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Abstract
The stochastic transport equations, derived rigorously under the condition of continnum fluctuations in
the framework of an ensemble theory, both in differential and integral form, are then verified by establishing an

unambiguous connection between this stochastics and the associated deterministics.
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Chapter 1

Introduction

Aerosol transport through turbulent continua is characterized by the fact that aerosols can only follow movements
of fluid elements if they neither fall below nor exceed a certain size and weight. This is in contrast to molecular
diffusion through matter, which is often successfully accomplished by known diffusion equations. This physical
process is fundamentally different from turbulent aerosol transport. In the former case, the diffusing molecules have
an intrinsic motion between two interactions, while in the latter case, only predetermined paths are followed.

These predetermined paths must correspond to a continuum system in which fluid elements follow the collective
motions of many individual molecules moving locally apparently independently. IL.e. fluid elements, which in their
totality represent a fluctuating continuum, and their paths are abstract quantities and not points of matter.

First, a fluid and turbulent fluid continuum is defined. According to this, a purely stochastic aerosol transport
is excluded and a stochastic ensemble consideration is developed.

The stochastic transport equations, derived rigorously under the condition of continnum fluctuations in the frame-
work of an ensemble theory, both in differential and integral form, are then verified by establishing an unambiguous
connection between this stochastics and the associated deterministics.



Chapter 2

Definition of a Moved Fluid

2.1 Definition of a fluid element

At every time, space points (Z) are assigned to fluid elements in a unique correspondence. As this applies to every
space point (X) of the fluid field, the set of fluid elements is seen as a continuum. A Continuum of fluid element
points (simply called fluid elements) is considered, where a fluid environment of non infinitesimal size is uniquely
allocated to every fluid element point. Two infinitesimally neighboring fluid elements differ apart from their distance
by their velocities and not quite identical material distributions of their neighborhoods. The neighborhoods of
two nearby fluid elements overlap. A fluid element is shifted moving the material of its neighborhood. Though
the material of such a fluid element may have changed marginally after an infinitesimal time interval t., it can be
identified principally by its prior material status. As every molecule possesses its own identity, there has to be at
least an infinitesimally greater difference of material distribution to the neighborhoods of other fluid elements.

The neighborhoods exchange material with neighborhoods of adjacent fluid elements and vary their thermodynamic
state (a local thermodynamic state does not necessarily exist). Their size is not infinitesimal, because a local
thermodynamic state (if physically existent) has to be detectable at least in thought experiment. The open
neighborhoods have equally sized spherical shapes, generally. Near a solid border they are descibed by parts
of spheres. Infinitesimally adjacent fluid elements possess overlapping neighborhoods. In an e-surrounding they
move in parallel. So one obtains a fluid, which is assumed to be a dense fluctuating point set, though there
is no continuous matter distribution in Space-Time. That means it is possible to follow theoretically the his-
tory of every fluid element, though it has exchanged a lot of its initial material altering its local thermodynamic state.

The fluid is an abstract, dense set of fluctuating fluid elements, which do not generally correspond to material
points. A continuum of moved fluid elements is considered each uniquely assigned to a neighborhood and a velocity.
v, =22"% (2.1)

. .

The fluidelement first determined in space point X; and t.-time later detected at X, is identified having at time
to + te in X5 in comparison to all other points X the most similar material to that of Xy in ¢y . In this connection
it is remarqued, that parts of the individual aerosols or molecules may be identified, too. The accuracies of
the considered motion quantities are determined by t.-measurement processes. t. characterising the accuracy.
According to a process limt, — 0, the fluid elements move along trajectories that can a sufficient number of times
be continuously differentiated forming a continuum as a whole. This continuum has a velocity vector field with
rot(V) # 0 generally.! Though rot(V) has dimension [1/sec] in the laminar case it does not refer to a rotation.

2.2 The Orthogonality of rot(v) and v is a Consequence of the Moved
Fluid Continuum

A fluid continuum is characterized by

lin english literature curl(V) # 0 is used but in turbulence the name rot is more adapted as will be seen



1. continuously differentiable velocities
2. parallel velocities in an e— surrounding of a space point X

Considering without loss of generality a fluid movement of velocity V(Xp) = (v.,0,0) in a space point X, in
cartesian coordinates, the velocity is described in an e-neighborhood and parallel to the x-coordinate as follows:

. e |. T op|. T os |,
Vg;(Xo) 9 Xo 9 Xo 9 X0 Az
— ) — v v v
V(X) = 0 + . Tl Tl Ay
0 d xo ov xo av 0 Az
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The velocity components v, (X) and v.(X) osculate at the velocity v(Xy) = (vs,0,0) spatially approaching

(constant time o),

Vy(anyVZO) — vy(x07y0azo) =
Vz(x07y0az) — Vz($07y0,20) =

That means especially, that all the partial derivations by y- or z-coordinate of 1. order of v, (X) and v,(X) disappear
in the point (xo, Yo, 20)-

. Avy . sz
lim = lim =0
z—zo Az 1%, Y—=Yo Ay Xo . (22)

Xo = (20, Y0, 20)

Applying the differential quotients in the V x -operator expresssed in cartesian coordinates gives for the fluid velocity

0
= — v, ov. i
(VX V), = | 22~ ge s V(Xo) = (vz,0,0) (2.3)
BwJ - T; |§0

=
The orthogonality of V x ¥.1¥ is a fundamental quality ?> and a necessary condition for continuous
fluid flow.
In this orthogonality velocity vector fields differ from deformation vector fields.

2This relationship is not to be found in literature, although it is obvious and mathematically not very demanding.
3This is one reason why the known millenium prize question does not lead to a solution of the turbulence problem. However the
validity problem of the Navier-Stokes-equations is more fatal.So this is not a question for mathematics at first, but for physics.



