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Abstract. “Every natural number, with the exception of 0 and 1, can be written in a unique
way as a linear combination of consecutive powers of 2, with the coefficients of the linear
combination being -1 or +1” From this Theorem, four fundamental properties of odd numbers
are implied: the conjugate of an odd number, the L/R symmetry, the transpose of an odd number
and the octets of odd numbers. These concepts are used to obtain a classification of odd numbers
and an algorithm for finding the factors of composite Fermat numbers.

1. Introduction

In this article, we start by proving the Theorem: “Let IT be an odd number other than 1, and

{_Ilnlﬂ Is the integer part of _Ilnl;[ e R . Then IT can be uniquely written in the form
n n

v-1 .

M=2"+2"+3 2, veN, v+l= H:]—I;} , B =%1i=012,..,v-1" (Theorem 2.1). It’s
i=0

easy to show that a Theorem of this kind doesn’t hold for any other natural number different than

2.

The main difference between our Theorem and the known arithmetic systems (binary, decimal
etc.) is that the coefficients of the linear combination can take the negative value. These negative
values highlight two properties of odd numbers, the “conjugate” of an odd number (Definition
2.1) and the “L/R symmetry” (Definition 3.1).

Another property of odd numbers is that of the “transpose” of an odd number (Definition 4.1).
The transpose of an odd number can be defined in any arithmetic system and its value depends
on the system used. However, the main mathematical object to which we come to, “the odd
number octet”, is defined from a combination of conjugates and transposes of odd numbers
(equation (5.1)). Thus, the odd number octet emerges only by using Theorem 2.1. Using these
notions, we obtain a categorization of odd numbers and an algorithm for finding the factors of
composite Fermat numbers.

2. Odd numbers as linear combinations of consecutive powers of 2
We prove the following Theorem:

Theorem 2.1. Let IT be an odd number other than 1, and {_Inl;[} is the integer part of _Ilnl;[ eR
n

In
. Then IT can be uniquely written in the form



v-1 .
N=2""+2"+> B2, (2.1)

i=0

veN, V+1:{In—n] L =%1i=012,..,v-1.
In2
Proof. For IT=3we have v+1= Lln_ﬂ = v =0 and from equation (2.1) we obtain
n

N=3=2"+2",
We now examine the case where v e N = {1, 2,3,...} . The lowest value that the odd number 11
of equation (2.1) can obtain is

M, =M(v)=2" 42" -2"1 2" 2 2" -1=2""41, (2.2)
The largest value that the odd number 11 of equation (2.1) can obtain is

O, =M(v)=2""+2"+2"1 42" 2+ + 20 +1=2""2 1. (2.3)
Thus, for the odd numbers IT = H(v,ﬂi) of equation (2.1) the following inequality holds
I, =2""+1<I(v,B)< 2" -1=11,,,. (2.4)

The number N (I1(v,4,)) of odd numbers in the closed interval [ 2+ +1,2"** ~1] is

_ . 2V+2 _1 _ 2v+1+1

— Hmax Hmln +1= ( ) ( )
2 2

The integers £,,i=0,1,2,...,v -1 in equation (2.1) can only take two values, g, =1, thus

N(I1(v,3)) +1=2". (2.5)

equation (2.1) gives exactly 2" =N (H(v,ﬂi )) odd numbers. Therefore, for every v e N”

equation (2.1) gives all odd numbers in the interval Q, =[2"*,2" .

From inequality (2.4) we obtain
2" H1<TI<2"% -1
2N <2 I<TI <2 1< 2
2" <TT< 2"
(v+1)In2<InTI<(v+2)In2

from which we get

LULLIE PP
In2 In2
and finally



v+1:H‘]—ﬂ. 2.6)

For T =1we have v+1:[||rr:—ﬂ:>v:—l¢N.

We prove now that every odd number TT =1 can be uniquely written in the form of equation
(2.1). We write the oddITas

v-1 .
M=2"+2"+> B2
i=0

L =1%1i=012,.,v-1 (2.7)
v+l= [In_l_[}

In2
and

v-1 _
M=2"+2"+> 7572
i=0

7 =%1i=012,..,v-1. (2.8)
+1= |:In_Hj|
In2

From equations (2.7), (2.8) we get
(:Bo_70)'20+(ﬂ1_71)'21+(ﬂ2_72)‘22+---+(ﬂv71_7v71)'2%1:0
S =11i=012,.,v-1

7, =11i=0,12,..,.v-1

i€{0,1,2,..,v-1}

(2.9)

If, in equation (2.9), there are i e {O,l, 2,...,v—1} such that g, =y, and let k be the smallest of
them, dividing by 2**we get an odd number equal to an even number. So, it follows that
p=rVi=012,.,v-1. 1o

In order to write an odd number IT#1,3 in the form of equation (2.1) we initially define the
veN' from equation (2.6). Then, we calculate the sum

2"ty 2v,

If 2" +2" <TT we add 2", whereas if 2"*' +2" >TI then we subtract it. By repeating the
process exactly v times we write the odd number 11 in the form of equation (2.1). The number

v Of steps needed in order to write the odd number 11 in the form of equation (2.1) is extremely
low compared to the magnitude of the odd number 11, as derived from inequality (2.4).

