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Abstract. “Every natural number, with the exception of 0 and 1, can be written in a unique
way as a linear combination of consecutive powers of 2, with the coefficients of the linear
combination being -1 or +1”. From this theorem, four fundamental properties of odd numbers are
implied: the conjugate of an odd number, the L/R symmetry, the transpose of an odd number and
the octets of odd numbers. Using these properties we obtain a categorization of the composite
odd numbers and a factorization algorithm.
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1. Introduction

In this article, we start by proving the theorem: “Every odd numberIT, with the exception of 1,

v-1 .
can be uniquely written in the form IT=2""+2" +Zﬂi 2", veN, v+l= {Iln_l;l} ,
i=0 n

L =%11=0,12,...,v-1where H'—lﬂ is the integer part of Iln_l;l e R ” (theorem 2.1). It’s easy
n n

to show that a theorem of this kind doesn’t hold for any other natural number different than 2.

The main difference between our theorem and the known arithmetic systems (binary, decimal
etc.) is that the coefficients of the linear combination can take the negative value. These negative
values highlight two properties of odd numbers, the “conjugate” of an odd number (definition
2.1) and the “L/R symmetry” (definition 3.1).

Another property of odd numbers is that of the “transpose” of an odd number (definition 4.1).
The transpose of an odd number can be defined in any arithmetic system and its value depends
on the system used. However, the main mathematical object to which we come to, “the odd
number octet”, is defined from a combination of conjugates and transposes of odd numbers
(equation (5.1)). Thus, the odd number octet emerges only by using theorem 2.1. Using these
properties we obtain a categorization of the composite odd numbers and a factorization
algorithm.

2. Odd numbers as linear combinations of consecutive powers of 2
We prove the following theorem:

Theorem 2.1. Every odd number IT, with the exception of 1, can be uniquely written in the form



v-1 )
N=T1(v,B)=2""+2"42"42"7+ +2'+2°=2"" 42"+ > B2
i=0

(2.1)
InTT :
veNv+l=|— |, =211=012,..,v-1
In2
where InTt is the integer part of In—HeR.
In2 In2

Proof. For IT=3we have v+1= Lln_ﬂ = v =0and from equation (2.1) we obtain
n

M=3=2'+2".

We now examine the case where v e N = {1, 2,3, } . The lowest value that the odd number 11
of equation (2.1) can obtain is

M, =M(v)=2" 42" -2"1 2" 2" -1

I, =I(v)=2"+1. (2.2)
The largest value that the odd number 11 of equation (2.1) can obtain is

O, =TI(v)=2"+2"+2""+2"2+..+ 2" +1

., =I(v)=2"%-1. (2.3)
Thus, for the odd numbers TT1=T1(v, B) of equation (2.1) the following inequality holds
I, =2""+1<II(v,B,)<2"? -1=I1,,. (2.4)

The number N(TI(v, 7)) of odd numbers in the closed interval [2”1 +1,2" —1] is

() g (2

N(T1(v.3))=2". (2.5)
The integers £,i=0,1,2,...,v—-1 in equation (2.1) can only take two values, 5, =-1v g =+1,
thus equation (2.1) gives exactly 2" = N (1‘[(1/,/3’i )) odd numbers. Therefore, for every v e N”

+1

equation (2.1) gives all odd numbers in the interval Q, =[2"*,2* .

From inequality (2.4) we obtain
2 4 1<TI<27? -1
2v+1 < 2v+l +1S H S 2v+2 _1< 2v+2

2v+1 <H < 2v+2



(v+1)In2<InTI<(v+2)In2

from which we get

—InH—1<v+1<—|nH
In2 In2
and finally
v+1:{'”—n] 2.6)
In2
In1
For IT=1we have v+1= ﬁ =v=-1¢N.
n

We prove now that every odd number IT=1can be uniquely written in the form of equation
(2.1). We write the oddITas

v-1 .
M=2""+2"+> B2
i=0

L =%1i=012,..,v-1 (2.7)
v+1={|n—n}

In2
and

v-1

M=2"+2"+> 72
i=0

y=41i=012,..,v-1. (28)
+l:{|n—n}
In2

From equations (2.7), (2.8) we get

(ﬂo _70)'20 +(181_71)'21+(182 _72)'22 +"'+(ﬁv—l_}/v—l)'21/_l =0
L =%1i=012,.,v-1

7, =11i=0,12,...,v-1

ie{0,12,.,v-1

(2.9)

If, in equation (2.9), there are 1 e {0,1, 2,...,v—1} such that £ =y, and let k be the smallest of
them, dividing by 2**we get an odd number equal to an even number. So, it follows that

L =yVi=0L12,..,v-1. 0

In order to write an odd number IT#1,3 in the form of equation (2.1) we initially define the
veN from equation (2.6). Then, we calculate the sum

2v+1 + 2v .