Chapter 3

Definition of a Turbulent Fluid

Trying to identify the state of movement of a fluid element in turbulent fluids by a velocity v, it should be recognized,
that the state of movement is not yet determined, as the path in every space point (except in turning points) is
uniquely adapted by an infinitesimal circle segment. In the infinitesimal neighborhood of a path point the velocity
is identified by an instantaneous axis of rotation &;, and a radius vector Ty, .!

\_f’t = ‘Bts X Fts (3].)

€

In a turbulently moved fluid the fluid elements move on curved trajectories in some space time points having turning
points with &;, = 0 and a curvature vector Bte = 0. The considered vectorial motion quantities & _and r_ are
determined by t.-measurement processes, which are calculated later on by a limes process limt, — 0. A fluid element
originating from the point X, crossing X after the time t. reaches X, after a further time ¢..

o te - te o
Xo — X1 — X2

A segment of a circle is clearly drawn through these 3 points with radius vector r;_ and velocity of rotation &;_ in
X1, unless a turning point is passed through. The local state of motion can not be described by velocity only, neither
statistically nor deterministically. 2

Thus the fluid element in the space-time-point (X,t) is identified principally by the contents of the matter of its
neighborhood and state of movement expressed by &;, and r;_. In that way defined fluid elements move on suffi-
ciently often continuously differentiable trajectories. At each instant they lead to a new continuum of fluctuating
fluid elements with several times continuously differentiable velocity field. The continuum of moving fluid elements
represents the turbulent collective motion of a discontinuously spaced Matter. This is the result of the connection
between deterministics and stochastics in the sense of an ensemble theory, which is presented in the following.

The field of turbulence is described by the two vector fields &;, and Bte,

b, = T, /1y -curvature vector field. (3.2)
In addition, the results show that
1
(Bte = irot(\_f'tg). (33)

rot(V) has the meaning of a local rotation in the frame of turbulence. An infinitesimal disturbance of stationary
pipe flow leads to an change of the significance of rot(V), where rot(v) does not correspond to a rotation initially.
Whether starting motions of turbulence are suppressed, depends on an existent viscosity. These decelerations are
generally weak. The beginning of turbulent movements avoid Newtonian friction as well as pressure gradients by
means of hereto orthogonal motions.

Vortex fields in turbulence (local rotation fields will be identified with vortex fields) and radius fields may have
turning points along the paths of the fluid elements, which means & = 0 and ¥ = oco. ® In this case the velocities
are to be calculated by interpolation or extrapolation from the neighborhood. The fluid elements are accompanied
by a moving frame of &,b and G along their paths.

IThat is why turbulence can not be uniquely identified by experiments of local velocity statistics.
2This statement contradicts that of Wilczek|[8].
3The temporal and spatial neighborhood of a turning point does not have such singular properties.



Fluid elements, at a time are infinitesimally adjacent, have later moved away from each other and represent with new
neighbors a new continuum. However, since also their material environments have changed, their past and future
stay is to be determined only from the knowledge of the perfect spatiotemporal movement field. To calculate these
fields, a system of equations is needed that couples other independent fields, such as the acceleration field.
Independent Lagrangian turbulence calculations are not possible.



Chapter 4

Definition of Markov Processes with
Natural Causality

The probabilistic theory is related to random distributions of velocities @ moving from (X,t) to (X + @t.,t + t.).
These velocity distributions may get together of vortex and curvature vector fields

T=a X

| o

The transport from (¥ — t.7',t — t.) to (X,t) is addionally controlled by transition probabilities

Wt == Wt

€ €

()_é7 t’ 7?? ﬁ/)V

resulting in

fi. (R t,7) = / Wy, (X, t, 7,7 ) fo, (X — t.7,t — te, 7 )dR"|.
7“:/

Such a relation we call a Markov Process of natural causality. According to Sen [6] there is a so called Newtonian
causality in nonrelativistic physics implying the possibility of unlimited velocities. However Newtonian causality is
restricted to Newtonian mechanics and stochastic processes of physics ending with diffusion equations when applied
practically. ' This applies not for formulations of the general or linear Boltzmann Equation. In electrodynamics
the velocity of light is the limiting velocity. The Newtonian causality proves to be a limiting case of non relativistic
classical physics. Subsequently a causal Markov Process is continuously used or derived. Overarching master
equations can not exist, physically. The transition probabilities W, depend on a time quantity t. related to
continuum fluctuations of measurement accuracy according to vectorial motion quantities. For t¢ — 0 (exact motion
quantities) the transition probabillity W;_ degenerates to a d-function.

Simultaneous details of space and momentum are not possible in the context of quantum mechanics. The
Schrodinger Equation for free “quantum particles “

can be transformed into a linear homogenuous integral eqution [3] [4]
V(R 1) = i/G(i,t;f’,t’)w(Q,t’)dQ. (4.2)
The Green function

G ;X t) = <>E >‘<”> (4.3)

exp (—;(t - t’)H>

L This statement applies to the Fokker-Planck and Langevin equation. See, for example, Chandrasekhar[1]




is called Feynman kernel, too.
In the case of the diffusion equation

Ip(X, 1)

_— = _’2 X
5 DV~=p(X,t) (4.4)

an equivalent integral equation the Green function understood as transition probabillity from (X',¢') to (X,t) exists
with

p(X,t) = GX ;X tp(X t')dx (4.5)
V/
and the Green function
CERER ) = [t gk 46
. — 4nD(t—t’ A -
(%X, ¢) ArD(t —t') € (46)

Equations based on a “heat-kernel”-structure are not exact in classical physics (as well as the Newtonian mechanics).
They are usually referred to as Markov processes.

