) linear programming
problem, Eq. (22) and Eq. (23) only describe the intertwining of external asset impact and network effects.

89See Appendix A.7.
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which is also an ancestor of ijk 90 other than (∆ā−∆M̄u0) [ijk]. In general, for claims not to the
right of the balance sheets involved in the transaction (due to possible changes in solvency status)
and also for those involved (if there are feedback effects), ∆u [ijk] 6= (∆ā − ∆M̄u0) [ijk], as it is
shown in example A.8.1 (see footnote 115). However, consistently with Proposition 1, also in the
case of finite transactions,

• higher leverage ratios for some balance sheets may result in lower overall absolute displacement
(as measured by

∑
ijk |uijk|) and

• higher collateralized claims may result in higher overall displacement,

as the examples in Appendix A.8 indicate.

4 Conclusions

Assuming no self-generating claims – claims generated through simultaneous (direct or indirect)
reciprocal financing – the presence of balance sheet deficits (external assets higher than external
capital) is a necessary condition for the existence of financial claims. Beyond the minimum level of
claims that would suffice to make up for balance sheets imbalances, further claims are generated in
the activity of intermediation, giving rise to a network of bilateral exposures with different senioritiy.
Total displacement of claims may be (backward) decomposed into a component related to the seniority
structure of claims, one related to the structure of bilateral links (which exposure a balance sheet has
vis-à-vis which other balance sheet – irrespective of claim seniority) and one related to the imbalances
between external losses and external capital.
In doing so it may be shown that – limiting the analysis to direct balance sheet contagion (as in [22])
for a given set of external loss-capital imbalances and structure of bilateral exposures – the sign of
the relation between leverage and overall displacement may not be necessarily positive: 91 equity
claims may transmit displacement not differently from credit claims. Nevertheless – differently from
credit claims – until the first balance sheet in the system gets insolvent, before-the-shock values of
equity claims may be restored if external losses are reversed: so if equity claim may not necessarily
reduce contagion, it can make the system more resilient.
Furthermore, 92 more total claims does not imply more overall displacement: on the one hand, the
presence of cycles in the network may account for a possibly infinite growth of total claims; on the
other hand the involvement of household balance sheets (the only ones with external capital) in cycles
may prevent a corresponding growth of overall displacement.
So – given external assets, losses and capital – a set of balance sheets may be thought for which

• greater leverage may reduce the overall financial claims displacement,

• the same overall displacement may be associated to very different levels of total claims (even
at external loss-capital imbalances unchanged),

• increasing the number of contractual links may reduce that of the actual ones . . .

No attempt has been made here at identifying the conditions under which such results may occur or
how realistic they may be. Still they are possible according to A.V. Smirnov’s definition:

90A sufficient, but not necessary condition for that, is det (I−P) = 1; a node uvz is an ancestor of ijk if

M̄
−1
1 [ijk, uvz] 6= 0 (see [32, p. 1176]).
91Not even at the level of a single balance sheet, as the example in Appendix A.8.1, footnote 116 indicates.
92Again, given the set of external losses.
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If something is possible, then it is not required that it has been the case some time,
takes place now, or will be some time later. It is not excluded that it has never been,
does not take place now, and will never be. 93

93See [36].

24



References

[1] D.Acemoglu, A.Ozdaglar, A.Tahbaz-Salehi, Systemic Risk and Stability in Financial Networks
The American Economic Review Vol. 105, No. 2 (FEBRUARY 2015), pp. 564-608

[2] T.Adrian, H.S.Shin, The Changing Nature of Financial Intermediation and the Financial Crisis
of 2007-09 Federal Reserve Bank of New York Staff Reports, no. 439, April 2010

[3] Banca d’Italia Financial Stability Report No. 5, April 2013

[4] Bank for International Settlements, Implications of repo markets for central banks, page 4. Basle,
1999.

[5] A.Barba, G.de Vivo, An ‘unproductive labour’ view of finance Cambridge Journal of Economics
(October 2012), 36, 1479–1496

[6] A.Barba, M.Pivetti, Rising household debt: Its causes and macroeconomic implications–a long-
period analysis Cambridge Journal of Economics 2009, 33, 113–137

[7] N.Bertschinger, J.Stobbe, Systemic Greeks: Measuring risk in financial networks
arXiv:1810.11849v1 [q-fin.RM] 28 Oct 2018

[8] A.A.Bogdanov, Tektology, Centre for Systems Studies Press, Hull, UK, 1996. First published in
Russian, 1913-1917 as The Universal Science of Organization(Tektologia).

[9] M.D.Bordo, C.M.Meissner Does Inequality Lead to a Financial Crisis?, NBER Working Paper
17896, March 2012.

[10] S.Bougheas, A.Kirman, Systemic risk and the optimal seniority structure of banking liabilities,
Int. J.Fin. Econ., 2018, pages 47-54

[11] R.A.Brualdi, Combinatorial Matrix Analysis. In C.F. Floudas and P.M. Pardalos, editors, Ency-
clopedia of Optimization, pages 377-379. Springer Science+Business Media LLC, NY USA, 2009.

[12] N.I.Bukharin, Imperialism and the Accumulation of Capital, Monthly Review Press, 1972, En-
glish translation from the original Russian edition of 1924.

[13] W.K.Chen, On Directed Graph Solutions of Linear Algebraic Equations, SIAM Review, Vol. 9,
No. 4 (Oct., 1967), pp. 692-707

[14] J.F. Cocco,Portfolio Choice in the Presence of Housing,The Review of Financial Studies Vol.
18, No. 2, 2004

[15] D.Cooper, Did Easy Credit Lead to Overspending? Home Equity Borrowing and Household
Behavior in the Early 2000s

[16] J.L.Coronado, D.Maki, B.Weitzer, Retiring on the House? Cross-Cohort Differences in Housing
Wealth PRCWP (September 2006).

[17] V.Cuciniello, N.di Iasio Determinants of the credit cycle: a flow analysis of the extensive margin,
ECB Working Paper Series No 2445 / July 2020

[18] F. De Saussure, Course in General Linguistics, page 81. The Philosophical Library, INC., NY
USA, 1959 (translated from the French edition Geneva, July 1915).