If 2 +2" <T1 we add 2"*, whereas if 2"** +2" > IT then we subtract it. By repeating the
process exactly v times we write the odd number 11 in the form of equation (2.1). The number
v of steps needed in order to write the odd number 11 in the form of equation (2.1) is extremely
low compared to the magnitude of the odd number 11, as derived from inequality (2.4).

Example 2.1. For the odd number 1T =23 we obtain from equation (2.6)

v+1:{lnﬁ}:v:3.
In2

Then, we have

2" 42" = 2% 4+ 2% =24 > 23 (thus2? is subtracted)

2* +2°—2% =20 < 23 (thus 2* is added)

2% 42% 224 2' =22 <23 (thus2° =1 is added)

2°+2° -2 4+2' +1=23.

Fermat numbers F,can be written directly in the form of equation (2.1), since they are of the
form IT;,,
Fo=2" +1=I1,, (2-1)=2" +2""-2" 72" ° - -2'-1
seN .
Mersenne numbers M & can be written directly in the form of equation (2.1), since they are of the
form IT

(2.10)

max !

M, =2 -1=T1_, (p-2)=2""+2P?+2"°+ .+ 2'+1

_ (2.11)
p = prime
We now give the following definition:
Definition 2.1. We define as the conjugate of the odd IT>3,
v—1 .
O=M(v,5)=2""+2"+>_ B2
i=0
p=%1i=012,..,v-1 (2.12)
veN
the odd 117,
v-1 .
g =H*(V,7j):2v+1+2v +Y 2
j=0
y,=11,]=012,.,v-1 (2.13)
veN
for which it is



7. =—pBVvk=012,.,v-1. (2.14)
For conjugate odds, the following corollary holds:

Corollary 2.1. For the conjugate odds IT=TI(v,3)>3 and IT =IT (v,) the following hold:
1(T') =m. (2.15)

2.1T =3-2"" —11. (2.16)
3.11 is divisible by 3 if and only if TT1™ is divisible by 3.
4. Two conjugate odd numbers cannot have common factors greater than 3.

5. ConjugatesIT and IT are equidistant from the middle 3-2" of the interval Q, = [2”1,2”2].

Proof. 1. The 1 of the corollary is an immediate consequence of definition 4.1.

2. From equations (2.12), (2.13) and (2.14) we get

I+1T =(2”1+2V)+(2”1+2V)

and equivalently

I+1IT =3-2"".

3. If the odd IT is divisible by 3 then it is written in the form T1=3x,x=o0dd and from equation
(4.17) we get 3x+IT" =3-2"** and equivalently IT" = 3(2V+l — x). Similarly we can prove the
inverse.

4.1f TT = xy,IT" = xz, X, y, z odd numbers, from equation (2.16) we have x(y+z)=3-2""and
consequently x =3.

5. From equation (2.16) we obtain

[M-3-2"=3.2"-I1
rm-3.2

*

*

. O

=\3.2V |

From corollary 2.1 we have that 3 is the only odd number which is equal to its conjugate;
3 =3.2""-3=3. For theIT =1 we define

1" =1. (2.17)
Also, from equation
(I+X)+ (T =X )=3-2"" (2.18)

it follows that, if the odds IT+ X and IT— X , X =evenbelong to the interval O, =[2V*1,2V+2],
then they are conjugates



(TT+X) ="~ X . (2.19)

It is easily proven that theorem (2.1) is also valid for even numbers that are not powers of 2. In
order to write an even number E that is not a power of 2 in the form of equation (2.1), initially it
is consecutively divided by 2 and it takes of the form of equation

E=2.T1 . (2.20)
I[M=o0dd,I[T#1leN

Then, we write the odd number IT in the form of equation (2.1).

Example 2.2. By consecutively dividing the even number 368 by 2 we obtain
E=368=2".23.

Then, we write the odd number IT =23 in the form of equation (2.1),
23=2"+2°-2°4+2'+1

and we get

368="2" -(24+23—22+21+1)

368=20+2" -2°4+2°+ 2%

This equation gives the unique way in which the even number 368 can be written in the form of
equation (2.1). For even numbers the lowest power of two in equation (2.1) is different from
1=2°.

3. The L/R symmetry

We now give the following definition:

Definition 3.1.1. The odd number IT in the equation (2.1) has symmetry L when there exists an
index L so that

BL=+1
Ba=p.==PB=p=-1 (3.1)
Le{123,...v-1

2. The odd number IT in the equation (2.1) has symmetry R when there exists an index R so that

Br=-1
Boa=Pro== = o =+1L. 3.2)
Re{1,23,...,v-1}

Next, we have one example:



Example 3.1. The prime number
Q=568630647535356955169033410940867804839360742060818433 is a factor of F,, = 2°®° +1
. From the equation (2.6) we have v+1=178, and then from equation 2.1 we have
Q=28 4 217 QO L QN5 QA | QI3 | QIT2 QL | D0 4 9199 | D168 4 16T | D166

