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Abstract

We develop definitions and a theory for convergent series that have

terms of the form 1/aj where aj is an integer greater than one and
the series convergence point is less than one. These series have terms

with denominators that can be used as number bases. The series
for e − 2 and zn = ζ(n) − 1 are of this type. Further, both series

yield number bases that can represent all possible rational convergence
points as single digits. As partials for these series are rational numbers,

all partials can be given as single decimals using some aj as a base.
In the case of e − 2, the last term of a partial yields such a base
and partials form systems of nesting inequalities yielding a proof of

the irrationality of e − 2. In the case of zn, using the z2 case we
determine that such systems of nesting inequalities are not formed,

but we discover partials require bases greater than the denominator
of their last term. We prove this for the general zn and using it we

give a proof of the irrationality of all zn.

1 Introduction

Apery’s ζ(3) is irrational proof [1] and its simplifications [3, 11] are the only
proofs that a specific odd argument for ζ(n) is irrational. The irrationality
of even arguments of zeta are a natural consequence of Euler’s formula [2]:

ζ(2n) =
∞

∑

k=1

1

k2n
= (−1)n−1 22n−1

(2n!)
B2nπ2n. (1)

Apery also showed ζ(2) is irrational, and Beukers, based on the work (tan-
gentially) of Apery, simplified both proofs; see Poorten [12] for the history
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of Apery’s proof and Havil [8] for an approachable introduction to Apery’s
original proof. Beukers’s proofs replace Apery’s mysterious recursive relation-
ships with multiple integrals; see Huylebrouck [9] for an historical context for
Beukers’s proofs. Papers by Poorten and Beukers are in Pi: A Source Book

[4] and The Number π [6] gives Beukers’s proofs (condensed) and related
material. Both the proofs of Apery and Beukers require the prime number
theorem and subtle ε − δ reasoning.

Thus we have the irrationality of all evens immediately proven irrational
using a classic formula and exactly one odd; whereas, you would think that
both evens and odds could be proven in the same way. Attempts to generalize
the techniques of the one odd success seem to be hopelessly elusive. Apery’s
and other ideas can be seen in the long and difficult results of Rivoal and
Zudilin [13, 15]. Their results, that there are an infinite number of odd n
such that ζ(n) is irrational and at least one of the cases 5,7,9, 11 likewise
irrational do suggest a radically different approach is necessary.

In this paper we explore a different direction. We claim all ζ(n ≥ 2) can
be proven to be irrational by using what we call decimal sets and well known
and relatively simple properties of decimal bases: [7, Chapter 9]. We still
need the lesser cousin of the prime number theorem, Bertrand’s postulate
[5, 7], and some new, but relatively straight forward epsilon reasoning.

2 Decimals and series

We give definitions that make a connection between certain convergent infi-
nite series and number bases. Here is the idea. Every partial sum for series
of fractions is a rational number. We use the symbol .(p)k

q to designate that
the partial with upper index k has for its first digit in base q the number
(symbol) p. We use denominators of the fractions of the series as a source for
number bases. For some k, this digit becomes fixed; we designate this with
.(p)k+

q . If a partial is not equal to a single digit in the number base q, it is
between two such numbers. As all rational numbers in (0, 1), Q(0, 1), can be
represented as single decimal digits, if we can show a series convergent point
is not equal to any such single digit, then we will have shown it is irrational.

Definition 1. A plus one series is a convergent infinite series with a con-
vergent point less than one and terms of the form 1/aj with aj a strictly
increasing sequence of integers all greater than one. Partials for such sums
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are given by sk where k is the upper index; the infinite series convergent
point is given by s.

Definition 2. A plus one series with denominators aj is said to be complete
if

B{aj}∞j=1 = Q(0, 1),

where B{aj}∞j=1 is the union of all single decimal numbers formed with aj as
number bases.

As the partial sums of a plus-one series are all rational, a complete plus-
one series must have partials that can be given as a single digit decimal using
some term’s denominator. The question is which denominator is used.

Definition 3. A plus-one series having partials sk is said to be weak (k-
less), flat (k-equal), or strong (k-greater) if sk can be represented as a single
decimal in a smallest base ar where r < k, r = k, or r > k, respectively. If
no such ar exists the series is termed non-existent (k-null).

Partials of a complete plus-one series will always be k-less, k-equal, or
k-greater. Incomplete series might be k-null.

Finally, plus-one series are convergent series. They can converge to a
rational or irrational number in (0, 1).

Definition 4. A plus-one series with convergent point s is said to be k-plus
if there exists a smallest base ar that can represent s as a single decimal.
Such series are said to be k-null if no such ar exists.

Theorem 1. A complete k-null plus-one series converges to an irrational

number.

Proof. Suppose such a series converges to a rational number. Then that
rational number can be represented in some base ar as a single decimal digit.
But a k-null series has no such ar, a contradiction.