25



[19] M.Eboli, Direct Contagion in Financial Networks with Mark-to-Market and Historical Cost Ac-
counting Rules, International Journal of Economics and Finance Vol. 2, No. 5; (2010), pp.27-34.

[20] M.Eboli, A Flow Network Analysis of Direct Balance-Sheet Contagion in Fi- nancial Networks,
Kiel Working Papers 1862, Kiel Institute for the World Economy (IfW), 2013.

[21] ECB, Financial Stability Review, May 2016

[22] L.Eisenberg and T.H.Noe, Systemic Risk in Financial Systems, Management Science, Vol. 47,
No. 2 (Feb., 2001), pp. 236-249.

[23] A.A. Eliman, M.Girgis, S.Kotob The Use of Linear Programming in Disentangling the Bankrupt-
cies of Al-Manakh Stock Market Crash, Operations Research, Vol. 44, No. 5 (Sep. - Oct., 1996),
pp. 665-676.

[24] H.Elsinger Financial Networks, Cross Holdings, and Limited Liability, ONB Working Paper 156,
2009.

[25] K.Fan, Inequalities for M-matrices, Proc. Konig Nederl. Akad. Wetensch. Amsterdam Ser. A 67
(1964), 602-610

[26] Z.Feinstein, W.Pangz, B.Rudlox, E.Schaanning S.Sturmz, M.Wildmank, Sensitivity of the Eisen-
berg Noe clearing vector to individual interbank liabilities, NORGES BANK 13, 2017

[27] M.Fiedler, Matrices and Graphs in Geometry, Cambridge University Press,New York, 2011.

[28] T.Fischer, No-Arbitrage Pricing Under Systemic Risk: Accounting for Cross-Ownership, Math-
ematical Finance, Vol.24,No.1 (Jannuary 2014), pp.97-124.

[29] O.Frécaut, A National Wealth Approach to Banking Crises and Financial Stability, IMF Working
Paper 2016/128.

[30] M.Fry, The Fiscal Abuse of Central Banks, IMF Working Paper 1993/58

[31] D. Graeber Debt: the first 5,000 years, Melville House, New York, 2011

[32] J.L.Gross and J. Yellen (edited by) Handbook of Graph Theory, CRC Press, Boca Raton, FL,
2013

[33] D.Harvey, The New Imperialism, Oxford University Press, 2003.

[34] M.Horkheimer,T.W.Adorno Dialectic of Enlightenment - Philosophical Fragments, Stanford Uni-
versity Press, Stanford, California, 2002 First published in German, 1944-194.
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A Appendix

A.1 Financial claims generation

Assuming no self-generating claims (claims generated through simultaneous reciprocal financing) the
presence of balance sheet deficits is a necessary condition for the existence of financial claims. 94

Total balance sheet deficit (
∑
i max (ei − ki, 0) , i = 1, ..., |B|) sets the minimum level of total claims in

order for surplus balance sheets to make up deficit ones; 95 financial intermediation accounts for total
claims above this level. 96 Given the mechanism of claims generation through financial transactions
– as described in Section 3 – the presence of cycles make it always possible to expand total claims
without limits. The claims generation process is illustrated below in terms of bilateral exposures:
A) Minimum level of total claims

1
e1 10 k1 0

q31 9
q41 1

2
e2 0 k2 0

3
e3 1 k3 10
q31 9

4
e4 0 k4 1
q41 1

B) Intermediation
1

e1 10 k1 0
q21 9
q41 1

2
e2 0 k2 0
q21 9 q32 9

3
e3 1 k3 10
q32 9

4
e4 0 k4 1
q41 1

C) Cycles

1
e1 10 k1 0
q13 5 q21 14

q41 1

2
e2 0 k2 0
q21 14 q32 14

3
e3 1 k3 10
q32 14 q13 5

4
e4 0 k4 1
q41 1

The cycle generating sequence of transactions 97 that bring the system from B) to C) could be
repeated with the result of inflating the balance sheets while leaving the original distribution of
external assets e and capital k unchanged.

94Which here include both credit and equity claims.
95This level grows as the distance between e and k increases.
96This distinction follows the description of the different roles of finance as described in [51, p. 11] where the

distinction is made between the ”translation of the savings of households into corporate business investment” – a
process which ”occurs mainly outside the market, as retention of earnings gradually and irregularly augments the
value of equity shares” – and the activity of ”Capital markets and financial intermediaries [which] assist this process
by facilitating transfer from surplus companies to deficit companies”.

97i.e.: ∆q13 = −∆e1 = ∆e3 = 5,
∆q32 = −∆e3 = ∆e2 = 5,
∆q21 = −∆e2 = ∆e1 = 5
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A.2 Accounting effects of household involvement in financial intermedia-
tion: 1) on relative displacement and 2) on external capital.

The involvement of household balance sheets in financial intermediation cycles may result ceteris
paribus in a reduction of the relative displacement, which is merely due to inflated financial claims:
98

A) No household involvement

before the shock:
1

e1 10 x212 10
2

x212 10 x322 10
3

x322 10 k3 10

after the shock: (e1 is reduced of a half)
1

e1 5 y212 5
2

y212 5 y322 5
3

y322 5 k3 5

Relative displacement = 0.50

B) Household balance sheet involved in financial intermediation

before the shock:
1

e1 10 x212 20
x132 10

2
x212 20 x322 20

3
x322 20 k3 10

x132 10

after the shock: (e1 is reduced of a half)
1

e1 5 y212 15
y132 10

2
y212 15 y322 15

3
y322 15 k3 5

y132 10

Relative displacement = 0.25

and distributional effects 99 – in the following example, the involvement of balance sheet 3 in an
intermediation path (actually it is a cycle) results in an improvement of after the shock external
capital of balance sheet 4 at expense of balance sheet 3:

A) No household involvement

before the shock:
1

e1 10 x212 5
x412 5

2
x212 5 x322 5

3
x322 5 k3 5

4
x412 5 k3 5

after the shock: (e1 is reduced of a half)
1

e1 5 y212 2.5
y412 2.5

2
y212 2.5 y322 2.5

3
y322 2.5 k3 2.5

4
y412 2.5 k3 2.5

Relative displacement = 0.50

B) Household balance sheet involved in financial intermediation

before the shock:
1

e1 10 x212 15
x132 10 x412 5

2
x212 15 x322 15

3
x322 15 k3 5

x132 10

4
x412 5 k3 5

98For the assumption of a constant ratio of bad debts to lending, see instead e.g. [3, p. 29].
99Redistribution effects of changes in cross-holding are mentioned in [7], whereas in [43, p. 73] other distributional

consequences of a growing involvement of household in finance are described, which – differently from the simple
accounting effects of higher claims volume described in this Appendix – are related to the composition of claims.
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after the shock: (e1 is reduced of a half)
1

e1 5 y212 11.25
y132 10 y412 3.75

2
y212 11.25 y322 11.25

3
y322 11.25 k3 1.25

y132 10

4
y412 3.75 k3 3.75

Relative displacement = 0.25
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A.3 A representation of bilateral exposure and bilateral displacement in
terms of imbalances and network amplification.