2100 0104 168 _ploz Dol _ D100 _ DS | DB 4 DIST 4 Q16 _ Q195 _ vt _oiss_ pte2

_oI51 | o150 _ old9 | old8  oldT _ olss | old5  olah | oli3  ola2  gldl  gli0 | o139 | 5138

QR Q0 L Q1 DIt | oSz 8L Q0 D19 4 o8 plaT 4 o6 ot ot

Q1B gl _piel 10 QU9 | DS LT | e US| it _pld_pliz_ otit_ oHlo

Q109 D108 4 07 _ D106 4 105 D104 4 103 _ 10z IO D100 | 099 | 0% _ D97 4 0% _ 2%

2% 2% 0% L 9% %9 088 8T | D86 | D85 | 0Bt DB | D82 DBl 980 4 o7

278 21 21 2T 4 27 4 21 27 Tt 970 1 %9 1 %8 4 27 4 2% 4 0% | 0% 0%

—2%2 4 2% %0 2% 2% % 0% | 0% 0% D% 0% D5 %N %, 0% 0¥

L% 985 98 | o83 | 982 ol 940 | 939 938 937 936 | 935 93 933, 932 | 93l

2% 4 2% 2P 2% 4 2% 2P 4 M 2B 42 0P 20 9 QB8 M 1 4 0

g QB 109 8 7 20 _2° 2t _2%_22_2'_1

So the factor 568630647535356955169033410940867804839360742060818433 of F,, has
symmetry L (568630647535356955169033410940867804839360742060818433)=14.

As a consequence of definition 3.1, for odd numbers of the form Q is £, =—1 and for odd

numbers of the form Dis £, = +1. Also, from equation (2.1) and definitions 3.1 it can be easily
proved that the Q odds are written in the form

Q=2""K+1 (3.3)
K =odd
and the D odds in the form

_ oR+1 | _
D=2""-K-1 (3.4)
K =odd

Proof. We prove equation (3.3) and (3.4) is proven similarly. From definition 3.1 we get
Q=2""+2"+B 2"+ B, 2" +..+ 2" 2t -2 2 22 -2 1

v+l= {M—Q}

In2
Q=2""4+2"+B, 2" + B, ,2 7 4.+ B 2 42N (25 2P 4 L+ 224 2 41)
Q=2""+2"+B, 2" + B, ,27 ..+ f 2" + 25 (2" -1)

Q=2"+2"+8_,2"" "+ B ,2" 7 +..+ f 2" +1



Q _ 2L+1(2v—L +2v—L—l+ﬁV_12v—L—2 +,BV_22V_L_3---+ﬂL+1)+1
Q=2""K+1

K=2"+2"""+p 2%+ 8,2 ..+ B .0

It follows from Lucas theorem for the Fermat numbers (see, [1,2]) that the factors of the Fermat
numbers are of the form (3.3).Equations (3.3), (3.4) provides the simplest way for the
determination of the symmetry of a number. We give two examples.

Example 3.2. For odd number 18303 we have

18303—1=2'x9151
18303+1=2"x143

Therefore, R(18303) =7-1=6. Indeed, from equation (2.6) we get v =13and from equation
(2.1) we obtain

18303=2" +2° 2% 2" 2101 27 4 2P 4 2T 2% 4+ 2 4 2 4+ 2* 4+ 27 1 2 41,

Example 3.3. For the number C1133 which is composite factor of F, with 1133 digits, we have
C1133-1=2"-K.

Therefore, L(C1133)=14-1=13.

It is easy to prove the following corollary:
Corollary 3.1.

1. QQ, =Q.

2.D,D, =Q.

3.Q,D,=D.

4. L(Ql) < L(Qz):> L(Q1Q2)= L(Ql).

5.L(Q)<R(D)=R(QD)=L(Q).

6. R(D)<L(Q)=R(QD)=R(D).

7.R(D,)<R(D,)=L(D,D,)=R(D,).

8. Symmetry (I1, ) = Symmetry (I, ) = Symmetry (ILI1, ) > Symmetry (I1, ) = Symmetry (IL, ).

We give two examples:
Example 3.4. L (641)=6<L (114689)=13 =>L (641x114689)=6.
Example 3.5. R (607)=4<R (16633)=6 => L (607x16633)=4.

We now prove the following corollary:



Corollary 3.2. Every composite number C of the form

C=2"+1

has at least two factors the symmetries of which have equal values.

Proof. Corollary 3.2 is a direct consequence of corollary 3.1.o

From definitions 2.1 and 3.1 it emerges that for every conjugate pair (H,H*), one is of form Q
and the other of form D .