In quantum mechanics and quantum field theory natural causality is not possible because of the uncertainty
principle. In Relativity there is the maximal possible velocity, the velocity of light.



Chapter 5

Stochastic Transport of Aerosols by
turbulent Continuum-Fluctuations

5.1 Introduction

The motion of passive aerosols by turbulent continuum fluctuations is examined. The aerosoles are moved not
affecting this field. Their trajectories correspond in every e—neiborhood of a point to a circle segment passed with
the velocity

Vi, = W, X T, We, 1 Tt - (51)

The considered motion quantities &;_ and 7;_ are determined in the thought experiment by finding the successive
positions of a single aerosol moving from a point Z, after a time ¢. to #; and another time t. to &2. By these 3
points a circle segment is uniquely defined for the point Z; with radius vector ¥;, and a rotation speed &,_.

’Ft = Ttg . éte

=

(5.2)

—

Wi, — Wi, Qts

In the special case &;. — 0 and ¥ — +oo the velocity ¥, is revealed out of its neighborhood.! The aerosol density
distributions are received in a thought experiment by an unlimited number of deterministic ensemble-systems. In
every point (&,t) a continuously differentiable aerosol density distribution of the motion quantities &;, and 7, is
assigned in accordance with

fté = fté(f,t,&7F). (53)

The with t. indexed functions are automatically assumed to contain motion quantities of corresponding measure-
ment accuracies. The indexing of the motion quantities can be omitted if the functions are indexed. After execution
of a limiting process

tleiinofts(ivtv‘z”?) = f(&,t,&,7) (5.4)

f and (&, 7) are understood according to an exact measuring process. Integrating the aerosol density distribution
over the motion quantities one obtains expectation values of a aerosol density not conforming with the actual aerosol
density p.

—

< pe (Z,t) >= / / / / fe. (@, t,w - Q.7 - O)dwdrddO # Py, (%,1) (5.5)
27 J4m JO 0

A rigorously derived partial differential equation is obtained, which can be used to calculate the evolution of
the spatiotemporal aerosol density distributions. The initially unbounded number of unknown coefficients is at-
tributed to local time scaling. The abstractly formulated transition probabilities get concrete functional dependencies.

! Applying the deterministic theory this problem must be treated numerically.



5.2 The Transport as Markov Process with Natural Causality

A aerosol at location & and time t changing its velocity from %' = (&' x #') to ¥ = (& x ¥) is given by the transition
probability

Wy, = Wi, (8,4, 0,7, 7) (5.6)
with
[eelNe )
////Wte(a?,t;&,?; &7 dw'dr'dQYde’ = 1. (5.7)
0 0 4m 27w
=
ftg(i,mﬁ,ﬁ):////Wté(ai,ué,ﬁd’,ﬁ')fte(f—ch'><F’-te,é',?',t—te)dw’dr’dﬂ’d(a' (5.8)
0 0 4w 27

Continuity is required respectively of all variables of the transition probability W;_ . The sequence of velocities
ﬁ;(,ﬁte means a motion from

(T — &), X T te,t —t,@, XT, ) to (&1, x7F). (5.9)

For the limiting process t. — 0 the transition probabilities W;_ prove to be physical realizations of test functions
of the distribution theory.
Jim Wi, = 6(a, 7 &' 7). (5.10)
e—

The passive scalar aerosols precisely reproduce the motions of the fluctuation field. For the aerosol density distribution
fe.(Z,t,&,7) the following separation aproach is used without loss of generality:

fo(@— & X Tt t, & F) = G (B - & X Tt t, & 7)o (-9 x O 1, 1,0,O) (5.11)
with
/ Gy, (i’,t,wﬁ,ré)dwdr =1
0 0
/ G, (:ﬁ,t,wﬁ,ré)wrdwdr = @(:?:’,t,ﬁ, é) (5.12)
0 0
o(&,t, Q,0) = w(Z, t,Q,0) - 7(Z,t,Q,0)
=
_ - - - - [ee] oo - R
fte(:i'—ﬁﬂx('-)-te,t,ﬂ,@)=/ ft. (B — @B X P te,t,w- Q7 O)dwdr (5.13)
0 0

One obtains a transition probability W,  only depending on the directions by integrating Wy,  over the amounts
!/ !/
w'ir w, .

Wte(a?:,t,ﬁ,@,ﬁl,@)/)=////WtEGte(:T:—Q'><7""-te,t—te,o')’/,F/)dw/dr’dwdr (5.14)
0O 0 0 O

/000 /000(5.8)dwd7" (5.15)

fte(fat’ﬁ»(:))://////Wtefte(i—(ﬁ'><F’~t€,t—te,C/,F')dw’dr’dwdrdﬁ/dé/ (5.16)
0 0 0 O

The integration

gives

= | f;.(#,1,Q,6) = //Wtjte(df T <O et —t., @, 0)dY a6’ (5.17)
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In the integrand f,_ is developed around & and t:

o _ VR of
Fo (@ - 081 1,06 = F, (#.0.0.6) g e [te

—/ —/ —
+7Q x O -V, +0()] (5.18)
This leads to

R — —/ —/ p—
Jin Jon We T2 09 6 T,

. ) ot o @?’ R . ., o (5.19)
//Wte(a?,t,ﬂ ,0,Q,0) 'TE['Tf +7QY x O -t Vf, +O0()]dQ dO .
47 27
As - o,
tlimo W =6(2,0;2,0) (5.20)
e
~ Jin Jor We Fr.d8a® —F, 0
lim 24mJ2m " tel te t _ 0 +0 x O VT . (5.21)
€—0 € TR 8
Furtheron
P /= —
w dQ dO —
1% f47T f27\' tifte fte (522)
€ € TR

is called exchange-term.