Bilateral exposure q and (negative) bilateral displacement v 100 can be expressed – in analogy with
the procedure followed in Section 2.1 for claims displacement – as the product of

• the inverse of a diagonally dominant matrix with unitary diagonal and non-positive off-diagonal
entries (which accounts for network effects) and

• a vector accounting for imbalances between external capital and

– external assets (as for exposure q) or

– external losses (as for negative displacement v).

As for exposures, q may be seen as the solution of the system of equations

qij − αij
∑
i

qji = αij(ej − kj)

where i, j = 1, · · · , |B| and αij is the incidence of the exposure of balance sheet i to balance sheet j
on total assets of balance sheet j (net of possible external capital); we may write it as q = R−1o,
where
R is defined by 101

rψ(ij),ψ(ps) =


1 if ps = ij

−αij if p = j

0 all the other cases

where i, j, p, s = 1, · · · , |B|

o is defined by oψ(ij) = αij(ej − kj), and
ψ = ψ(ij) is a function which maps the two-letter index into a single-letter index.

As for (negative) displacement of bilateral exposure, v may be seen as the solution of the system of
equations

vij − βij
∑
i

vji = βij(lj − kj)

where i, j = 1, · · · , |B| and βij is the incidence of the displacement of the claims that balance sheet i
holds toward balance sheet j on total displacement and loss of the jth balance sheet’s assets (net of
possible external capital); we may write it as v = N−1d, where
N is defined by

nψ(ij),ψ(ps) =


1 if ps = ij

−βij if p = j

0 all the other cases

where i, j, p, s = 1, · · · , |B| and

0 ≤ βij ≤ 1 – depending on the seniority structure actually associated with the structure
of bilateral exposure – and βij = 0 for solvent household balance sheets

100Whether calculated as a solution to problem (6) or given as data.
101Both R and N are diagonally dominant matrices with positive diagonal entries and non positive off-diagonal entries

so sharing all the properties of Fu; furthermore, in order for them to be invertible, as it was the case for Fu – we
assume that the relative graphs (G(R) and G(N)) entail no closed strongly connected components.
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d is defined by dψ(ij) = βij(lj − kj).

As shown in Appendix A.1, given a set of balance sheet deficits, total exposure may be expanded
quite indefinitely by the presence of cycles. 102

By the same token, given the loss-capital imbalances, overall displacement may be expanded by
the presence of cycles. However, more cycles in R (which is relevant for exposure) do not necessary
mean more cycles in N (which is relevant for displacement); cycles involving household balance sheets
in R, might not be matched by cycles in N, e.g., if the external capital of those household balance
sheet is large enough to absorb the incoming displacement (along with the external loss), 103 so
preventing its further propagation.
Comparing the relative displacement of Example A.8.1 with that of Example in Section 2.4, the
higher denominator in the second displacement/exposure ratio is mainly due to the presence of more
cycles in the matrix of bilateral relationship R whose determinant 104 is 0.86 in the first case and
0.20 in the second one.

The values for R and o in the two systems are

R =

q14 q15 q21 q31 q43 q56 q71 q73



1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0

−0.244 −0.244 1 0 0 0 0 0
−0.325 −0.325 0 1 0 0 0 0

0 0 0 −0.429 1 0 0 0
0 0 0 0 0 1 0 0

−0.431 −0.431 0 0 0 0 1 0
0 0 0 −0.571 0 0 0 1

o =





15.000 q14

63.000 q15

2.439 q21

3.232 q31

−2.143 q43

20.000 q56

4.309 q71

−2.857 q73

in the first (Example A.8.1) system and

R =

w13 w14 w15 w16 w21 w23 w24 w25 w26 w31 w34 w35 w36 w41 w43 w45 w46 w54 w56 w71 w73 w74 w75 w76



1 0 0 0 0 0 0 0 0 −0.648 −0.648 −0.648 −0.648 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 −0.253 −0.253 −0.253 −0.253 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.284 −0.284 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−0.014 −0.014 −0.014 −0.014 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −0.017 −0.017 −0.017 −0.017 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 −0.035 −0.035 −0.035 −0.035 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −0.05 −0.05 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−0.392 −0.392 −0.392 −0.392 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 −0.207 −0.207 −0.207 −0.207 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −0.343 −0.343 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−0.535 −0.535 −0.535 −0.535 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −0.292 −0.292 −0.292 −0.292 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −0.195 −0.195 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −0.46 −0.46 −0.46 −0.46 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

−0.059 −0.059 −0.059 −0.059 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 −0.043 −0.043 −0.043 −0.043 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −0.045 −0.045 −0.045 −0.045 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.128 −0.128 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

o = (−3.238 3.797 17.88 2.72 0.139 −0.087 0.528 3.172 2.86 3.922 3.102 21.603 4.41 5.345 −1.46 12.301 0.1 6.906 0.11 0.594 −0.214 0.668 8.044 9.8)T

102Cycles in R increase the entries of R−1 (see Proposition 5 in Section 3.1.3) and – despite o may have some
negative entries (if there are claims toward surplus balance sheets) – also total claims: given the mechanism of claims
generation, the effect of negative entries in o is always offset by that of positive ones.
103Of course, the (in a way) opposite case may also occur that the matching cycle in N has a greater weight than the

correspondent cycle in R e.g., if it stems from equity claims on the right side of a solvent balance sheet to which there
are other higher seniority claims.
104As shown in Eq. (18), the determinant is negatively related to the weight of cycles.
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in the second (Example in Section 2.4).