4. Transpose of odd number

We now give the following definition:

Definition 4.1. 1. We write the odd D in the form of equation (2.1),

D=2""+2"+8.2""+B ,27 +..+ 2" +1

{In D} : (4.1)
v+l=| —
In2

We define as transpose T (D) of D the odd that emerges by inverting the powers of 2 in
equation (4.1) and multiplying the resulting number by 2"+,

v-1
T(D) =(2V1+1 +%+%+ gj‘j +...+%+1j-2”+1 = 2V+1+3+Zﬁk vk (4.2)
k=1

2. We write the odd Q in the form of equation (2.1),
Q=2"+2"+B,.2" "+ B, ,2" 2 +..+ B2' -1

V+1=[In—Q} ' (4.3)
In2

We define as transpose T (Q) of Q the opposite of the odd that emerges by inverting the powers
of 2 in equation (4.3) and multiplying the resulting number by 2",

v-1
T(Q) :—(Zvlﬂ +2iv+%+ §:_§ +...+%—1j-2v+l = 2”1—3—;,8k ik (4.4)

3. We set
T (1) =1. (4.5)

4. From equations (4.2), (4.4), (4.5) we get the general equation

T(I)=2"+4, (3+ Viﬂk ~2V+1-kj

(4.6)
InTI

v+l=| —
{InZ}



Algorithm for the calculation of the transpose. For the odd IT we calculate v +1= “n—l;[}
n

from equation (2.6). Next, applying the algorithm of example 2.1 we write IT in the form of
equation (2.1), we calculate B =+1,i=1,2,3,...,v -1 and the transpose T (IT) of IT from

equation (4.6).
We now prove three theorems about the transpose of an odd number:

Theorem 4.1.
1.T(H):1<:>H:2V—3,v22,veN. 4.7)
2.
131:1
T (D) =D B = B
, 1_[In_D} = k=1,2,3,...,V—;2,v=even (4.8)
In2 1
k=12,3,..,2= v =o0dd
2
ﬂlz_l
T(Q)=Q B ==Pea
V+1_{In_Q} < k=1,2,3,...,v—;2,v:even- (4.9)
In2 1
k:1,2,3,...,VT,v:odd

Proof. 1. For [T=2"—3 we get

m=2"-3

M=(2"-1)-2=(2""+2" 2422 4.+ 2" +1)-2

M=2""42"24+2"%+.+2'-1=Q

and from equation (4.4) we get T (IT)=1.

Now, let T (IT)=1. The odd IT is either of the form D or of the form Q. We prove the theorem
for I1=Q, and the proof is similar for TT=D .

For IT=Q we get

M=Q=2""+2"+B 2" +B ,2" " +..+ B,2° + 2" -1

[Inl‘[} (4.10)
+1=| —
In2

and from equation (4.4) we get

10



T(M)=-1-2'- B, 2% —..— B,2" + 2"

so we get

T(IT)=1

Sy R Iy L L |

—1-2'-B 2~ = B2" 42" 4 2" =" 4]

S R Ly 3 L L L L LI L T LS L S |

and taking into account that every odd IT is written in a unique way in the form of equation (2.1)
we get

Bo=F=p=.=0,=+1

and from equation (4.10) we get

M=2"" 42" 42" 42" -1

M= 2(2” 2"t 4 2 +1)—l
Mm=2(2""-1)-1

M=2"%-3

and setting n+2=v we obtain [1=2"-3.

2. We prove the equivalence (4.8), and (4.9) is similarly proven. We write the odd D in the form
of equation (2.1),

D=2""+2"+8.2""+B ,27  +.. .+ 2" +1

{ln D} . (4.11)
v+l=| —
In2

From equations (4.11), (4.2) we get

T(D)=1+2+8,,2"+B,,2° +..+ p,2" + 2. (4.12)
We next get

T(D)=D&

142+ 8,2+ B, 20+ + B, 2" + 27 =2 4 2"+ B 27+ B, 2" o+ 5,20+ B2 +1

and taking into account that the odd D is written in a unique way in the form of equation (2.1)
we get equivalence (4.8). o

Theorem 4.2.
1. T(D)-T(D")=6. (4.13)
2.T(Q)-T(Q")=-6. (4.14)

Proof. We prove equation (4.13) and (4.14) is proven similarly. From equation (4.11) we get

11



D'=2""+2"-B 2" B 2" —..- 2" -1=Q. (4.15)
From equation (4.4) we get

T(D")=-1-2+8,,2"+f,,2°+..+ f,2" + 2", (4.16)

From equation (4.12), (4.16) we obtain T(D)-T (D) =6.0

Theorem 4.3. For every oddI1, v +1= “n—l;l} ,MTeQ, = [2”1, 2”2] the following inequality
n

holds

T (M) <22, (4.17)

Proof. We prove inequality (4.17) for the D odds and the proof is similar for the Q odds. From
equation (4.12) and taking into account that g =+1,i=0,12,...,v—1 we obtain
T(D)=142+8_2°+ B, ,2° +.. .+ B,2" + 2" <142+ 2% + ..+ 2"+ 2" =22 -1

. O
T(D)<2"?-1< 2"

From inequality (4.17) it follows that if an odd IT belongs to the interval Q, =[2V*1,2V*2], its

transpose T (IT) can be found in intervals Q ,n<v but cannot be found in intervals Q,,N >v.