Example 2.1. For the odd number 11 =23 we obtain from equation (2.6)



v+1:[lnﬁ}:>v:3.
In2

Then, we have

2" 42 = 2% 4 2% =24 > 23 (thus2? is subtracted)

2% + 2% —22 =20 < 23 (thus 2" is added)

24 +2° —2% 421 =22 <23 (thus2° =1 is added)

2* +2° 224+ 2" +1=23.

Fermat numbers F, can be written directly in the form of equation (2.1), since they are of the
form IT;,,
F =27 +1=II
seN
Mersenne numbers M can be written directly in the form of equation (2.1), since they are of the
form I1

o (2 -1) =27 4271282 PR 2]

(2.10)

M, =2"—1=T1 , (p-2)=2""+2"2+2" "+ +2' +1
: : (2.11)
p = prime

We now give the following Definition:

Definition 2.1. Let IT be an odd number greater than 1, and consider the representation of I
as described in Theorem 2.1. Then the conjugate IT" of IT is

I :H*(V,j/j):2”1+2v +§yj2j
j=0

7, =%1j=012,.,v-1 (2.12)
veN

for which it is

v =-B¥k=012,.,v-1. (2.13)

For conjugate odds, the following Corollary holds:
Corollary 2.1. For the conjugate odds IT=II(v,)=3 and IT =IT (v,,) the following hold:
1(mr) =11, (2.14)

2.IT =3.2"* —11. (2.15)
3.11 is divisible by 3 if and only if TT1™ is divisible by 3.
4. Two conjugate odd numbers cannot have common factors greater than 3.



5. ConjugatesIT and IT" are equidistant from the middle 3-2" of the interval 2Q), =[2”1,2V*2].

Proof. 1. The 1 of the Corollary is an immediate consequence of Definition 4.1.

2. From equations (2.1), (2.1) and (2.12) we get

TT+IT = (2 +27)+(27 +2")

and equivalently

MM+IT =3-2"".

3. If the odd IT is divisible by 3 then it is written in the form 11=3x,x=o0dd and from equation

(2.15) we get 3x+IT =3-2""* and equivalently IT" = 3(2V+l - x). Similarly we can prove the
inverse.

4.1f IT=xy,IT" = xz, X, y, z odd numbers, from equation (2.15) we have x(y+z)=3-2""and
consequently x=3.
5. From equation (2.15) we obtain

[M-3-2"=3.2"-IT
\H—s-zv

*

=\3-2V—n

|

From Corollary 2.1 we have that 3 is the only odd number which is equal to its conjugate;
3 =3.2""-3=3. For theIT =1 we define

1 =1. (2.16)
Also, from equation
(TT+ X )+ (T = X ) =3-2" (2.17)

it follows that, if the odds IT+ X and IT— X , X =evenbelong to the interval Q, = [2”1, 2”2] :
then they are conjugates

(TT+X) =TT" =X . (2.18)

It is easily proven that Theorem (2.1) is also valid for even numbers that are not powers of 2.
In order to write an even number E that is not a power of 2 in the form of equation (2.1),
initially it is consecutively divided by 2 and it takes of the form of equation

E=2"-T1

.- (2.19)
[T=o0dd,IT#11eN

Then, we write the odd number IT in the form of equation (2.1).

Example 2.2. By consecutively dividing the even number 368 by 2 we obtain



E=368=2"-23.

Then, we write the odd number IT =23 in the form of equation (2.1),
23=2"+2°-2+2"+1

and we get

368=2-(2'+2°-2°+2'+1)=2"+2"-2°+2° + 2"

This equation gives the unique way in which the even number 368 can be written in the form of
equation (2.1). For even numbers the lowest power of two in equation (2.1) is different from
1=2°

3. The L/R symmetry

We now give the following Definition:

Definition 3.1.1. The odd number IT has Left-symmetry L when there exists an index L such
that

BL=+1
Ba=B.=-=B=p=-1 (3.1)
Le{123,...v-1

2. The odd number IT has Right-symmetry R when there exists an index R such that
ﬂR =-1

Pra=Pry==p=H=+1 (3.2)
Re{1,23..v-1

Next, we have one example:

Example 3.1. The prime number
Q=568630647535356955169033410940867804839360742060818433 is a factor of

F, = 2" +1. From the equation (2.6) we have v+1=178, and then from equation 2.1 we have



Q=218 4 QM7 176 | I7s | DITA | D173 | D72 _ pl7T | DIT0 | DI6S | D68 | DleT | D166

4165 _ol64 | ol63 _ 9162 _ ol6l _ 9160 _ o159 | o158 | olST | olS6 _ 9155 _ olsé _ ol53 _ 152