Examples

Table 1 gives examples of partial sums for various plus one series. The
telescoping series referenced is

k
∑

j=2

1

j
− 1

j + 1
=

k
∑

j=2

1

j(j + 1)
.
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This series converges to 1/2. It is easy to show that it is a complete, k-less
series. The base 10 series referenced are geometric series given by repeating
decimals. The first .1 base 10 is such that its partials can be represented by
powers of 10 given by their last term; this series converges to 1/9, a number
that can’t be represented as a single decimal in base 10; it is, then, k-null, as
indicated in Table 2.. The second .29 has partials that can be represented by
powers of ten given by their last term; this series converges to .3, a number
represented by its first and all other terms. Both of these plus-one series are
incomplete: using denominators of their terms as bases one can’t represent
Q(0, 1) as single decimals. One can only represent finite decimals in base 10,
2 and 5.

Partial Sums k-less k-equal k-greater
Incomplete .1, .29 base 10
Complete Telescoping e − 2 zn

Table 1: Example series with decimal properties.

The number e − 2, its infinite series, is a plus-one, k-equal, complete
series. We will show these properties in the next section and use them to
give a proof of the irrationality of this series.

Infinite series k-plus k-null
Incomplete .29 .1
Complete Telescoping e − 2, zn?

Table 2: Correlation between series properties and rational and irrational
convergence points.

Properties and irrationality of e − 2

Consider the series

e − 2 =
∞

∑

j=2

1

j!
=

1

2
+

1

2 · 3 +
1

2 · 3 · 4 + . . . . (2)
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As 2 < e < 3, this series is a one-plus series. We will show that it is a
complete, k-equal series.

Lemma 1. The series (2) is complete.

Proof. We simply note

p(q − 1)!

q!
=

p

q
= .(p(q − 1)!)q!.

The decimal is a single decimal in base q! as p < q implies p(q − 1)! < q!.

Lemma 2. The series (2) is k-equal.

Proof. We need to show that if

sk =
k

∑

j=2

1

j!
,

then sk = .(x)k!. That is partials can be expressed as single decimals using
the denominator of the last term in the partial as a number basis.

As k! is a common denominator of all terms in this partial sum, sk =
.(x)k!, for some x, 1 ≤ x < k!. The following induction argument shows that
k! is the least such factorial possible.

Clearly 2! is the least such factorial for the first partial. Suppose k! is the
least factorial for the kth partial. Let

sk+1 =
x

k!
+

1

(k + 1)!
=

y

a!
(3)

for some positive integers a and y. If a ≤ k, then multiplying (3) by k!
gives an integer plus 1/(k + 1) is an integer, a contradiction. So a > k, but
a = k + 1 works, so it is the least possible factorial.

Lemma 3. For each integer k > 1, there exists decimal digits x and x + 1
base k! such that

.(x)k! < e − 2 < .(x + 1)k!. (4)

Proof. By Lemma 2, sk = .(x)k!. We have, using a geometric series,

0 < (e − 2) − sk =

∞
∑

j=k+1

1

j!
=

1

k!

(

1

(k + 1)
+

1

(k + 1)(k + 2)
+ . . .

)
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<
1

k!

(

1

(k + 1)
+

1

(k + 1)2
+ . . .

)

=
1

k

1

k!
<

1

k!
.

That is 0 < e − 2 − .(x)k! < 1/k!. Adding .(x)k! and noting .(x)k! + 1/k! =
.(x + 1)k!, we have (4).

Lemma 3 implies the boundary decimals don’t change with increasing
partial upper index. In the case of e−2 nested intervals are formed. Recalling
our superscript conventions, here are some examples:

.(1)1+
2 < e − 2 < (1)1+

2 , (5)

.(1)1+
2 < .(4)2+

6 < e − 2 < .(5)2+
6 < (1)1+

2 , (6)

and

.(1)1+
2 < .(4)2+

6 < .(17)3+
24 < e − 2 < .(18)3+

24 < .(5)2+
6 < (1)1+

2 . (7)

Theorem 2. e − 2 is irrational.

Proof. Suppose e−2 is rational, then by Lemma 1 there exists a k such that
e − 2 = .(x)k!, but by Lemma 3 for some y

.(1)1+
2 < · · · < .(y)

(k−1)+
k! < e− 2 = .(x)k! < .(y +1)

(k−1)+
k! < · · · < (1)1+

2 , (8)

but no single digit in base k! can be between two other single digits in the
same base, a contradiction.

The series z2 appears k-greater

We use the following symbols:

zn = ζ(n) − 1 =
∞

∑

j=2

1

jn
and sn

k =
k

∑

j=2

1

jn
.