5. The odd number octet

We now give the following definitions:
Definition 5.1.We define as the octet of odd numberIT the non ordered octet

(H,T (1), (T ()", T((T ()’ )i, (1) (7 (1)) )T ((T (H)))) (5.1)
Definition 5.2. 1. We define as the 8" transformation of the (5.1) octet, the octet that contains

the conjugates of the (5.1) octet.

2. We define as the T, transformation of the (5.1) octet, the octet that contains the transposes of
the (5.1) octet.

Definition 5.3. We define as symmetric every octet that remains unchanged under the T,
transformation.

Properties of the symmetric octet. As a consequence of definition 5.3 and the theorems of the
previous section, every symmetric octet has the following properties:

1. It consists of pairs of conjugate odds (common property of all octets).

2. It is unchanged under the 8" transformation (common property of all octets).

3. It is unchanged under the T, transformation (definition): for every odd IT of the symmetric
octet, itis T (T (TT)) =11.

12



4. It consists of pairs of odds that differ by 6 (consequence of theorem 4.2).
5. It consists of 8 or 4 or 2 different odds.

6. The numbers of the symmetric octet belong to the same interval Q, = [2”1, 2”*2] ,

V+1:{Ir|'r£k } where I1,,k =1,2,3,...,8 the octet numbers.
n

7. The smallest odd m of a symmetric octet is always of the form Q, m=Q and the largest M
is its conjugate, M =Q".

8. An odd IT can belong to exactly one symmetric octet (while every odd which belongs to a
symmetric octet, also belongs to infinite non symmetric octets, as we shall see later).

In order to determine the octet of an odd IT we use the algorithm for the calculation of the
transpose, and equation (2.17) for the calculation of the conjugate. We now give an example
which also shows the ways in which we can write a symmetric octet.

Example 5.1. From equation (5.1) we get the symmetric octet in which IT=889 belongs,
(889, 529, 1007, 895, 647, 535, 1001, 641).
In order to discern the pairs of transposes and of conjugates, we write the octet in the form

889 «'» 529 «*» 1007 <« 895
* $ 3* )
647 «1—» 535 <« 1001 <« 641

Because of equation (2.16) (H* ) =11 two conjugates are always connected, in all symmetries,
by the symbol <——, TT<——IT". With IT, «—TII, we denote that T (I1,) =11, and
T(I1,)=I1,. If T(I1,)=TI1,and T (IT,) = IT,, we write IT, ——TT,. In our example,
I1, «—TI, for all of the octet numbers, therefore, it is unchanged under the T, transformation

and consequently it is symmetric (definition). The 8" andT, transformations only change the

relative position of the numbers within the symmetric octet. The octet symmetries are easily seen
when we place the numbers on the corners of a regular octagon,

13



889 <« 529

*‘/1 \*
647 1007
TT 7. (5.2)
535 895

N 4

1001 <« 641

A symmetric octet can be composed of 8 different numbers, like the one of the previous
example, or of 4 different numbers or of 2 different numbers (with the exception of the

degenerate octets (1,1,1,1,1,1,1,1) of 1and (3,3,3,3,3,3,3,3) of 3). From the definitions of the
conjugate and the transpose, the following equations are easily proven

2"+l 2" -1

2+ T2 T

2" +1le152" -7 . (5.3)

2"+ 712" +7

2 1L 527 1

Considering equations (5.3) we get the symmetric octets

(2v+l +1 V2 _ 7, vl | 7, v+l 7, ov+2 -1, ov+2 _1, ov+l +1, ov+2 _7)

v=>23,veN

(5.4)

The (5.4) symmetric octets consist of 4 different numbers. Fermat numbers for v +1=2°%,S e N
and Mersenne numbers for v+2 = p = prime belong to the (5.4) symmetric octets. The

symmetric octet (9,9,15,15,15,15,9,9) of conjugates (H,H*) = (9,15) consists of 2 numbers.

Definition 5.4. We define as non-symmetric or asymmetric every octet that contains a pair of
conjugates (T1,,I1; ) for which
I, — T, ATl «—>T1, =11,

] T . (5.5)
T — > TI, ATL, « 51T, # 1T

Asymmetric octets as generators of symmetric octets. An asymmetric octet contains pairs of
conjugates that belong in different intervals Q. At the position of these pairs, “bifurcations”

emerge outside the (5.1) octet. At each of these bifurcations, an asymmetric octet “produces” a
symmetric one.

14



We now present one example of an asymmetric octet in which one can see the way in which we
can write it so that the asymmetry is evident and so are the symmetric octet that it produces.