ISt QIS0 _ 9149 | ol _ 4T _ olds | pUS _ gl | ol _ Uiz _ plal_ pld0 | o3 | ol
QBT _ gl 4 gt _ ol _ i | gl il 4 gl _ 29 | gl _ L2l | o126 _ 9125 _ olzs
QI _gizz _pi2l  ol20 _ol9 | plIs o7 4 olls_plis | plt_plis_pliz_ il _ Hlio

_ 109 _ 9108 | 5l07 _ 9106 | 9105 _ 104 | 0103 _ 9102 | 9101 _ 9l00 | 9% | 99 _ 997 L 9% _ 9%
2% 2% 0% L 9% 0% 088 8T | D86 | D85 | 0Bt DB | DBz DBl 980 4 o7
QT8 _ 71 QT8 _ TS L o™ | QT3 _ 972 _pTL_T0 | 909 4 o8 | 967 | 966 , 965 | 964 _ 903
002 [ fL_ 80 _ %9 _ oS8 _ pST _ oS | S5 _ S _ g% _ g5z _pSL_ %0 _ ot | o | il
216 4 0% M Lo g2 g8l ol o3 o3 _ o3 _o¥ 4 o3 _pu 9% 4 g% | il
W 40 9B U | ¥ 95 ot o o2 o2l o D18 _ g8 _ oIl _lb | ol
1M g gz gl g0 99 8 o7 96 _p5_pb_p3_92_ ol

So the factor 568630647535356955169033410940867804839360742060818433 of F,, has
symmetry L (568630647535356955169033410940867804839360742060818433)=14.

As a consequence of Definition 3.1, for odd numbers of the form Q is 3, =-1 and for odd

numbers of the form Dis S, =+1. Also, from equation (2.1) and Definitions 3.1 it can be easily
proved that the Q odds are written in the form

Q:2L+1'K+1 (3 3)
K =odd
and the D odds in the form

_ R+l. _
D=2"".K 1. (3.4)
K =odd

Proof. We prove equation (3.3) and (3.4) is proven similarly. From Definition 3.1 we get

Q=2""+2"+B 2+ B, 2" +..+ f 2 2t -2 2 22 -2 1

v+1={|n—Q}
In2

Q=2""42"+ 27+ B, ,2" +.+ B 2"+ 25— (2 420 4 22+ 2041
Q=2""42"+5,,2 + B, ,2" " +..+ B, 2" +2" (2" -1)
Q=2"42"+£_2"+B 2" +..+ f.2"" +1

Q=2""(2" 42" 4 B, 27 P4 B2 N By )+

Q=2""K +1



K = 2v—L i 2v—L—1 +ﬂv_12"_l‘_2 +ﬂv—2 2V_L_3--- + ﬂL+1 -H

It follows from Lucas Theorem for the Fermat numbers (see, [1,2]) that the factors of the Fermat
numbers are of the form (3.3). Equations (3.3), (3.4) provides the simplest way for the
determination of the symmetry of a number. An odd number with positive L-symmetry would
necessarily have 0 R-symmetry and vice versa. We give two examples.

Example 3.2. For odd number 18303 we have

18303—1=2'x9151
18303+1=27x143

Therefore, L(18303)=0 and R(18303)=7-1=6. Indeed, from equation (2.6) we get v =13
and from equation (2.1) we obtain

18303 =2" 428 22 2" 20 4+ 2 4+ 2P 4+ 2T 20 4 22+ 20 4 22+ 22 + 2" 41,

Example 3.3. For the number C1133 which is composite factor of F, with 1133 digits, we have
C1133-1=2"-K.

Therefore, L(C1133)=14-1=13.

It is easy to prove the following Corollary:
Corollary 3.1.

1. QQ, =Q.

2.D,D,=0Q.

3.Q0,=D.

4. L(Ql) < L(QZ): L(QlQZ)z L(Ql).

5.L(Q)<R(D)=R(QD)=L(Q).

6. R(D)<L(Q)=R(QD)=R(D).

7.R(D,)<R(D,)=L(D,D,)=R(D,).

8. Symmetry (I1, ) = Symmetry (I1, ) = Symmetry (ILI1, ) > Symmetry (I1, ) = Symmetry (IL, ).

We give two examples:

Example 3.4. L (641)=6<L (114689)=13 => L (641x114689)=6.
Example 3.5. R (607)= 4<R (16633)=6 => L (607x16633)=4.
We now prove the following Corollary:

Corollary 3.2. Every composite number C of the form



C=2"4+1

has at least two factors the symmetries of which have equal values.

Proof. Corollary 3.2 is a direct consequence of Corollary 3.1.o

From Definitions 2.1 and 3.1 it emerges that for every conjugate pair (H,H*), one is of form Q
and the other of form D.