In order to assess to what extent the different ratio is due to the presence of cycles, for each of
the two systems (the one with

∑
i qij = 291 and the other with

∑
i qij = 1000) the acyclic system S∗

closest to each one may be calculated as the solution q∗ to the following problem 105

minimize
∑

i,j∈{1,··· ,|B|}

(
q∗ij − q̄ij

)2
subject to

(balance sheet)
∑
i

v∗ij −
∑
s

v∗js + g∗j = lj∑
i

q∗ij −
∑
s

q∗js = ej − kj

(total external loss)
∑
j

g∗j =
∑
j

lj

(lower seniority of external capital) g∗j = min

(∑
s

v∗js + lj , kj

)
(overall displacement)

∑
ij

v∗ij = 151.1

(acyclicality) det(R) = 1

0 ≤ v∗ij ≤ q∗ij
i, j, s = 1, ..., |B|

(25)

which if setting q̄ at the values of the first system (where
∑
ij

qij = 291 ) would produce

q∗ =





20.617 q∗14

77.383 q∗15

26.245 q∗21

3.739 q∗23

32.507 q∗31

3.746 q∗45

1.871 q∗46

18.129 q∗56

49.248 q∗71

23.768 q∗73

and v∗ =





16.390 v∗14

55.310 v∗15

20.649 v∗21

1.424 v∗23

13.791 v∗31

1.390 v∗45

0.000 v∗46

0.000 v∗56

37.688 v∗71

4.367 v∗73

105Where q̄ is the bilateral exposure vector of the correspondent cyclic system.
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and if set at the values of the second system (where
∑
ij

qij = 1000) would produce

q∗ =





61, 249 q∗13

27, 215 q∗21

6, 655 q∗25

66, 249 q∗35

20, 000 q∗46

35, 000 q∗54

44, 034 q∗71

3, 870 q∗72

25, 096 q∗75

and v∗ =





31.945 v∗13

14.958 v∗21

6.654 v∗25

39.945 v∗35

0.000 v∗46

15.000 v∗54

17.487 v∗71

0.000 v∗72

25.100 v∗75

As a consequence, the displacement/claim ratios for the two acyclic sistems would be much closer
(respectively −0.59 and −0.57).
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A.4 From Eq. (17) to Eq. (18)

We consider a network with n cycles (C1, C2, · · · , Cn) and, in order to calculate the determinant of
its weighted adjacency matrix, we start from the determinant of a network without cycles (which
equals 1) and then we add one cycle at a time, allowing for all possible pairwise combinations of joint
(Ci ∩ Cj 6= ∅) or disjoint (Ci ∩ Cj = ∅) cycles; starting with the first 3 cycles we have

one cycle two cycles three cycles

1− |w(C1)|



1− |w(C1)| − |w(C2)|
if C1 ∩ C2 6= ∅



1− |w(C1)| − |w(C2)| − |w(C3)|
if C1 ∩ C2 6= ∅ ∧ C1 ∩ C3 6= ∅ ∧ C2 ∩ C3 6= ∅

1− |w(C1)| − |w(C2)| − |w(C3)| (1− |w(C1)|)
if C1 ∩ C2 6= ∅ ∧ C1 ∩ C3 = ∅ ∧ C2 ∩ C3 6= ∅

1− |w(C1)| − |w(C2)| − |w(C3)| (1− |w(C2)|)
if C1 ∩ C2 6= ∅ ∧ C1 ∩ C3 6= ∅ ∧ C2 ∩ C3 = ∅

1− |w(C1)| − |w(C2)| − |w(C3)| (1− |w(C1)| − |w(C2)|)
if C1 ∩ C2 6= ∅ ∧ C1 ∩ C3 = ∅ ∧ C2 ∩ C3 = ∅

1− |w(C1)| − |w(C2)| (1− |w(C1)|)
if C1 ∩ C2 = ∅



1− |w(C1)| − |w(C2)| (1− |w(C1)|)− |w(C3)|
if C1 ∩ C2 = ∅ ∧ C1 ∩ C3 6= ∅ ∧ C2 ∩ C3 6= ∅

1− |w(C1)| − |w(C2)| (1− |w(C1)|)− |w(C3)| (1− |w(C1)|)
if C1 ∩ C2 = ∅ ∧ C1 ∩ C3 = ∅ ∧ C2 ∩ C3 6= ∅

1− |w(C1)| − |w(C2)| (1− |w(C1)|)− |w(C3)| (1− |w(C2)|)
if C1 ∩ C2 = ∅ ∧ C1 ∩ C3 6= ∅ ∧ C2 ∩ C3 = ∅

1− |w(C1)| − |w(C2)| (1− |w(C1)|)−
|w(C3)| [1− |w(C1)| − |w(C2)| (1− |w(C1)|)]
if C1 ∩ C2 = ∅ ∧ C1 ∩ C3 = ∅ ∧ C2 ∩ C3 = ∅

I.e. as we add one more cycle Ci, the new determinat will equal that associated with a network
lacking the new cycle, less the absolute value of the weight of the new cycle times the determinant
associated with a network lacking all the cycles joint to Ci.
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A.5 Proof of Proposition 4

a) From Theorem 1 in [13]

F−1
u [ρ, σ] =

∑
Hρσ

(−1)LHρσ−1w(Hρσ)∑
h(−1)Lhw(h)

(26)

where 106

Lh, LHρσ is the number of directed circuits in h and Hρσ respectively
h is a 1-factor in G (Fu)
Hρσ is a 1-factorial connection from node ρ to node σ in G (Fu)

.