5.3 Calculation of the Exchange-Term

Exchange term dependencies of scalar products 0.0 and @ -6 are taken into account istead of individually
- - -
depending directions 2, © and ©, ® demanding the following relation

[ Y A ~ o ol o> o l— o) ol —
Jor Jin Wt f2,d2dO — o — lim Jor Ji Wi (2-92.,0-0)f, d2dO — f,
! )

lim (5.23)
e—0 €-TE €e— €-tg
The following transitions

TR = const — tE:tE(H,t ﬁ,é)
_ D e et . L (5.24)

W (2,t,9,0;Q,0) — W, (- @ ®)

are regarded. Moreover, a separation of G- 0 and 6 - 6’ is asumed:

W, (9-9.6.-6)=1,. (0 Q) M (6 -0). (5.25)

Functions of the unit vectors € and © are presented by a complete orthogonal function system representing an
extension of the spherical harmonics called turbulence functions.

+oo  +I
Te. (& => > Z Ftotmn (&, Qumik (2, ©)
1=0 m=—1l k=—oc0
too A (5.26)
=> > Z Ftotmi (@) Q11 (2, ©)
1=0 m=—1l k=—c0
82 ’ )
N Sl ol ol o = forl=1 =
/ Qunk(§,8)Q (6, )i a@’ — § 21 forl = andm=m (5.27)
or Jan 0 else
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with

Qimi (2, 0) =P, (Q) Hy,(O)
H,/(©)H;(6)d6

. 2w for k’=k
27 0 else

Hy(©) =¢i*?

~—

The product Q- ﬁl in the separated exchange function V4, is developed by spherical harmonics.

m=-+I
(R Q) = ZVHPI cos( Zvﬂ 3" P8P, (6)
m=—1
with
lim V;, (€ - ) =5(¢3,9)

te—0

I
The product ® - © in the separated exchange function My, is developed by functions Hy.

k: “+o00
-/ o - -/
M, (© -©) ZM,, rcos(kB) = Z My w[He (O H; (©) + H_ (6 )H* . (
k=0
with
cos() =5 [Hi(& V() + H_1(8'VH? ()] = ¢/~ 1 = h(0'~0)
6’6 = cos(8) = cos(0' —0) = [H1(6)H (€) + H_1(6)H" ()] = ;[ i(0'=0) 1 mi(0'=0)]
Jim Mg, (6. 6)=456,8)

—

/ W7, i1 a6 = Vi (68 - 63) - M, (8- 6)7,. dS3 a6’
47 J 27
m=-I1 k “+oo ,
—/ / {Zvu 3 P ()P, (). - Z My [Hy (6 ) H} (8) + H_ (6 ) H™
47

m=—1
4+oo  +1

Z Z Z Fteimpr (@, ) P, (2 )Hk(@')}dﬂ aé’

=0 m=—lk=—c0

I A7 H = -
=D Vias—r— D> P> My i 27 fy 1k (@,1) H (O).
=0 2+1 m=—1 k=0

Finally the exchange-term results in

~ 1 =) —
Jin Jon We.Fr 5 d6 T,

lim
e—0 €
o (Vi My 2w —1)_
. tel 5717 tek — 2
=lm» > Z st oot (&) P () HE ()

=0 m=—1 k=0
+oco0 4+l H4oco

_Z Z ZT”"flmk z tP)lm( ) (é)

=0 m=—1 k=0

With the exchange coefficients

T, = lim (Veaaiia Mear2m — 1)

e—0 €
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(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)



the transport equation

8f +oo  +I .
St T x O - ;m;lk;w Yk f i (T 1) P () Hy (©) (5.35)

is achieved. Further on it is shown that in Y;; the index k may be skipped.

5.4 Calculation of the Exchange-Coefficients T;

Considering an overall closed volume range V the aerosol number in the entire volume remains constant if no
absorbtion is assumed.

total number of aerosols = / / FdQdOdV = const. (5.36)

//M/zﬂfdﬂd@d\’ //M/ZW—Jr*Qx@ Vf]dﬂd@dV Yoo - V=0 (5.37)

and thus

. (5.38)

Getting an overview over the exchange function My, the essential relations are presented again with the following
equations:

k=+oc0
M, (8- 6) = ZMt weos(kp) =+ Z My, i [H (&) H}(6) + H_1 (8 )H* ()]

cos(k) = ;[Hk((% VHL(©) + H_ (8 ) ()] = S [+ ~0) 4 ik -0
6’ -6 = cos(8) = cos(0 — ) = 1[H1<®> 1(6) + H_1(8")H",(6)] = i[ HO7=0) 4 g=HO-0)]
lim M, (O ©) =5(6,0)
e—0
Hk/( {27r fir k’=
2n else
M, (é 0) = Zk o M¢_r.cos(kB) only takes values essentially different from 0 in an e-neighborhood of 3 = 0, such
that @ - © = 0s(B) = 1 — O(&?) is sufficient. =
2 - Mtek =
+7 +7 ) (5_39)
MteCOS(kJB)dﬂ = Mte(l - O(E))dﬁ =27 - Mte() - O(E )
On the other hand
k=too ’ ’ ’
My, (68 / S My [Hy(O)H(8) + H (6 H" (8))d6 =27 Myo=1.  (5.40)
27 2T L—0
is valid. =
lim My, = My o = L (5.41)
fo3p ek T M0 = o '

The calculation of the exchange coefficients is not influenced by M;_. The Y-values are given by

87 4
(VtElMtekTH - 1) — 7T, = lim (Vtelm - 1).
te te—0 te

le = Tz = tthO (542)
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The transition probability is outlined by Legendre-polynomials respectively spherical harmonics:

m=-+1
Vte Q Q ZVt lPl COS ZVtE Z le le )
m=—1 (5.43)
cos(9) = ﬁ a9 =
On the other hand is
o e
lim V; (2-Q)=46(Q-Q)
te—0
- X2 + 1 et o9 (5.44)
5(Q-Q)= 2 > Q)P (9 = l; B see(817).