Example 5.2. The conjugate pair (91,101) gives the asymmetric octet

47
IT
91 —T» 55 <« 41 <« 41
101 —— 49 <> 47 <> 55
T
49

The asymmetric octet has produces the symmetric octet

47 <15 55 5 41 5 4

‘1 1

49 <15 49 5 47 <> 55

which emerges by replacing the pair of conjugates (91,101) by the pair of conjugates (47,49).
We now prove the following theorem:

Theorem 5.1. (Fundamental octet theorem)

A. The octets of the numbers

M=D=22.K-1

M =Q=2"(3-27"-K)+1 (5.6)

v+1={ll?]—lﬂ >3,K =odd

are asymmetric.

B.

1. The asymmetric octets are given by the odds

D, =11+8mmeN

(5.7)
Q =13+8mmeN
except from the asymmetric octet (5,1, 1,17, 7,5,1) .
2. The symmetric octets are given by the odds
D,=7+8m,meN"
g © (5.8)

Q,=9+8mmeN
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Proof. A. From 2 of theorem 4.1 it follows that for the odds IT, for which £,5, =—1, it holds
that T (IT) =11,

Bof=-1=T(I1)=11. (5.9)

D=2+22-2+1=11and Q =2°+2%+2-1=13 are the smallest odds for which it can be
BB, =—1. Therefore, the theorem holds for v+1>3.

We prove the theorem for IT= D and it is similarly proven for I1=Q. From equation (4.11) for
B.B, =1 we get

M=D=2"+2"+B_,2" "+ ,2" 2 +..+ 3,2 -2 +1

=22 (2742724 B2+ B, 2t By) -2+

=22 (274224 B2+ B, ,2 0 4 By) -1

and setting

K=2"+2"72+8_27+8 ,2°+..+ 5, (5.10)

we get D =2°-K —1. Considering equation (5.10) we calculate the conjugate of D which is
M =Q=2"-(3-2""-K)+L.

B. Equations (5.6) give the consecutive pairs (D,Q)=(1113),(19,21),(27,29),..., that is,

equations (5.7). Taking into account the fourth property of the symmetric octets we conclude that
the intermediate pairs of odds give the symmetric octets. These pairs are given by equations
(5.8). Additionally, equations (5.7) give all odds that produce asymmetric octets (with the

exception of the asymmetric octet(5,1,1,1,7,7,5,1)) and the equations give all the odds that

produce symmetric octets (otherwise the fourth property of the symmetric octets would not hold,
which cannot be true due to theorem 4.2)

The octet
(5,1,1,1,7,7,5,1) (5.11)

of the conjugate pair (H,H*) =(5,7) is the only asymmetric octet that does not belong to the
(5.7) octets, since for this conjugate pair it is

In_5 = In_7 =v+1=2<3.
In2 In2

The asymmetric octet (5.11) is given by the terms of the &, sequence of odds,

g,=3+2"

. 5.12
n=123,.. (5.12)

The (5.11) octet emerges from the terms of the ¢, sequence because of equation
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T(yn)zT(2”+l+3)=gl=7
n=123,.. '

(5.13)

The terms of the &, sequence are of the form D . From equation (4.13) we get
T(27+3)-T ((2“+1 +3)*) —6
T(2"+3)-T(2"*-3)=6
and with equation (4.7) we obtain
T(2"+3)-1=6
T(2"+3)=7
which is equation (5.13). ©

For the odds Q, D that belong to a symmetric octet we make the following conjecture:

Conjecture 5.1. A. 1. For every odd Q it holds that
T(2"-(Q+3)-3)=T(Q)

(5.14)
vneN
T(2-(Q+3)+3)=(T(Q)) (5.142)
vneN
2. For every odd D it holds that
T(2"-(D-3)+3)=T(D) (5.15)
vneN
T(2'(D-3)-3)=(T(D)) (5.15a)
vneN
B. 1. The sequences
7,(Q)=2"(Q-3)-3
r,(Q)=2"-(Q-3)+3 (5.16)

neN"

derive the same symmetric octet for each neN'.
2. The sequences
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A,(D)=2"-(D+3)+3

5,(Q)=2"-(D+3)-3 (5.17)
neN

derive the same symmetric octet for each neN’ .

From conjecture 5.1 and the definition of the symmetric octet, the following corollary emerges
directly:

Corollary 5.1. 1. For every odd Q that belongs to a symmetric octet the sequence

a,(Q)=2"-(Q+3)-3

A (Q)=2"-(Q+3)+3 (5.18)
neN’

gives (infinite) asymmetric octets that produce the symmetric octet to which Q belongs.
2. For every odd D that belongs to a symmetric octet the sequence
B,(D)=2"-(D-3)+3

B,(D)=2"-(D-3)-3 (5.19)
neN

gives (infinite) asymmetric octets that produce the symmetric octet to which D belongs.