Furthermore, if

[Fu]ρ,σ is a matrix obtained from Fu by removing the ρ-th and the σ-th columns

h′ is a 1-factor including at least one cycle and covering all the nodes in G (Fu)
Pρσ is a path from node ρ to node σ in G (Fu)
h6∩Pρσ is a 1-factor covering all the nodes in G (Fu) , but the ones

already included in Pρσ
h′6∩Pρσ is a 1-factor which includes at least one cycle and covering all the nodes in

G (Fu) , but the ones already included in Pρσ
Ch′6∩Pρσ

is a cycle in h′6∩Pρσ
LCh6∩Pρσ

is the number of cycles included in h6∩Pρσ
LCh′6∩Pρσ

is the number of cycles included in h′6∩Pρσ

LCh′ is the number of cycles included in h′

VPρσ is the number of nodes included in Pρσ
VCh6∩Pρσ

is the number of nodes (as well as of edges) belonging to the cycles included in h6∩Pρσ
LSh6∩Pρσ

is the number of self-loops included in h6∩Pρσ
Lh6∩Pρσ is the number of directed circuits included in h6∩Pρσ

from [50] and [13]107 we have that

(−1)
ρ+σ

det [Fu]ρ,σ = (−1)
|�|∑

Hρσ

(−1)
LHρσ−1

w(Hρσ) (27)

and given that
Lh6∩Pρσ = LSh6∩Pρσ

+ LCh6∩Pρσ
,

|�| = VPρσ + VCh6∩Pρσ
+ LSh6∩Pρσ

and(
|�|+ Lh6∩Pρσ + VPρσ + VCh 6∩Pρσ

)
(mod 2) ≡ LCh 6∩Pρσ (mod 2),

106The original formula in [13] only applies if ρ 6= σ. If ρ = σ, it should be replaced (Theorem 6.28 in [50]) by

F−1
u [ρ, ρ] =

∑
H (−1)LH−1w(H)∑
h(−1)Lhw(h)

where H is a 1-factor in the graph obtained by removing node ρ from G (Fu). Nevertheless, given that all the diagonal
entries of Fu equal 1, the two expressions coincide if ρ = σ.
107See Theorem 6.28 in [50] and Theorem 1 in [13].
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then

(−1)
|�|∑

Hρσ
(−1)

LHρσ−1
w(Hρσ)

= (−1)
|�|∑

Pρσ
w (Pρσ)

∑
h6∩Pρσ

(−1)
Lh 6∩Pρσ

−1
w
(
h6∩Pρσ

)
= (−1)

|�|∑
Pρσ

(−1)
VPρσ−1 |w (Pρσ)|

∑
h6∩Pρσ

(−1)
Lh6∩Pρσ

−1+VCh 6∩Pρσ
∣∣w (h6∩Pρσ)∣∣

=
∑
Pρσ
|w (Pρσ)|

∑
h6∩Pρσ

(−1)
|�|+Lh6∩Pρσ+VPρσ−2+VCh6∩Pρσ

∣∣w (h6∩Pρσ)∣∣
=

∑
Pρσ
|w (Pρσ)|

∑
h 6∩Pρσ

(−1)
LCh 6∩Pρσ

∣∣w (h6∩Pρσ)∣∣
=

∑
Pρσ
|w (Pρσ)|

[
1 +

∑
h′6∩Pρσ

(−1)
LC

h′6∩Pρσ
∏
Ch′6∩Pρσ

∣∣∣w (Ch′6∩Pρσ)∣∣∣
]

So, given Eq. (16), Eq. (17) and Eq. (26),

F−1
u [ρ, σ] =

∑
Pρσ

|w(Pρσ)|
1 +

∑
h′6∩Pρσ

(−1)
LC

h′6∩Pρσ
∏
Ch′6∩Pρσ

∣∣∣w (Ch′6∩Pρσ)∣∣∣
1 +

∑
h′ (−1)

LC
h′
∏
Ch′
|w (Ch′)|

 (28)

and, if K6∩Pρσ is the set of all the cycles which are disjoint from (i.e. share no node with) Pρσ and
Fu �K 6∩Pρσ is the matrix obtained from Fu, by setting to zero all the off-diagonal entries which are
not included in any of the cycles included in any h6∩Pρσ ,

F−1
u [ρ, σ] =

∑
Pρσ

[
|w(Pρσ)|

det Fu �K 6∩Pρσ
det Fu

]
(29)

which amounts to Proposition 4, given that det Fu �K 6∩Pρσ ≥ det Fu as ∂ detFu
∂|w(Ci)| < 0. 108

b) This is a consequence of the fact that the cycles joint to a given path are negatively related to the
determinant at the denominator of Eq. (19) and have no bearing on the denominator.

108See proof of Proposition 2.
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A.6 Decomposing ∆u

From Eq. (22)

u1 − u0 = M̄
−1
1 ā1 − M̄

−1
0 ā0

= M̄
−1
1 ā1 − M̄

−1
0 ā0 + M̄

−1
1 ā0 − M̄

−1
1 ā0

= M̄
−1
1 (ā1 − ā0) +

(
M̄
−1
1 − M̄

−1
0

)
ā0

= M̄
−1
1 (ā1 − ā0)− M̄

−1
1

(
M̄1 − M̄0

)
M̄
−1
0 ā0

= M̄
−1
1

(
∆ā−∆M̄u0

)
(In the same way it may be shown that u1 − u0 = M̄

−1
0

(
∆ā−∆M̄u1

)
)

38



A.7 Sign of (∆ā−∆M̄u0) [ijk]

Making explicit the dependence of cj on x, we denote by 0cj and 1cj the asset/liability ratio of the
jth balance sheet at points x and x + ∆x respectively and by 0uijk the displacement uijk at point x.
We calculate bijk = (∆āijk −∆x̂ijk

∑
st 0ujst) for self and siblings relations in different possible cases;

109

Effect of an equity funding on itself

If ∆x = [0 · · ·∆xij1 · · · 0]
T

(with ∆xij1 ≥ 0), we have

0cj < 1 ∧ 1cj < 1 =⇒ bij1 = −∆xij1 ≤ 0

0cj < 1 ∧ 1cj ≥ 1 =⇒ bij1 = xij1 − xij1+∆xij1
zj+∆xij1

(
lj + ∆lj −

∑
st

0ujst

)
≤ 0

(as at point x, xij1 − xij1
zj

(lj −
∑
st

0ujst) ≤ 0)