4. Transpose of odd number
We now give the following Definition:
Definition 4.1. 1. We write the odd D in the form of equation (2.1),

D=2""+2"+8.2""+B ,27  +..+ 2" +1

{In D} : (4.1)
v+l=| —
In2
We define the transpose T (D) of D,
v—1
T(D) =( 11 I ’Bv:ll + ﬂvj +...+£i+1j-2“1 =243+ f -2, (4.2)
2v+ 21/ 2v 2v 2 =

2. We write the odd Q in the form of equation (2.1),
Q=2"+2"+B, 2"+ B, 2" +..+ p2" -1

v+1:[|n—Q} ' (4.3)
In2

We define as transpose T (Q) of Q,

1 1 v+ v+ < v+l
T(Q)=—[2M+?+%+%+...+%—1}2 1=2 1—3—;@-2 k. (4.9)

3. We set
T (1) =1. (4.5)

4. From equations (4.2), (4.4), (4.5) we get the general equation

T(I)=2"+4, -(3+§,6’k -2”“]

(4.6)
{In H}
v+l=| —
In2
Algorithm for the calculation of the transpose. For the odd IT we calculate v +1= {_Iln 1;[}
n

from equation (2.6). Next, applying the algorithm of example 2.1 we write IT in the form of



equation (2.1), we calculate g =+1,i=1,2,3,...,v—1 and the transpose T (H) of IT from
equation (4.6).
We now prove five Theorems about the transpose of an odd number:

Theorem 4.1.
1.T(H)=1<:>H=2"—3,v22,veN. 4.7
2.
ﬂlzl
T (D)= D B = B
V+1:[In_D} < k:1,2,3,...,V;2,v:even (4.8)
In
k=123 Y"1, ~odd
2
131:_1
T(Q):Q B =P
V+1_{In_Q} < k:1,2,3,...,v—;2,v=even- (4.9)
In2
k=1,2,3,...,VT_1,v=odd

Proof. 1. For [T=2" -3 we get

M=2"-3=(2"-1)-2=(2""+2"?+2" 2 +..+2' +1)-2

=2Vttt 4 +2'-1=Q

and from equation (4.4) we get T (IT)=1.

Now, let T(IT)=1. The odd IT is either of the form D or of the form Q. We prove the Theorem
for I1=Q, and the proof is similar for IT=D..

For IT=Q we get

M=Q=2""+2"+B 2" +B ,2" " +..+ B,2° + 2" -1

{Inl‘[} (4.10)
n+l=|—
In2

and from equation (4.4) we get
T(I)=-1- 2'—pB 2% —..—B2"+ 2™

so we get

10



T(I)=1

T R R S 3 N L |

T N Ry N Ly L LS |

P R R R 3 [ L L L L, L S L S L |

and taking into account that every odd IT is written in a unique way in the form of equation (2.1)
we get

By=ps=py==f=+1

and from equation (4.10) we get

M=2"42"+2" 42" -1=2(2" 42"+ 2" ..+ 2" +1) -1
=2(2" -1)-1=2"*-3

and setting n+2=v we obtain [1=2"-3.

2. We prove the equivalence (4.8), and (4.9) is similarly proven. We write the odd D in the form
of equation (2.1),

D=2""+2"+p8.2""+B ,2" +..+ 2" +1

{In D} . (4.11)
v+l=|—
In2

From equations (4.11), (4.2) we get

T(D)=1+2+8_,2"+B,,2° +..+ B,2" + 2. (4.12)
We next get

T(D)=D&

142+ 8,2+ B, 20+ + B2 + 27 =24 2"+ B 27+ B2 o+ 5,20+ 2041

and taking into account that the odd D is written in a unique way in the form of equation (2.1)
we get equivalence (4.8). o

Theorem 4.2. 1. For odd numbers of the form D, the equation holds

T(D)-T(D")=6. (4.13)

2. For odd numbers of the form Q, the equation holds

T(Q)-T(Q)=-6. @19
Proof. We prove equation (4.13) and (4.14) is proven similarly. From equation (4.11) we get
D =242 -8 27 —p 22—~ B2 -1=Q. (4.15)

From equation (4.4) we get

11



T(D)=-1-2+8,,2"+f,,2° +..+ 2" +2"". (4.16)

From equation (4.12), (4.16) we obtain T(D)-T(D")=6.0

Theorem 4.3. For every odd IT, v +1= H‘—g} e, = [2”*1, 2”*2] the following inequality
n

holds

T(IT)<2"2. (4.17)