Vi, (1) = 0is only in the range pu € [1—¢, 1] essentially different from 0. So the Legendre polynomials are approximated
by

dP
Pl(u)zl_jh'g*O(EQ) e=1-p

d
dP,, I(I+1)
—| = 1) Ppb=1,P, =
—
(141
P = Py - (B - P) D o).
Using
+1
P Prdu = 6y 4
B VPrdp = 0w o (5.46)
follows " ( )
(l+1 2
Vi, Py = 2Vio — (L + D)Vao + 0V = — = V4. (5.47)
ot teo = I £0 3 T oo
Furthermore is
/ Vi (- 9)dG = [ Vi od® =4anV, =1
n in (5.48)
1
- ‘/tEO = -
47

as Vg, for tc — 0 degenerates to a d-function. That is why the V;_; are expressed by V.1 and the determination
of V1 remains to be calculated. We set

(Ve 3F — 1)

. € 3 —
ll_I% — ¢. (5.49)
Multiplying equation (5.47) with 27 leads to
iy l(1+1) Ar (1 +1)
— Vi =47V o — 4 Vi — Vi 5.50
ol 1t TVieo — AT t.o+ 3 B tel (5.50)
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Le.

Ve —1= v -y = o) = 1+ 0@) (5.51)
_—
T, = i ;_ 1)( ¢ = const. (5.52)

Now the equation of turbulent aerosol transport is written

1 +oo  +I +o00

%{JﬂﬁXé'V?:_*Z > > l(l+1)flmk( t) Pim () Hi (©) (5.53)

=0 m=—lk=—oc0

the coefficient > = replaced by e . A more complicated dependency of tg = tg(Z,t, ﬁ7 é) possibly remains. Maybe,
physically justified sunphﬁcatlons lead to practical solutions.
The total derivative with respect to time gives

d— +oom=+Il —+oco . . —+1 . .
%f( Z Z Z dtflmk t)Pim (2) Hi,(©) Z’Yl Z Z Fimie(8,1) Pi () Hi,(©).
=0 m=—lk=—0c0 m=—l k=—o0
(5.54)
The time behavior of the single modes are obtained by
i i
dtflmk( ) = flmk7 Smn(t) ~ 63713(? 1) (5.55)
E

—

The greater the order 1 the more powerful is its temporal decay. The function development can be terminated
with the first order, since, as shown, such an approximation approaches asymptotically the exact solution with the
distance against assumed sources and the time.

5.5 Reconstruction of the Transition Probabilities 1,

The transition probability ’thmoﬁlﬂz , an aerosol changing its motion pair of directions (ﬁ, (:)) at the times tg, t1, t2
from (ﬁo,éo) via (ﬁl, él) to (ﬁg, ég),

— —

(ﬁ())é 1781) -
2792)

results out of the product of the single probabilities of the pairs of directions (vortex vector and radius vector direction
of motion in a circle segment). The graphical presentation is meant symbolically because such a pair of directions

does not compose to an overall direction. ﬁi is always orthogonal to éi A vectorial overall direction of ﬁi and éi
has no physical meaning in the 3 dimensional space. 2

Wi 01092 = W% (Qo- 1,00 - O1) - Wee (1 - D2, ©1 - O2) (5.56)

te
2

2@, © would make a single direction vector in a 4-dimensional space. The longitudinal fluctuations in the 4-dimensional space should
accord to turbulence in the 3-dimensional space.
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The probability , that a aerosol changes its pair of directions within a time ¢, = ¢ - tz from (£, ©g) to (s, ©5), is
obtained by

Wy, (Qo - 95,0, - 6,) = / Wi (@0 1,60 - ©1) - Wee (@1 - 2,01 - ©,)d 1 d61. (5.57)
27 J4rm
The evolution coefficients of the transition probability are available for sufficiently small e
= € - Tl 20+ 1 1
te ) S 1 - — .
WTZ { + 5 } P (5.58)
and therefore
+oco + 00
— 2 o o o e-Ty|20+1 1 = o= 1 S = = =
g (0,80 81) = 3 {15 bl S An(@0P(org 3 IS0+ (81, (B)
(5.59)
respectively
+oo +1 +oo
~ .4 o Y 20+1 1 N | L L
Weg (6 612, 61:62) 5 {1 [ L Y P (6h)-5 3 [HL(62) 17 (61) +H-(B) (6]
=0 m=—1 k=—o0
(5.60)
Integrating (5.57) one obtains
400 +1 +oo
T €T 2l+11 1 S = < =
e (6o 606 = 314 g ¢ 2 Pl in(6ia)y 3 (@0 Hi(6:)+H-1(E0)H2,(6:)]
(5.61)
Using n intermediate stages W;_ is expressed by an integral over the product of the single transition probabilities.
Wt 01, —n = Wts (€ -1,80 - 01) - Wte (19,86 )“"Wtie (D1 00, 0,1 0y) (5.62)
We, (€0 - G, 00 - © / / / / / Wie - Wee ... W d21dO ...dS2,_1d6, 1 (5.63)
27 J4rm J 2w J4n 27 J4r n n n
W (6.6.6. 6 T 20+ 1 1 1 I 1 = 1 =
Wi (2-2,0-0 —nlimooz{ = l} 4—7: Z Pl () P (1) - - 2 > [Hy(©)H(©) + H (6 )H",(©)] (5.64)
m=—1 k=—o0
For n — oo arises
YRR
lim {1 + < l} =Tie (5.65)
n—oo n
and using (5.63)
=
— ﬁﬁ/—, —»/_+°O Tlezl“’l 1 = YN N
Wi (@-9,6.8)= l;e Elplm ) Pin () - 5 k;w[Hk(@ VH;:(©) + H_1(© )H=(©)]|  (5.66)
Choosing € = m the exchange function Wts may be understood in the dependencies
E
Wi, = We, (#,1,9-9.,8.6) (5.67)
and
W (7,6,9,0,0.8)~ W, (7,193 0,6.6) (5.68)