0cj ≥ 1 ∧ 1cj ≥ 1 =⇒ bij1 = −∆lj
xij1+∆xij1
zj+∆xij1

− (lj −
∑
st

0ujst)
(
xij1+∆xij1
zj+∆xij1

− xij1
zj

)
≤ 0

Effect of a credit funding on itself 110

If ∆x = [0 · · ·∆xij2 · · · 0]
T

(with ∆xij2 ≥ 0), we have

0cj < 1 ∧ 1cj < 1 =⇒ bij2 = −
(
xij2+∆xij2
pj+∆xij2

− xij2
pj

)(
lj − zj −

∑
st

0ujst

)
− xij2+∆xij2

pj+∆xij2
∆lj ≤ 0

0cj ≥ 1 ∧ 1cj ≥ 1 =⇒ bij2 = 0

0cj ≥ 1 ∧ 1cj < 1 =⇒ bij2 = −xij2+∆xij2
pj+∆xij2

(
lj + ∆lj − zj −

∑
st

0ujst

)
≤ 0

Effect of an equity funding on a higher seniority (credit) sibling

If ∆x = [0 · · ·∆xrj1 · · · 0]
T

(with ∆xrj1 ≥ 0), we have

0cj < 1 ∧ 1cj < 1 =⇒ bij2 = −xij2pj (∆lj −∆zj) ≥ 0

0cj < 1 ∧ 1cj ≥ 1 =⇒ bij2 =
xij2
pj

(
lj − zj −

∑
st

0ujst

)
≥ 0

0cj ≥ 1 ∧ 1cj ≥ 1 =⇒ bij2 = 0

109In order to limit the analysis to the sole effect of the accounting mechanisms due to balance sheet and seniority
constraints, we assume that the relation between ei and li is linear and equal for both the balance sheets involved in
the transaction, as a consequence the two cases in which ∆x = [0 · · ·∆xij1 · · · 0]T ∧∆xij1 ≥ 0 ∧ (0cj ≥ 1 ∧ 1cj < 1)

and ∆x = [0 · · ·∆xij2 · · · 0]T ∧∆xij2 ≥ 0∧ (0cj < 1 ∧ 1cj ≥ 1) are not considered. The increase of an equity claim on
the right side of the balance sheet may not bring about a change of the solvency status from solvent to insolvent: if

0cj ≥ 1, even in the extreme case of a full loss of the counterpart of the new equity claim (∆lj = ∆ej) the loss would
be fully covered by the increase in equity claim ∆xij1; as a consequence there would be no effect on the solvency of
balance sheet j. By the same reasoning, the increase of a credit claim may not bring about a change from insolvent
to solvent: if 1cj ≥ 1, even in the extreme case of zero loss (∆lj = 0) on the external asset counterpart of the new
credit claim the latter should be still fully covered by the original amount of its counterpart ∆xij2 = ∆ej and the two
amounts would compensate each other leaving unchanged the solvency status of the original balance sheet j, i.e.
∆x = [0 · · ·∆xij1 · · · 0]T ∧∆xij1 ≥ 0 =⇒ ¬ (0cj ≥ 1 ∧ 1cj < 1) and

∆x = [0 · · ·∆xij2 · · · 0]T ∧∆xij2 ≥ 0 =⇒ ¬ (0cj < 1 ∧ 1cj ≥ 1).
110In order to describe the effect of a credit claim to the right of a household balance sheet (there cannot be equity

claims to the right of a household balance sheet), just replace zj with kj in the relative expressions.
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Effect of a credit funding on a lower seniority (equity) sibling

If ∆x = [0 · · ·∆xrj2 · · · 0]
T

(with ∆xrj2 ≥ 0), we have

0cj < 1 ∧ 1cj < 1 =⇒ bij1 = 0

0cj ≥ 1 ∧ 1cj ≥ 1 =⇒ bij1 = −xij1zj ∆lj ≤ 0

0cj ≥ 1 ∧ 1cj < 1 =⇒ bij1 =
xij1
zj

(
lj − zj −

∑
st

0ujst

)
≤ 0

Effect of an equity funding on its equity sibling 111

If ∆x = [0 · · ·∆xrj1 · · · 0]
T

(with ∆xrj1 ≥ 0), we have

0cj < 1 ∧ 1cj < 1 =⇒ bij1 = 0

0cj < 1 ∧ 1cj ≥ 1 =⇒ bij1 = xij1 − xij1
zj+∆zj

(
lj + ∆lj −

∑
st

0ujst

)
R 0

0cj ≥ 1 ∧ 1cj ≥ 1 =⇒ bij1 =
(
xij1
zj
− xij1

zj+∆zj

)(
lj −

∑
st

0ujst

)
− xij1

zj+∆zj
∆lj R 0

Effect of a credit funding on its credit sibling

If ∆x = [0 · · ·∆xrj2 · · · 0]
T

(with ∆xrj2 ≥ 0), we have

0cj < 1 ∧ 1cj < 1 =⇒ bij2 =
(
xij2
pj
− xij2

pj+∆pj

)(
lj − zj −

∑
st

0ujst

)
− xij2

pj+∆pj
∆lj R 0

0cj ≥ 1 ∧ 1cj ≥ 1 =⇒ bij2 = 0

0cj ≥ 1 ∧ 1cj < 1 =⇒ bij2 = − xij2
pj+∆pj

(
lj + ∆lj − zj −

∑
st

0ujst

)
≤ 0

111In analogy with the case of small transactions, also for finite transactions the impact on same seniority siblings is
non-negative if the increase in the external-assets loss due to greater external assets is lower than the fraction of same
seniority claims not covered by total assets:

if θ(0cj − 1) = θ(1cj − 1) = 1, we have bij1 =
xij1

zj+∆xij1
∆xij1

[
1− pj

zj
(0cj − 1)− ∆lj

∆xij1

]
for equity funding, and

if θ(0cj − 1) = θ(1cj − 1) = 0, we have bij2 =
xij2

pj+∆xij2
∆xij2

[
1− 0cj −

∆lj
∆xij2

]
for credit funding,

in line with the corresponding equations for small transactions in Subsection 3.1.2.