Proof. We prove inequality (4.17) for the D odds and the proof is similar for the Q odds. From
equation (4.12) and taking into account that g, =+1,i=0,1,2,...,v—1 we obtain
T(D)=14+2+ 82"+ B ,2° +..+ B, 2" + 2" <142+ 2 +..+ 2" 427" =277 -1
.0
T(D)<2"? 1< 2"
From inequality (4.17) it follows that if an odd IT belongs to the interval Q :[2”1, 2”2], its
transpose T (IT) can be found in intervals Q ,n<v but cannot be found in intervals Q,,N >v.
Theorem 4.4. For the consecutive numbers D—2, D of the same interval Q , the equation
applies
T(D-2)+T(D)=T(Q)+T(Q+2)=2"
: 4.18
.1_[mD]_[InQ (4.18)
In2 In2
Proof. The smallest odd number in the form of D of the interval Q, :[2”1, 2”2] is
D, = 2" +3. Thus, the following equivalence holds: DeQ, < (D-2)eQ, (D>3). The

=2""+1. Thus, the following

equivalence holds: Qe Q, < (Q + 2) €Q, (Q>3). Then, the Theorem is a consequence of
equations (4.1), (4.3) (D-2=Q, Q+2=D)and (4.2), (4.4). ©

largest odd number in the form of Q of the interval Q, is Q,

min

Theorem 4.5. 1. Let Q be odd number belonging to the interval &, =[2"*,2~v+2], then the
following equivalence holds,
Q* _I_T (Q*)

T(Q)=Q<& 5

=3-(2" +1). (4.19)

2. Let D be odd number belonging to the interval , =[2"*,2"v+2], then the following
equivalence holds,
D' +T(D’)

T(D)=D < ;

=3-(2"-1). (4.20)

12



Proof. We prove 1 of the theorem and similarly the proof of 2 is done. Let Q be odd number for
which T(Q)=0Q holds. Taking into account equation (4.14) we have Q" +T (Q) =Q +T(Q)+6
and for T(Q)=Q weget Q" +T(Q)=Q +Q+6. and with equation (2.15) we obtain

Q +T(Q)=3-2""+6 and equivalently we get

Q%(Q) =3-(2"+1).
We now prove the converse. Let Q be odd number for which

wzg.(zv +1)
2

holds. Taking into account equation (4.14) we get

Q +T(Q)+6 :3‘(2V +1)
2

and equivalently we get
T(Q)=3-2""-Q
and with equation (2.15) we obtain
T(Q)=Q. o

5. The odd number octet
We now give the following Definitions:

*

Definition 5.1.We define as the octet of odd numberII the non ordered octet
(H,T(H),(T ()", T((T () )7 (), (T (1)) ,T((T () )) (5.1)
Definition 5.2. 1. We define as the 8" transformation of the (5.1) octet, the octet that contains

the conjugates of the (5.1) octet.

2. We define as the T, transformation of the (5.1) octet, the octet that contains the transposes of
the (5.1) octet.

Definition 5.3. We define as symmetric every octet that remains unchanged under the T,
transformation.

Properties of the symmetric octet. As a consequence of Definition 5.3 and the Theorems of the
previous section, every symmetric octet has the following properties:

1. It consists of pairs of conjugate odds (common property of all octets).

2. It is unchanged under the 8" transformation (common property of all octets).

13



3. It is unchanged under the T, transformation (Definition): for every odd IT of the symmetric
octet, itis T (T (IT))=11.

4. It consists of pairs of odds that differ by 6 (consequence of Theorem 4.2).

5. It consists of 8 or 4 or 2 different odds.

6. The numbers of the symmetric octet belong to the same interval Q, = [2”1, 2V+2:| ,

V+1:[IT r;k } where IT,,k =1,2,3,...,8 the octet numbers.
n

7. The smallest odd m of a symmetric octet is always of the form Q, m=Q and the largest M
is its conjugate, M =Q".

8. An odd IT can belong to exactly one symmetric octet (while every odd which belongs to a
symmetric octet, also belongs to infinite non symmetric octets, as we shall see later).

In order to determine the octet of an odd IT we use the algorithm for the calculation of the
transpose, and equation (2.17) for the calculation of the conjugate. We now give an example
which also shows the ways in which we can write a symmetric octet.

Example 5.1. From equation (5.1) we get the symmetric octet in which IT=889 belongs,
(889, 529, 1007, 895, 647, 535, 1001, 641).
In order to discern the pairs of transposes and of conjugates, we write the octet in the form

889 <« 1> 529 «*» 1007 <« 895
*$ $* )

647 «1—» 535 <« 1001 <« 641

Because of equation (2.16) (H* ) =TI two conjugates are always connected, in all symmetries,
by the symbol «——, TT«——IT". With IT, «——TI1, we denote that T (IT,)=1IT, and
T(I1,)=I1,. If T(I1,)=IT,and T(I1,) = I1,, we write [T, ——T1,. In our example,
I1, «—TI, for all of the octet numbers, therefore, it is unchanged under the T, transformation

and consequently it is symmetric (Definition). The 8" and T, transformations only change the

relative position of the numbers within the symmetric octet. The octet symmetries are easily seen
when we place the numbers on the corners of a regular octagon,