is given, too. =—

7, (i,ﬁ,(:),t)z/ W, (8,1, 0,6,0 .67, (X —t. .70 x 6,08t —t.)df¥ a6’ oo
€ 27 J A € 569




Chapter 6

Verification that the Stochastic Aerosol
Motions occur through turbulently moving
Continua

6.1 The Relationship between Stochastic Aerosol Transport and known
Fluid Dynamics.

Introduction
In this last chapter, it will be shown that the stochastic aerosol transport in terms of an ensemble theory can indeed
be assigned to turbulent continua characterized by fluid elements

.{;te = Qte X Fte

Separation of vectors & and 7 in magnitude and direction corresponding to (5.2) is not needed now. As with
aerosol transport, the term

lim ff: fg, Wtsftled(;jldfy - fts

te—0 te

= F(&,t,3,F) (6.1)

turns out to be the key to the problem. F is the exchange term of ¥ and & not integrated out with respect to
vector amounts as in (5.22).

Turbulently moved one phase fluids are examined considering statistical deliberations and its deterministic coun-
terparts. That a linking of deterministic and stochastic theory may be available and further more that out of this
connection additionally important (sometimes otherwise not known) relations arise for deterministic formulations, is
shown in the following.

The Transition: Stochastic Theory — Deterministic Theory

Every space-time-point (&,t) is assigned a continuously differentiable fluid element distribution over the motion
amounts &J;, and 1, according to

fte = fte(iat7“‘_j7f)- (62)

For indexed functions with ¢ , it is automatically assumed that the dependent motion quantities (&,r) are

assigned to a t.-measurement accuracy. The indexing of the motion quantities may be omitted in the functions if
the functions are accordingly indexed.

After an execution of a limt. — 0 process, such as

t1€1£>n0 fi. (&, t,0,7) = f(&,t,0,7) (6.3)
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f and (&, ) are understood as results of an exact measuring process.
The change of motion quantities in point (&, t)

fi. (X, t,6,7) = /Wte (%, t,8,7,&" 1) - fr,(¥ — A%, t —t., &, ¥)dd dv’ | . (6.4)

These equations characterize stochastic turbulence of the continuum in the frame of an ensemble theory and represent
a Markov Process with natural causality. (This is a definition of the author.)
ft. is developed in (6.4) until the 1st order around (X,t) =

oft,
ot

fi. R =A%t —t. & )= fi.(%,t,&,7) te— ARV (R 1,d,T) 4+ O(t>2) (6.5)

with f{ = fi. (%,t,&', ) and one obtains

of} - = LW fld& Y —
[ [ 4G9 Jastar + 0u = Sl S lE A= f. (65)
limt. — 0 applied to (6.6) leads to
af . T f; fg Wteft/eddj/dfv - fte
E—i—werf_tlelglO S . (6.7)
The right side must contain the characteristics of the turbulent fluid.
Wl ds Y —
Jlim JeJa teftft DT — Ji _ F(&,t,3,T) (6.8)
— c

F has to be chosen such, that the deterministic vortex equations result under the influence of the assumed
acceleration field. Thus one obtains

of

ot

If we restrict ourselves to a single system of the ensemble with the identifier v in a space-time point (&, t), which

has exactly these movement sizes &z ¢,y and Tz 4, in this system, then the distribution function f degenerates to

a é-function with respect to these movement sizes . &g,,,) and T'(z,,) are not vector functions but constant vectors
in (&,t), whereas &(&,t) and 7(Z,t) represent spatiotemporal fields in dependence of (Z,t).

+&xF-Vf=F(&ta,7). (6.9)

f(£7ta‘:’7f) — 5(Q(i,t;y)7f(i,t;u);“j7f) (610)

and

F(Z,t,6,7) — =

' (V X (_i)(:z,t;u) 6(“3(:5,75;11)’ F(:‘E,t;u);(“_jvf)a (6]‘]‘)

as will be shown in the following.

IThe test functions otherwise used in distribution theory have an immediate physical meaning in this context with the formulation of
the transition probability density.
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The equation for stochastic propagation in terms of an ensemble theory thus degenerates to the following equation,
from now on called key equation.

0 - 1 5(5_15.1,) -
— 4+ Bzt X T gy V — = =2 (VX Q)zen] 10=0] 6.12
<8t + (@) X T(@ ) 3 [”(Zau;u) (V x @) @,t0) (6.12)
For this d-function applies
// 5((:5(53,75;,/),F(57t;u);u7,?)du7df: 1 (613)

Definition of the operator E|...]:
From the vector ‘&(i,t;u) respectively the scalar function value f 3 ;,,) which is defined in the space-time point (Z,%)
of the system v, a vector function or a scalar function is obtained by the operator E, if a corresponding field exists
around the point (&,t)

E{A@M] = A(&, 1), E{f(i’t;y)} = (&, 1). (6.14)

The Operator EJ...] brings this functionality to “life‘.
Accordingly the following relationships are noted:

[1
A&
8l
<

!