In this section we will use z2 in hopes a finding a general pattern.
As with the series for e − 2, we can form systems of inequalities for z2.

With upper index 3 we derive inequalities for bases 4 and 9:

(.1)3
4 < (.3)3

9 < s2
3 = .(13)3

36 < .(4)3
9 < .(2)3

4. (9)
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For upper index 4, we derive another set of inequalities:

.(1)4
4 < .(3)4

9 < .(6)4
16 < s2

4 = .(61)144 < .(7)4
16 < .(4)4

9 < .(2)4
4. (10)

Unlike the e−2 case, single fixed digits are not immediately created with
each increment of the upper index. The inequalities don’t immediately nest.
Continuing with just the bases 4, 9, and 16, we observe

.(1)5
4 < .(7)5

16 < .(4)5
9 < s2

5 = .(1669)3600 < .(8)5
16 = .(2)5

4 < .(5)5
9. (11)

Base 16 and base 9 have been transposed and, on the right, base 16 and base
4 endpoints collide (i.e. are equal). The next two iterations are

.(1)6
4 < .(7)6

16 < .(4)6
9 < s2

6 = .(1769)3600 < .(8)6
16 = .(2)6

4 < .(5)6
9 (12)

and

.(4)7
9 < .(8)7

16 = .(2)7+
4 < s2

7 = .(90281)176400 < .(5)7
9 < .(9)7

16 < .(3)7+
4 . (13)

The left and right digits for base 4 have migrated to .(2)4 and .(3)4. As
.(2)4 < z2 < .(3)4, these left and right values for base 4 are fixed for k ≥ 7.
The decimal digit for this base is fixed, as indicated by the plus sign in the
superscript for this base. The inequalities don’t nest immediately and the
nesting that does form changes.

But we do see a pattern of interest in these inequalities: this z2 series
seems to be, as indicated in Table 1, a k-greater series. We will show zn (and
z2) has this property in Corollary 1, nota bene general n. We will also show
zn is complete in Lemma 4. These properties will enable us to give a proof
that zn (both odd and even n) have irrational convergence points.

The irrationality of zn

First two definitions.

Definition 5. Let

djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is djn consists of all single decimals greater than 0 and less than 1 in

base jn. The decimal set for jn is

Djn = djn \
j−1
⋃

k=2

dkn .
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The set subtraction removes duplicate values.

Definition 6.
k

⋃

j=2

Djn = Ξn
k

We next show this union of decimal sets give all rational numbers in (0, 1).

Lemma 4. The series zn is complete.

Proof. Every rational a/b ∈ (0, 1) is included in a Djn . This follows as
abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1), abn−1 < bn and so a/b ∈
Dbn .

k s2
k Prime factorization

3 .(13)36 36 = 2232

4 .(61)144 144 = 2432

5 .(1669)3600 3600 = 243252

6 .(1769)3600 3600 = 243252

7 .(90281)176400 176400 = 24325272

Table 3: The reduced fractions (given as decimals) have denominators (basis)
divisible by powers of 2 and a prime greater than k/2.

Next we will show zn is k-greater. We use, once again, the z2 case (with
partials s2

k) to look for helpful patterns. Table 3 gives some evidence that the
reduced fractions giving partial sum totals have much larger denominators
than the denominators of their last term: 36 > 32; 144 > 42; 3600 > 52;
3600 > 62; 176400 > 72. We saw this earlier: (9), (10), (11), (12), and (13).
Table 3 also suggests a strategy for proving this. If we can show partial
sums of zn are divisible by powers of 2 and some relatively large prime, as
twice something greater than half is bigger than the whole, that would do it.
Apostol’s Introduction to Analytic Number Theory (Chapter 2, problem 21),
solution in [10], gives the general technique used in this section.

Lemma 5. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.
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Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (14)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (14) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 6. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.

The reasoning is much the same as in Lemma 5. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (15)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 7. For any k ≥ 2, there exists a prime p such that k < p < 2k.
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Proof. This is Bertrand’s postulate.

Theorem 3. If sn
k = r

s
, with r/s reduced, then s > kn, that is zn is k-greater.

Proof. Using Lemma 7, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 7, we have assurance of the
existence of a p that satisfies Lemma 6. Using Lemmas 5, 6, and 7 we
have 2npn divides the denominator of r/s and as 2npn > kn, the proof is
completed.

Corollary 1.

sn
k /∈ Ξn

k or sn
k ∈ R(0, 1) \ Ξn

k

where R(0, 1) is the set of real numbers in (0, 1).

Proof. This is a restatement of Theorem 3.