14



889 <« 529

*‘/ \*
647 1007
TT 7. (5.2)
535 895

N 4

1001 <« 641

A symmetric octet can be composed of 8 different numbers, like the one of the previous
example, or of 4 different numbers or of 2 different numbers (with the exception of the

degenerate octets (1,1,1,1,1,1,1,1) of 1and (3,3,3,3,3,3,3,3) of 3). From the Definitions of the
conjugate and the transpose, the following equations are easily proven

2"+l 2" -1

2 4T 2" -7

2" 112 -7 . (5.3)

2"+ T 152" +7

2"t 11527 1

Considering equations (5.3) we get the symmetric octets

(2v+1 +1, o2 _ 7, ov+l | 7, v+ 7, ov+2 1 ov+2 1 v+l +1, ov+2 _7)

v>3rveN

(5.4)

The (5.4) symmetric octets consist of 4 different numbers. Fermat numbers for v+1=2°,S e N
and Mersenne numbers for v+2 = p = primebelong to the (5.4) symmetric octets. The

symmetric octet (9,9,15,15,15,15,9,9) of conjugates (H,H*) =(9,15) consists of 2 numbers.

Definition 5.4. We define as non-symmetric or asymmetric every octet that contains a pair of
conjugates (I1,,IT; ) for which

1, ——TLandIl, «——TI, =1, | 55)
I, ——T1,andI1, «—TI, #IT;
Asymmetric octets as generators of symmetric octets. If an odd number IT belongs to a

symmetric octet, then its conjugate TT" and its inverse T(H) belong to the octet. Also, all the
numbers in the symmetric octet belong to the same interval Q. The asymmetric octets result

from a pair of conjugates (H,H*) belonging to an interval €, and their transposes
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(T (IT), T (H)) in another interval Q,,v < . The octet of the pair (T (1), T (H)) is
symmetric and we say that it is produced from the initial asymmetric octet.

We now present one example of an asymmetric octet in which one can see the way in which we
can write it so that the asymmetry is evident and so are the symmetric octet that it produces.

Example 5.2. The conjugate pair (91,101) gives the asymmetric octet

47
IT

91 —» 55 <« 41 ' 41

101 —— 49 «*» 47 <> 55
IT
49

The asymmetric octet has produces the symmetric octet
47 > 55 5 41 5 41
*$ $*
49 15 49 5 47 > 55

which emerges by replacing the pair of conjugates (91,101) by the pair of conjugates (47,49).

We now prove the following Theorem:

Theorem 5.1. (Fundamental octet Theorem)

A. The octets of the numbers

[M=D=2°-K-1

M=Q=2"(3-2""-K)+1 (5.6)
+1:[|Ir:]—r21} >3,K =odd

are asymmetric.

B.

1. The asymmetric octets are given by the odds

D, =11+8m,meN

5.7
Q =13+8m,meN G.7

except from the asymmetric octet (5,1, 117, 7,5,1) .

2. The symmetric octets are given by the odds
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D,=7+8mmeN"

. 5.8
Q,=9+8m,meN =8)

Proof. A. From 2 of Theorem 4.1 it follows that for the odds IT, for which g, =-1, it holds
that T (IT) =11,

ﬂoﬂlz—l:T(H);tH. (5.9)

D=2%+22-2+1=11and Q =2°+2%+2-1=13 are the smallest odds for which it can be
B.B, =—1. Therefore, the Theorem holds for v+1>3.

We prove the Theorem for TT= D and it is similarly proven for IT=Q. From equation (4.11) for
By =—1 we get

M=D=2"+2"+B_,2" "+, ,2" 2 +..+ 3,2 -2 +1

=22 (274277 8,270+ B,,2 0+t ) -2+

=22 (2742724 B2+ B, 270 4 By) -1

and setting

K=2""4+2"72+8_,2°+8,2°+..+ 5, (5.10)

we get D =2°.K —1. Considering equation (5.10) we calculate the conjugate of D which is

M=Q=2"-(3-2""-K)+1.

B. Equations (5.6) give the consecutive pairs (D,Q)=(11,13),(19,21),(27,29),..., that is,

equations (5.7). Taking into account the fourth property of the symmetric octets we conclude that
the intermediate pairs of odds give the symmetric octets. These pairs are given by equations
(5.8). Additionally, equations (5.7) give all odds that produce asymmetric octets (with the

exception of the asymmetric octet(5,l,1,1, 7, 7,5,1)) and the equations give all the odds that

produce symmetric octets (otherwise the fourth property of the symmetric octets would not hold,
which cannot be true due to Theorem 4.2)

The octet
(5111,7,7,51) (5.11)

of the conjugate pair (H,H*) =(5,7) is the only asymmetric octet that does not belong to the
(5.7) octets, since for this conjugate pair it is

In_5 = In_7 =y+1=2<3.
In2 In2

The asymmetric octet (5.11) is given by the terms of the &, sequence of odds,
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g, =3+2"