1
/g
81
N

[

- (6.15)
E\Wig )@ t,u)] = w?(X, HF(X, 1)
1[G@ o) o 1 &(2,1) = .
El 5 = v . == v t
Deterministic Equations of Turbulence
From the general momentum equation
ov L Sve =

the special momentum equations, Navier-Stokes equations, are questioned by the author for the description of
turbulence phenomena for several reasons,
the vortex equation? may be developed using the V x-operator

%@—6”9“3)—%6@:0. (6.17)
The relations between deterministic and stochastic description is established when the known deterministic vortex
equation can be reconstructed from an associated stochastic equation of the ensemble theory. In the following the
method is presented developing the dual pair of deterministic vector equations from the key equation (6.12).

2 . . . = 1[G@) e -
<6t + Wz, tw) X L(@,t0) V - 5 |:w(25 ) : (V X q)(i,t;u):|)6 =0.

In this situation the vectors may be pushed before and after the differential operators. The Term

1 "35 v =2 -
2[ S (Y x ) s t;u):|5 (6.18)
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guarantees the finding of equation (6.17) and its dual one. It is

v9iwlr (6.19)
and setting
5 = \7 X (:J (620)
this results in
r|a. (6.21)
Such & and 1 are linked as follows? .
. a
r= ek (6.22)
=
with 0 = 0(&(z 1), F(@,t0); @, T)
= N = = = = = Jj(w tiv
w(i,t,u) X r(m,t,v) Vi = _r(w,t,u) X w(w t;v) Vi = _w(m,t,u) V x r(m,t,u)(S == - wg V x a(m t 1/)(S
(Z,t;v)

ar 2 9 2
ot W&, ;) W@, i) 2 | Wizt
Wz v 0] - = - 1 —, —
= éw,t, L. (g(w(i,t;u)(s) —Vx (a(iz,t;v)é) -5 [(V X q)(iat;V)} ) =0 (6.23)
Wiz tw) t 2
d,. 11,2
— a(w(m’t;y)& V x (a(w t V)(S) — [(V X q)(m,tyl,)} =0
and 5 )
= / / {&(Q(my)a) — V% (@@)0) — 5 [(6 x Q)@M} 5} dadr = 0 (6.24)
7o
is obtained and since integration and differentiation are interchangeable in order, it follows that
0. - . le [
&: w(:i,t;u) —VxE a(@"t;y) — §V X = q(:if,t,l/) =0. (625)
Now we have the first of the dual turbulence equations
. 1.
%Q—Vxé’—§qu':0 (6.26)
, accordingly
0. <= . ~

Hereby the connection of stochastics and deterministics is achieved. From the key-equation above a second
equation, the dual one, may be derived.
Back to the initial equation (6.12)

Simple conversions give

0 - r T, t;v - = - r Z,t;v) " L(&,ty 1@ T, t;v = i
e <r(£,t;u) ‘ r(zw )5> F Fa ) - VX (G )0) — — g )5 [wéw L (V x OI)(:ﬁ,t;u)} 0=0
(

ot r(2ii,t;z/)

1) + 6 X (Q@,w)d) —

. 0 T(z,4:0)
— (&)

3Symbols as w, r,a,v etc. always mean amounts of the corresponding vectors.
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Using the curvature vector field of the fluid trajectories b= T% the equation is written

0 - — . 1- Jj(i’,t;u) = -
Ew@m®+vxW@w@—immwﬁgzwvxmﬁwﬁ=0

and applying the operators = arises

— g - =, - 1- @z R = - s 1=
= s \P(&,t;v) w(i,t;u) — 5 P(&E.tv) Qm ! . q (&,t;v) war =
5 (Ba.)8) + V x ( 5) = 5b E50) (V% ) (z.000 | diSd
rJo Y@, tv)
respectively
0

=i S | s
az[b(ivt;y)] + V x :[W(it;y)] — == [b . (*2 . (V X Q)(E,t;v)):| =0.

0. - 1
0- < o 1o]lw =
L. b
V:wX§,a:VXW

The term

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

leads to removable singularities in space-time-points (X,t) if & = 0 and b = 0 occur in the fluid-element trajectories.
In this case the whole term is calculated from its surroundings. The same shall apply for the calculation of the

velocity V.

These matters are to be discussed in connection with a statement of a complete system of equations of deterministic

turbulence, which will be done in another paper.
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Chapter 7

Summary and Outlook

Aerosol motions in a turbulently moving continuum are studied assuming that they accurately describe the trajec-
tories of individual fluid elements due to their size and weight. These movements, which are actually deterministic,
were considered stochastically in the sense of an ensemble theory. After the consequent derivation of the aerosol
transport equations, two coefficients (&, ¢, Q, @) and tg(Z,t, Q, é), which are still very complicated in their depen-
dencies, remain. Simplifying model assumptions can lead to correspondingly simplified coefficients. Furthermore,
the function development can be terminated with the first order, since, as shown, such an approximation approaches
asymptotically the exact solution with the distance against assumed sources and the time.

0f & = o 1R E X+, L L
Uinixe.vi=—Y Y 3 7 0P @H(E)
1=0 m=—l k=—o0

7o (%,6,6,1) = / W, (@.,6,8,0, 6], (% — t. -7 x 6,668t — 1.)dsY d6’
27 J4am
W, (6.6.6 / ™= 2l—|—1 1 1 & 2/ - 7 =
Wté(ﬂ . 7 Z Y€ ;lplm —le ) . 5 k; [Hk(e )H;(@) + ka(e )Hik(Q)]
T, = l(l * 1)C, ¢ = const

The integral form of the transport equation with its explicitly formulated transition probability indicates the
possibility of using Monte Carlo methods for its numerical evaluation.