40



A.8 Examples

A.8.1 Example 1

From the input data 112

x =





30 x141

83 x151

30 x212

40 x312

15 x432

20 x562

0 x612

53 x711

20 x732

k =




90 k2

8 k3

25 k6

73 k7

e =





10 e1

60 e2

3 e3

15 e4

63 e5

45 e6

0 e7

l =





0.50 l1
0.00 l2
0.00 l3

15.00 l4
56.70 l5
2.25 l6
0.00 l7

solving Eq. (1), we obtain

u =





−16.7 u141

−56.7 u151

−8.9 u212

−11.9 u312

−1.7 u432

0.0 u562

0.0 u612

−53.0 u711

−2.2 u732

g =




−8.9 g2

−8.0 g3

−2.2 g6

−55.2 g7

By Eq. (22) the displacement u may be decomposed as the product of M̄
−1

and ā, where

ā =





−15.00 ā141

−56.70 ā151

22.50 ā212

30.00 ā312

3.43 ā432

0.00 ā562

0.00 ā612

−53.00 ā711

4.57 ā732

and

112In order to limit the analysis to the sole effect of the accounting mechanisms due to balance sheet and seniority
constraints, we assume that the relation between ei and li is linear and equal for both the balance sheets involved in
the transaction.
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M̄ =

u141 u151 u212 u312 u432 u562 u612 u711 u732



1 0 0 0 −1 0 0 0 0 f141

0 1 0 0 0 −1 0 0 0 f151

−0.43 −0.43 1 0 0 0 0 0 0 f212

−0.57 −0.57 0 1 0 0 0 0 0 f312

0 0 0 −.43 1 0 0 0 0 f432

0 0 0 0 0 1 0 0 0 f562

0 0 0 0 0 0 1 0 0 f612

0 0 0 0 0 0 0 1 0 f711

0 0 0 −0.57 0 0 0 0 1 f732

in which there is one (potential) cycle (whose entries are underlined in red) which is also an actual
cycle.
If, after a credit-type funding transaction {∆x612 = 35,∆e6 = −35,∆e1 = 35}, we move from the
original point x to the new point x′, we have

x′ =





30 x141

83 x151

30 x212

40 x312

15 x432

20 x562

35 x612

53 x711

20 x732

k′ =




90 k2

8 k3

25 k6

73 k7

e′ =





45 e1

60 e2

3 e3

15 e4

63 e5

10 e6

0 e7

l′ =





2.25 l1
0.00 l2
0.00 l3

15.00 l4
56.70 l5
0.50 l6
0.00 l7

solving Eq. (1), we obtain

u′ =





−15.0 u141

−56.7 u151

−6.0 u212

−8.0 u312

0.0 u432

0.0 u562

−7.0 u612

−53.0 u711

0.0 u732

g′ =




−6.0 g2

−8.0 g3

−7.5 g6

−53.0 g7

By Eq. (22) the displacement u may be decomposed as the product of M̄
−1

and ā, here we have

ā′ =





−15.00 ā141

−56.70 ā151

14.50 ā212

19.33 ā312

0.00 ā432

0.00 ā562

16.92 ā612

−53.00 ā711

0.00 ā732

and
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M̄
′

=

u141 u151 u212 u312 u432 u562 u612 u711 u732



1 0 0 0 −1 0 0 0 0 f141

0 1 0 0 0 −1 0 0 0 f151

−0.29 −0.29 1 0 0 0 0 0 0 f212

−0.38 −0.38 0 1 0 0 0 0 0 f312

0 0 0 0 1 0 0 0 0 f432

0 0 0 0 0 1 0 0 0 f562

−0.33 −0.33 0 0 0 0 1 0 0 f612

0 0 0 0 0 0 0 1 0 f711

0 0 0 0 0 0 0 0 1 f732

in which there are two potential cycles (whose entries are underlined respectively with red and blue
colours)113 none of which is an actual cycle. So, moving from x to x′ despite increasing

• the overall debt
∑
ijk xijk,

• the before-the-shock leverage ratio for the 1st balance sheet (all the others unchanged) and

• the number of before-the-shock cycles (from one to two),114

would result in

• a lower overall displacement 115 as measured by the taxicab length of the displacement vector∑
ijk |uijk| (from 151.2 to 145.6) and 116

• a reduction of after-the-shock actual cycles (from one to zero).

113Despite both entries M̄[5, 4] and M̄[6, 7] are zero, the correspondent potential links are not zero given that both
x432 and x562 are not zero.
114Already in 1913 A.A.Bogdanov showed that the results of making a system more connected may be ambiguous in

terms of its vulnerability; see [8, pp. 144-146].
115The reduction in the overall displacement stems from an initial borrowing-from-Peter-to-pay-Paul effect whereby

the granting of a new credit (∆x612) from balance sheet 6 to balance sheet 1 results in an initial reallocation of both
external assets losses and (pre-transaction) displacement to the advantage of his siblings ((∆ā − ∆M̄u0)212 = 2.3
and (∆ā − ∆M̄u0)312 = 3.3 respectively), which network effect amplifies (to ∆u212 = 2.9 and ∆u312 = 3.9) and
(differently from the case of small transactions) extends to other claims (∆u432 = 1.7) not involved in the transaction..
116It may also occur that the overall displacement of the claims to a given balance sheet decreases due to

an increase of its liabilities as in the following example (which shows the effects of a funding transaction
{∆x432 = 6,∆e3 = 6,∆e4 = −6} )

x =




9.0 x132

10.0 x212

10.0 x321

5.0 x432

∆x =




0.0
0.0
0.0
6.0

e =

( )
4.0 e1
0.0 e2
4.5 e3

l =

( )
4.00 l1
0.00 l2

0.225 l3
∆l =

( )
0.00
0.00
0.30

k =

( )
3.0 k1

0.0 k2

0.5 k3
∆u =




0.47 ∆u132

0.47 ∆u212

0.47 ∆u321

−0.30 ∆u432

Here the overall displacement on the right side of balance sheet 3 decreases, despite the absolute value of the negative
direct impact of the funding transaction on u432 is higher that the positive direct impact on u132, as the latter is
amplified by the presence of a cycle; in Eq. (22) we have

M̄1 =

u132 u212 u321 u432


1.00 0.00 −0.45 0.00 f132

−1.00 1.00 0.00 0.00 f212

0.00 −1.00 1.00 0.00 f321

0.00 0.00 −0.55 1.00 f432

M̄
−1
1 =

u132 u212 u321 u432


1.82 0.82 0.82 0.00
1.82 1.82 0.82 0.00
1.82 1.82 1.82 0.00
1.00 1.00 1.00 1.00

∆ā =




−0.19
0.00
0.00
−0.11

∆M̄u0 =




−0.45
0.00
0.00
0.45
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A.8.2 Example 2