: (5.12)
n=123,..
The (5.11) octet emerges from the terms of the ¢, sequence because of equation
_ n+l _ _
T(z)=T(2 +3)_gl_7. (5.13)

n=123,..
The terms of the ¢, sequence are of the form D. From equation (4.13) we get
T(2+3)-T ((2"+1 +3)*) _6
T(2"+3)-T(2"*-3)=6
and with equation (4.7) we obtain
T(2"+3)-1=6
T(2"+3)=7
which is equation (5.13). ©

For the odds Q, D that belong to a symmetric octet we make the following Conjecture:

Conjecture 5.1. A. 1. For every odd Q it holds that

T(2"-(Q+3)-3)=T(Q)

(5.14)
vneN
T(2-(Q+3)+3)=(T(Q)) (5.142)
vneN
2. For every odd D it holds that
T(2"-(D-3)+3)=T(D) (5.15)
vneN
T(2"(D-3)-3)=(T(D)) (5.15a)
vneN
B. 1. The sequences
7,(Q)=2"-(Q-3)-3
r,(Q)=2"-(Q-3)+3 (5.16)

neN"

derive the same symmetric octet for each neN .
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2. The sequences

A,(D)=2"-(D+3)+3

5,(Q)=2"-(D+3)-3 (5.17)
neN

derive the same symmetric octet for each ne N".

From Conjecture 5.1 and the Definition of the symmetric octet, the following Corollary
emerges directly:

Corollary 5.1. 1. For every odd Q that belongs to a symmetric octet the sequence

a,(Q)=2"-(Q+3)-3

A (Q)=2"-(Q+3)+3 (5.18)
neN"

gives (infinite) asymmetric octets that produce the symmetric octet to which Q belongs.
2. For every odd D that belongs to a symmetric octet the sequence
B,(D)=2"-(D-3)+3

B,(D)=2"-(D-3)-3 (5.19)
neN"

gives (infinite) asymmetric octets that produce the symmetric octet to which D belongs.

The a,(Q)sequence has exactly one term in every interval

Q :[2N+1,2N+2],N6N,N+1> nQ |
N In2

The B, (D) sequence has exactly one term in every interval
InD

_ [[AN+1 AN+2
Q, =[2"2 ],NeN,N+1>[E]

We give an example:

Example 5.3. We pick a number from the symmetric octet (5.2), for example 647 =D and a
random n=20. From equation (5.19) we get B, (647) =2 (647 —3)+3= 675282947 . The odd

675282947 gives the asymmetric octet
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647

IT
675282947 ——» 535 <« 1001 <«— 641
"1 7
935329789 ——» 529 <« 1007 <«— 895
IT
889
which produces the symmetric octet

647 «1— 535 <« 1001 «— 641
‘T T
889 «1—> 529 «*>» 1007 «— 895
which is (5.2). B,, (647)= 675282947 €, belongs to the interval Q,, =[2%,2*].
B,, (647)=2* (647 —3)+3=1350565891 € Q,, also produces the (5.2) symmetric octet and
belongs to the next interval Q,, = [230,231],

647
IT

1350565891 ——» 535 «*—» 1001 <« 641

1870659581 ——» 529 <« 1007 «'— 895
1T
889

We now prove the following Corollary:

Corollary 5.2. 1. For every odd Q belonging to a symmetric octet, it holds that
T(zn.(T(Q)+3)—3)=T(T(Q))=Q_ (5.20)
VneN

2. For every odd D belonging to a symmetric octet, it holds that
T(2"-(T(D)-3)+3)=T(T(D))=D

VneN

Proof. We prove equation (5.20) and the proof of (5.21) is similar. From Definition 5.3 of the
symmetric octet it follows that if Q belongs to a symmetric octet, then T (Q) belongs to the

(5.21)

same symmetric octet. Therefore, equation (5.14) also holds forT (Q) ,

20



T(2” -(T(Q)+3)—3)=T(T (Q))
vne N’

and taking into account that for the symmetric octet it is (Definition) T (T (Q)) =Q we get
equation (5.20).o

Also, applying Definition 5.1 for even numbers 2" -I1,n € N*, IT = odd we obtain the following
Corollary:

Corollary 5.3. For every odd IT it holds that
T(2"-11)=T(I1)
vneN,IT=odd -

(5.22)

Proof. We prove equation (5.22) for the D odds and the proof is similar for the Q odds.
D=2""+2"+8.2""+B ,27 +..+ 2" +1

In2
2n D — 2n+v+l +2n+v +ﬁV,12n+V71 + 2n+v72 +---+ﬁ12n+1 +2n

T(ZnD):( 1 N 1 +ﬂvfl +18v72 - 181 +1j‘2n+v+l

2n+v+l 2n+v 2n+v—1 2n+v—2 a 2n+l E

1 1 ﬂ—l ﬂ—Z ﬂl 1} v+l
= +—+ =+ =+ A5+ [-2""=T(D
(2v+l 2v 2v—1 2v—2 21 20 ( )