It is probably relatively difficult to experimentally confirm the relationships presented. Therefore, the connection
between such a stochastics in the sense of an ensemble theory and a deterministic fluid dynamics is established.

feo (B,t,8,7) = //Wtei t,&,7,& 7)) fo (2 X7 te, &7t —te)dw di
i
0., o - lg_ -
o0r <o - l1olw =
._ .. b o
v:wxb—z,azvxw, vliosLlr

The result is a dual pair of deterministic equations of turbulence. In this respect, the desired goal is achieved.
However, this pair of equations is not yet complete. The completion happens in a further paper, where then the whole
system of equations represents a geometrodynamics of turbulence. I.e. the whole system of equations consists of vector
fields of velocities, vortex rotations, their curvature vector fields and non-conservative accelerations.

22



Chapter

Appendix

8.1 Legendre-Polynomials

The Legendre-polynomials are defined within the interval [—1,+1] by

1 4

n =
They represent a complete orthogonal function system with

/ " Po(2) P (z)dz = {%{il form =n (8.2)

1 0 else.

Every continuously differentiable function f(x) defined within [-1,4+1] can be developed by Legendre-polynomials
according to

= Zfzpl(ﬂf)- (8.3)
1=0

The f; are the evolution coefficients. A presentation of the § — function by Legendre-polynomials is obtained by

=0

Important recurrence equations are

(n+1)P,y1 = (2n+ 1)zP,(z) — nP,_1(x)
P, i (x) —xP,(z) = (n+1)P,(z) ,n=0,1,2,... (8.5)
(1—2*)P.(z) = nP,_1(x) — nxPy,(x).

An integral representation of the Legendre-polynomials is obtained by

P,(z) = i/oﬂ(x + V22 — 1cos(p)) de. (8.6)
Owing to |z + Va2 — 1cos(0)| = |cos(8) + isin(0)cos(0)] < 1
|Po(z)] <1 (8.7)

follows. These polynomials have their maximum for x = 1, particularly

P(1)=1. (8.8)
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is proved by complete induction.
Proof :
1.Pj(1)=0

Assumption:

2.P)(1) = ntl)

=

3.P,. (1) = {2t wegen (85) Pl (1)—Pi(1)=(n+1)P,(1)  qed.

n

8.2 Spherical Harmonics

The Spherical harmonics [[7] page 224] represent a complete orthogonal, complex function system on the spherical
surface

= o (=sin(9)™ —m)1\ 2 dHm(cos?d — 1) CAsin(9)T™ I 2 A (o2 — 1)
le(ﬂ)zezmgo( (1)) ((l )') d ( 9 —1) —elmw( (1)) .((14_ )l> d ( 9 —1)

12t (I +m)! (dcosd)i+m 12t (I —m)! (dcost)i—m
(8.10)
with
Pom(2) = ()" P}, () (8.11)
and
/ A5 Py (B) P () = 110 (8.12)
i U'm im - llmm2l+1 .

All continuously differentiable functions on the spherical surface f(2) = f(6, ¢) can be developed according to

oo m=+I oo m=-+lI
FO =3 fnPu® =D D" funPin(D) (8.13)
=0 m=—I 1=0 m=—1

the fi,,, representing the evolution coefficients. The Py (€3) being complex to Py, () f(2) can be alternatively
considered
The spherical harmonics for [ = 0,1 are

Py =Pj, =1
P, Q) =2"2¢ ¥ sin(v , Pr = 272" gin (Y
() =2~he ain(0), Py, = () o1

P1o(92) :Pf’o(ﬂ) = cos(¥) = P,

(
Pii(9) = — 27 2e¥sin(0), Py (9) = —2"7e %sin(v) .

The connection of spherical harmonics and Legendre-polynomials is obtained by

P =Py =P, (8.15)
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Furthermore the addition theorem

’
—

Picos(@) = S Pun(§)PLu(6),  cos() =6 -6
The §—function depending on the spherical harmonics may be stated by

2l+1 m=-+I

59,9 )=

> l+1 R
P)lm Z Q Q)

=0 m=—I

8.3 Turbulence-Functions

(8.16)

(8.17)

Functions of the unit direction vectors € L © are represented by a complete orthogonal function system meaning

an extension of the spherical harmonics. We call them turbulence functions.

Qimk (€, ©) =P,,,, () Hy(O)

P, () spherical harmonics
~ N 2r  for k’=k
Hy (8)1;(6)d6 = { X
o else
Hy(6) =™
cos() = -0

with
ﬁ = = =k
/ lek(ﬁ, é)Qka(ﬁ,, é/)dﬁ/dé/ _ {21+1 for | U'sm m's k k
27 J4m

0 else
Such, suitable distribution functions are described by

+oco  +1

fo(@1,9,0)=>" > Zflmkwtczlmk<ﬁé>

=0 m=—1lk=—00

+oco  +1

f Z Z ]Dlm ﬁ Z flmk CC t Hk((':j)

=0 m=—1 k=—0o0
Die d—function depending on the turbulence functions is expressed

m=+1 N 400 ,

= —' & 20+1 1 S
3(92,2;6,6 Z > Pn(@F;(Q) D —Hi(O)H(®)
m=—I c—=—00
and such
. _', _‘ _’, 1 o] L +oo ,
0(Q,2;0, 8—2 (2l+1)PR, Q-Q)kzz_ooexp(zkz((%—@)).
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(8.22)
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