If an equity-type transaction {∆x611 = 35,∆e6 = −35,∆e1 = 35} were put in place, instead of a
credit-type transaction, at the new point

x′′ =





30 x141

83 x151

30 x212

40 x312

15 x432

20 x562

35 x611

53 x711

20 x732

given k′′ =




90 k2

8 k3

25 k6

73 k7

e′′ =





45 e1

60 e2

3 e3

15 e4

63 e5

10 e6

0 e7

l′′ =





2.25 l1
0.00 l2
0.00 l3

15.00 l4
56.70 l5
0.50 l6
0.00 l7

solving Eq. (1), we obtain

u′′ =





−15.0 u141

−64.9 u151

0.0 u212

0.0 u312

0.0 u432

−8.2 u562

−32.7 u611

−49.4 u711

0.0 u732

g′′ =




0.0 g2

0.0 g3

−25.0 g6

−49.4 g7

By Eq. (22) the displacement u may be decomposed as the product of M̄
−1

and ā, where

ā′′ =





−15.00 ā141

−56.70 ā151

0.00 ā212

0.00 ā312

0.00 ā432

24.50 ā562

−0.89 ā611

−1.36 ā711

0.00 ā732

and

M̄
′′

=

u141 u151 u212 u312 u432 u562 u611 u711 u732



1 0 0 0 −1 0 0 0 0 f141

0 1 0 0 0 −1 0 0 0 f151

0 0 1 0 0 0 0 0 0 f212

0 0 0 1 0 0 0 0 0 f312

0 0 0 0 1 0 0 0 0 f432

0 0 0 0 0 1 −1 0 0 f562

−0.40 −0.40 0 0 0 0 1 0 0 f611

−0.60 −0.60 0 0 0 0 0 1 0 f711

0 0 0 0 0 0 0 0 1 f732
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Here again there are two potential cycles, but this time one of them (the blue one) is an actual cycle
In this case the equity-type transaction, despite bringing about a reduction of the leverage ratio of
the 1st balance sheet (all the other unchanged), would result in a higher overall displacement as
measured by the taxicab length of the displacement vector

∑
ijk |uijk| (from 151.2 to 170.1). 117

A.8.3 Example 3

Finally if the funding transaction between the 6th and the 1st balance sheet were to be a collateralized
one (i.e. {∆x613 = 35,∆e6 = −35,∆e1 = 35}), at the new point

x′v =





30 x141

83 x151

30 x212

40 x312

15 x432

20 x562

35 x613

53 x711

20 x732

k′v =




90 k2

8 k3

25 k6

73 k7

e′v =





45 e1

60 e2

3 e3

15 e4

63 e5

10 e6

0 e7

l′v =





2.25 l1
0.00 l2
0.00 l3

15.00 l4
56.70 l5
0.50 l6
0.00 l7

117Here capitalization transactions show a non-monotonic effect on the overall displacement: a smaller capitalization
transaction (e.g. {∆x611 = 20,∆e6 = −20,∆e1 = 20}) would produce a smaller displacement (

∑
ijk |uijk| = 144.9)

even with respect to the original example (where ∆x611 = 0). Doing the calculation would produce:

u′′′ =





−15.0 u141

−56.7 u151

−0.1 u212

−0.1 u312

0.0 u432

0.0 u562

−20.0 u611

−53.0 u711

0.0 u732

g′′′ =




−0.1 g2

−0.1 g3

−21.2 g6

−53.0 g7

ā′′′ =





−15.00 ā141

−56.70 ā151

30.64 ā212

40.85 ā312

0.00 ā432

0.00 ā562

−20.00 ā611

−53.00 ā711

0.00 ā732

and

M̄
′′′

=

u141 u151 u212 u312 u432 u562 u611 u711 u732



1 0 0 0 −1 0 0 0 0 f141

0 1 0 0 0 −1 0 0 0 f151

−0.43 −0.43 1 0 0 0 0 0 0 f212

−0.57 −0.57 0 1 0 0 0 0 0 f312

0 0 0 0 1 0 0 0 0 f432

0 0 0 0 0 1 0 0 0 f562

0 0 0 0 0 0 1 0 0 f611

0 0 0 0 0 0 0 1 0 f711

0 0 0 0 0 0 0 0 1 f732

In this case there would be no after-the-shock cycle (det M̄
′′′

= 1).
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solving Eq. (1), we obtain

u′v =





−17.2 u141

−56.7 u151

−9.9 u212

−13.3 u312

−2.2 u432

0.0 u562

0.0 u613

−53.0 u711

−3.0 u732

g′v =




−9.9 g2

−8.0 g3

−0.5 g6

−56.0 g7

By Eq. (22) the displacement u may be decomposed as the product of M̄
−1

and ā, where

ā′v =





−15.00 ā141

−56.70 ā151

21.75 ā212

29.00 ā312

3.43 ā432

0.00 ā562

0.00 ā613

−53.00 ā711

4.57 ā732

and

M̄
′v

=

u141 u151 u212 u312 u432 u562 u612 u711 u732



1 0 0 0 −1 0 0 0 0 f141

0 1 0 0 0 −1 0 0 0 f151

−0.43 −0.43 1 0 0 0 0 0 0 f212

−0.57 −0.57 0 1 0 0 0 0 0 f312

0 0 0 −.43 1 0 0 0 0 f432

0 0 0 0 0 1 0 0 0 f562

0 0 0 0 0 0 1 0 0 f612

0 0 0 0 0 0 0 1 0 f711

0 0 0 −0.57 0 0 0 0 1 f732

Here again there are two potential cycles, one of them (the red one) is an actual cycle; overall dis-
placement as measured by the taxicab length of the displacement vector

∑
ijk |uijk| = 155.4 is higher

than that in the case of the uncollateralized funding transaction of Example 1 (145.6).

* * *
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Figure 1 shows the displacement field on the portion of plane defined by118
0 ≤ x611 ≤ 45

0 ≤ x612 ≤ 45

0 ≤ x611 + x612 ≤ 45

xother = 291

(to which the points of the previous examples belong); the overall displacement increases (after ini-
tially slightly decreasing) as we move toward higher capital points and decreases as we move toward
higher leverage points.

118With xother =
∑
ijk/∈{611,612} xijk.
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