The a, (Q)sequence has exactly one term in every interval

Q :[2N+1,2N+2],N6N,N+1> InQ 1
N In2 |

The B, (D) sequence has exactly one term in every interval

Q =[2N+1,2N+2],N6N,N+1> Inb 1
N In2 |

We give an example:

Example 5.3. We pick a number from the symmetric octet (5.2), for example 647 =D and a
random n=20. From equation (5.19) we get B,, (647) = 2% -(647 —3)+3=675282947 . The odd

675282947 gives the asymmetric octet
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647

IT
675282947 —L 5 535 «* 5 1001 «'—> 641
0935329789 —' 5 529 <«* 3 1007 <« 895

IT
889

which produces the symmetric octet
647 <« 535 <« 1001 <« — 641
‘T T
889 <« 529 <« 1007 <«— 895
which is (5.2). B,, (647) = 675282947 € O, belongs to the interval Q,, = [229, 23"}.
B,, (647) =2 (647 —3)+3=1350565891€ Q,, also produces the (5.2) symmetric octet and
belongs to the next interval Q,, =[2%,2% |,

647
IT
1350565891 ——» 535 «*» 1001 «— 641
1870659581 — —» 529 <« 1007 <« 895
IT
889

We now prove the following corollary:

Corollary 5.2. 1. For every odd Q belonging to a symmetric octet, it holds that
T(zn.(T(Q)+3)_3):T(T(Q))=Q_ (5.20)
vneN

2. For every odd D belonging to a symmetric octet, it holds that
T(2"(T(D)-3)+3)=T(T(D))=D

vneN

Proof. We prove equation (5.20) and the proof of (5.21) is similar. From definition 5.3 of the
symmetric octet it follows that if Q belongs to a symmetric octet, then T (Q) belongs to the

(5.21)

same symmetric octet. Therefore, equation (5.14) also holds forT (Q),
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T(2”(T(Q)+3)—3)=T(T(Q))
Vvne N

and taking into account that for the symmetric octet it is (definition) T (T (Q)) =Q we get
equation (5.20).o

Also, applying definition 5.1 for even numbers 2" -11,n € N*, IT = odd we obtain the following
corollary:

Corollary 5.3. For every odd IT it holds that
T(2"-11)=T(I1)
vneN,IT=odd

(5.22)

Proof. We prove equation (5.22) for the D odds and the proof is similar for the Q odds.
D=2""+2"+8.2""+B ,2"  +..+ 2" +1

v+l= InD
In2
2nD:2n+v+l+2n+v + V,12n+V71+ V722n+v72 +---+ﬁ12n+1+2n

T(Z”D):[ 1 N 1 + B n B, o4 b +2_];1j'2n+v+l

2n+v+l 2n+v 2n+v—1 2n+v—2 a 2n+1

2v+1 ? 21/—1 2v—2 ) 21 20
We give an example:
Example5.4. [1=Q=2021=2"+2"+2°+2" +2°+2°+2*-2°-2*+2' -1

T(Z“D):( L + L +£+£+.. +ﬁ+ij-2”1:T(D).m

2nH — 210+n + 29+n + 28+n + 27+n + 26+n + 25+n + 24+n _ 23+n _ 22+n + 21+n _ 2n
nelN

T(2"-10)=

n 11 1 1 1 1 1 1 1 1
T(Z 'H):—[ﬁ—F?ﬂ-?+7+§+§+2—4—§—?+§—1j'210 :T(H) .

1 1 1 1 1 1 1 1 1 1 1 1040
o 210+n + 29+n + 28+n + 27+n + 26+n + 25+n + 24+n o 23+n o 22+n + 21+n 2n ’ 2

We now prove the following corollary:
Corollary 5.4. For every odd A that doesn't belong to a symmetric octet, it holds that

AEQV:>T(A)EQ#,,U<V. (5.23)

Proof. Corollary 5.4 is a direct consequence of theorem 4.3 and definition 5.4. o
We complete section 5 with the following definition:
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Definition 5.5. 1. We define as asymmetric numbers, the numbers that don’t belong to a
symmetric octet (equations (5.6), (5.7))

2. We define as symmetric numbers, the numbers that belong to a symmetric octet (equations
(5.8).
6. The odd number quadruple

From the definition of the symmetric octet (5.1) and theorem 4.2 we have that every symmetric
octet consists of two ordered symmetric quadruple of the form

(Q’Q+6’Q*_6’Q*):(q1'd1'q2'd2)1 (6.1)
SO
(Q.Q+6,Q/-6,Q[,Q,,Q, +6,Q;-6,Q;). (6.2)

If Q, = Q, then the symmetric octet consists of eight different numbers, while if Q, =Q, then it
consists of four different numbers.