.0

We give an example:
Example 5.4, T1=Q=2021=2"+2°+2° + 2" +2°+2°+2* -2° -2+ 2' -1

2n1—I — 210+n + 29+n + 28+n + 27+n + 26+n + 25+n + 24+n _ 23+n _ 22+n + 21+n _ 2n
neN

v (1 1 1 1 1 1 1 1 1 1 1Y e
T(2 .H):_(210+n+29+n+28+n+27+n+26+n+25+n+24+n_23+n_22+n+21+n _2_nj.210

1 1 1 1 1 1 1 1 1 1
:_(F+§+F+7+§+§+§_§_§+§_ j'Zlo :T(H)

We now prove the following Corollary:
Corollary 5.4. For every odd A that doesn't belong to a symmetric octet, it holds that
AcQ =T(A)eQ, u<v. (5.23)
Proof. Corollary 5.4 is a direct consequence of Theorem 4.3 and Definition 5.4. ©

We complete section 5 with the following Definition:
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Definition 5.5. (Categorization of odd numbers) 1. We define as asymmetric numbers, the
numbers that don’t belong to a symmetric octet (equations (5.7))

2. We define as symmetric numbers, the numbers that belong to a symmetric octet (equations

(5.8)).
6. An algorithm for finding the factors of Fermat numbers

There exists a sequence of odd numbers of the form Q =8m+1, m=1,2,3,... for which T(Q)=Q
and T (Q) > Q. Fermat numbers and their factors (see, [1-5]) belong to this sequence. Starting
from this finding we get an algorithm for finding factors of Fermat numbers in an interval

Q, = |:2v+1, 2V+z} .
Let

Q=2"-K+1, (6.1)

where K is an odd number, be a factor of a Fermat number in the interval Q, = [2“”, 2“*2] . We

take the sequence of numbers

D=2""+3.2"-1+2"". 4. (6.2)

Considering that D belongs to the interval Q , we get the possible values of 4,
A=-101..2"". (6.3)

If

Qe [2v+1,3. 2v] c |:2v+1, 2V+z] —Q

we give values 1 =2"",2""-1,2""-2,...,—1 in equation (6.2). There is a value of A for which
Q=D". (6.4)

If

Qe [3' ZV,ZMJ - |:2v+1, 2v+z] -Q,

v-n

we give values 2 =-1,0,1,...,2"" in equation (6.2).

We give two examples.
Example 1. For the factor

Q=274177¢[2°,3.27 |c[2°,2° |=Q,
of K, itis v=17 and n=6+2=8. From equations (6.2) and (6.3) we get

D=2%+43.2°-1-2°.2 (6.5)
and
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1=-10,1...,510.

We give values 1 =510,509,508,...,—1 in equation (6.5). After 14 tests, for
A =510,509,508,...,487 we get D =2" +3.2° —1-2°.487 =512255 and from equation (6.4) we
obtain Q = D" =512255" = 274177 . Finding Q = 274177 = 2°.1071+1 from equation (6.1) requires
1071 tests.

Example 2. For the factor
Q=6700417 €[ 3-2,2" | [ 2%,2*|=Q,
of K itisv=21and n=5+2=7. From equations (6.2) and (6.3) we get

D=2%+3.2"-1-2°-1 (6.6)
and
A=-1,0,1,...,16382.
We give values 2=-1,0,1,...,16382 in equation (6.6). After 6595 tests, for 21 =-1,0,1,...,6593 we
get D=2"+3.2" —1-2°.6593 =5882495 and from equation (6.4) we obtain

Q=D" =5882495" = 6700417 . Finding Q = 6700417 = 2" -52347 +1 from equation (6.1) requires
52347 tests.

We ran the algorithm assuming that the interval Q,, to which Q =6700417 belongs is known.
In fact, we do not know the interval Q, to which Q belongs. So the algorithm must run on an
interval Q wider than Q, .

Considering that Q is the largest factor of F, we get Q > \/F_s :Jﬂ. Therefore the
algorithm must run in the intervals Q,Q,.,Q,,...until the interval ©,, in which we find
D=2%+3.2" —1-2°.6593 = 5882495 . The maximum number of tests for each interval Q, is
2""" -2 (see equation (6.3)). Therefore, the number of structures up to the set Q,, is

20T 24 2" 24 2T 24 2T 2407 24277 _2=32044 < 52347 .

In fact, the number of tests is less than 32244 since in set ©,, 6595 tests are required and not
2%77 _2=16382. Therefore the required tests are

20 242" 24 2T 24 2% 24077 _ 246595 = 22455 < 32244

7. Conclusion

If we want to summarize this article in one sentence we would say that we study the symmetries
of natural numbers which arise from Theorem (2.1). These symmetries establish a new
framework for the study of natural numbers which is entirely different from the context in which
they have been studied so far.
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