Progress has been made. Consider the following heuristic. Using Lemma
4,

lim
k→∞

Ξn
k = Q(0, 1),

with Corollary 1 we have

lim
k→∞

R(0, 1) \ Ξn
k = R(0, 1) \ Q(0, 1) = H(0, 1), (16)

where H(0, 1) is the set of irrational numbers in (0, 1).
We have then

lim
k→∞

sn
k ∈ R(0, 1) \ Ξn

k =⇒ zn ∈ H(0, 1),

using sn
k → zn with (16). That is zn is irrational.

To prove the irrationality of zn, we characterize series that converge to ra-
tional (and irrational) numbers. This is the apparently new epsilon reasoning
mentioned in the introduction. First a definition.

Definition 7. Let D
εj

jn be the set of all Djn decimal sets having an element

within εj of sn
j .
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Lemma 8. If for every monotonically decreasing sequence εj such that

lim
j→∞

εj = 0,

we have
∞
⋂

j=2

D
εj

jn = ∅, (17)

then zn is irrational

Proof. We use proof by contraposition: p ⇒ q ⇔ ¬q ⇒ ¬p. Suppose zn is
rational then, using Lemma 4, zn ∈ D∗

jn . Define

ε∗j = zn − sn
j for j ≥ 2

and set
εj = 2ε∗j .

Then

D∗

jn ⊂
∞
⋂

j=2

D
εj

jn ,

so the intersection is not empty.

The next lemma says that if a point is not a single decimal in base b then
it is inside an interval between single decimals; hence, it is trapped within
1/b of these single decimal endpoints. This follows as decimal sets partition
(0, 1) with intervals with widths equal to 1/b.

Lemma 9. If .(a)b ∈ (0, 1) and .(a)b /∈ Djn then there exists x ∈ Djn such

that

.(a)b ∈ (.(x− 1), .(x))jn,

where (.(x − 1), .(x))jn is an open set with end points .(x − 1)jn and .(x)jn.

Further for any given ε > 0,

|.(a)b − .(x − 1)jn| <
1

jn
< ε, (18)

for large enough j.
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Proof. Djn partitions the interval (0, 1) forcing .(a)b into such an interval.
The distance between endpoints in such an open interval is 1/jn, so anything
inside the interval is less than 1/jn to an endpoint.

The right hand inequality in (18) follows from the Archimedean property
of the reals [14].

Lemma 10. For zn there exists a sequence εj such that

∞
⋂

j=2

D
εj

j = ∅.

Proof. We construct a sequence εj that cumulatively excludes all possible
rational convergence points. Let

ε∗j = min{|x− sn
j | : x ∈ Ξn

j }.

We know by Corollary 1 that ε∗j > 0. We proceed inductively. For the first
iteration, let ε3 be a number such that ε3 < ε∗3. This excludes the decimal
sets of Ξn

3 at this our first iteration. Assume we can generally do this for the
jth iteration. For the j + 1st iteration, using Lemma 9, there exists a base
in Ξn

j+r, for some r such that ε∗j+r < εj/2. Set εj+1 = ε∗j+r. The procedure
gives ε values that cumulatively exclude ever more decimal sets from D

εj

jn .
Regroup the series. By Lemma 4, the exclusions are exhaustive, so

∞
⋂

j=2

D
εj

jn = ∅,

as needed.

Theorem 4. zn is irrational.

Proof. Let the sequence given in Lemma 10 be given by εj1 and let a general
sequence needed for Lemma 8 be given by εj. Suppose

p

q
∈

∞
⋂

j=2

D
εj

jn . (19)

That is suppose the intersection in (19) is not empty. As εj1 → 0 and εj → 0,
for any fixed εj1 that excludes p/q there will be an εj such that εj < εj1. This
implies that p/q will be excluded using εj, contradicting (19).
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3 Conclusion

How does this proof compare to the work of Beukers? Why do we get a
general result here and not with his techniques?

Beukers uses double integrals that evaluate to numbers involving partials
for ζ(2). He uses

∫ 1

0

∫ 1

0

xrys

1 − xy
dxdy = various expressions related to ζ(2)

and uses this to calculate
∫ 1

0

∫ 1

0

(1 − y)nPn(x)

1 − xy
dxdy,

where Pn(x) is the nth derivative of an integral polynomial.
These calculations yield integers An and Bn in

0 < |An + Bnζ(2)|d2
n <

{

√
5 − 1

2

}5n

ζ(2) <
{5

6

}n

, (20)

where dn designates the least common multiple of the set of integers {1, . . . , n}.
This last, assuming ζ(2) is rational, forces an integer between 0 and 1, giving
a contradiction. An upper limit for dn requires the prime number theorem.

These themes repeat for ζ(3) with the complexity of the expressions at
least doubling.

We don’t use integrals to generate in effect an interval, a trap, like (20),
but the relationships between terms and partials to generate partitions of
(0, 1) narrowing and leaving only irrational numbers. We use inherent and
simple properties of zn’s partials and terms, Corollary 1, to avoid intractable
complexity.
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