From the theorem 4.2 and the definition 5.1 we have that every odd number IT belonging to a
symmetric octet it belongs to the quadruple

(H,T ((rmy )T ((T (H)))n] (6.3)

If IT=Q doesn’t belong to a symmetric octet, then the quadruple in which it belongs is given by
equation (6.1) in the form

<Q1Q+6!Q*_G!Q*):(qlldl’qudz)' (64)

So, the equation (6.4) gives the quadruple in which every odd number IT belongs. Moreover, the
quadruple (6.4) is easily calculated from equations (2.6) and (2.16) which give the conjugate IT"
of the odd IT.

We now prove the following theorem:
Theorem 6.1. 1. If the quadruple

(0,,0,,9,,d,)

belongs to the interval € then the quadruple

(2"+(q,+3)-3,2"-(d,~3)+3,2"-(q, +3)-3,2"-(d, —3) +3) (6.5)
belongs to the interval Q .

2. If the quadruple
(0,.d,,0,.d,)
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belongs to the interval Q  then the quadruple
(2"-(d,—3)—3,2" (0, +3)+3,2"-(d, —3)-3,2" (0, +3) +3) (6.6)
belongs to the interval Q..

Proof. IT That's the same quadruple which belongs to the interval Q

2" (0, +3)-3+2"-(d, ~3)+3=2"-(d, ~3)+3+2"-(q, +3)—3
=2"(q,+d,)=2"(g, +d,)=2"x3x 2" =3x 20"+
and satisfies the equation (6.4). o
If in equation (6.4) we have Q —Q =6 then the quadruple consists of two different numbers.
In addition, if we use the equation Q" +Q =3x2"",v e N we take the quadruple
(ql =3x2""-3,d, =3x2"" +3,q, =3x2"" -3,d, =3x 2V*l+3)
veN

which consists of the pair

(Q=3x2"-3,Q" =3x2"+3)

(6.7)
velN
7. Strictly decreasing sequences of symmetric quadruples
We now prove the following theorem:
Theorem 7.1. For every symmetric number IT the number
E(H,w)=H+4—8a) (7.1)

weN
is asymmetric.

Proof. We prove the theorem for the IT=Q =8m+9 odds and the proof is similar for the
IT=D =8m+7 odds. For the numbers of form IT=8m+9 (see equations (5.8)) we have

E(9+8m,0)=9+8m+4-8w=8(m-0)+13. o

By successive use of the asymmetric numbers (7.1) we get strictly decreasing (see corollary
5.4) sequences of symmetric quadruples. We give an example:

Example 7.1. For the symmetric number (see equation (5.4)) IT=2% +1 and for »=14562049
in equation (7.1) we get the asymmetric number

E(2% +1,14562049) = 2% +1+4-8-14562049 = 4178470909

which produces the symmetric quadruple
(6700417,6700423,5882489,5882495) .
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8. An algorithm for factorization of the symmetric odd numbers

Starting from a composite symmetric odd IT=af € [2“*1, 2”2] we can determine the

asymmetric odd (7.1) which derives a symmetric quadruple to which a factor of IT belongs. For
the execution of the algorithm, it is required the estimation of the intervals Q, =[ 2,2 |

and Q, :[ZVZ*l,ZVZ*ZJ to which the factors & and S of the odd IT= /3 belongs. From
equations

INTI=In(af)=Ina+Ing
and (2.1),

+1=[In_l‘[] V1+1={In_a] v2+1={|n—a]
In2 In2 In2

we get the possible values of v, and v,. As a consequence of equation (2.1), the number of pairs
(v,,v,) increases logarithmically with respect to the increase of IT. If we cannot estimate the

intervals to which the factors of IT belongs then we execute the algorithm for all intervals of the
form

Q =[22""] k=123..,v-1,

We present the four steps of the algorithm:
A. For numbers of the form IT=Q=8m+9.

Step 1. We estimate the intervals Q, = [2”1 : 2V1+1] ,Q, = [ZVZ : 2V2+1] to which the factors of IT
belong.

Step 2. From equation (7.1) and replacing Q-+3 with K in equation (5.14) we get
M+4-80»=2"K-3

K =odd

I[M+7-8w=2"K. (8.1)

Step 3. In equation (8.1) we gives values ®=0,1,2,.... As we give these values to o, the natural
n in equation (8.1) changes. This change is periodic and we can determine the period for every
value of the natural n. We choose the values of @ for which we have n=v, and n=v;,.

Step 4. For n=v,, n=v, we calculate the values of K in equation (8.1). We get the odd
numbers

I, =K+260
O -

For small values of @ a factor of IT belongs to the octet of I1,. There exists a value of o for
which K=a v K = £, since every odd symmetric numbers belongs to its octet.

(8.2)
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B. For numbers of the form IT=D=8m+7.

Step 1. We estimate the intervals Q, =[2",2" ], Q, =[2",2"" ] to which the factors of I
belong.

Step 2. From equation (7.1) and replacing D—3 with K in equation (5.14) we get
[M+4-80=2"K+3

K =odd

M+1-8w=2"K. (8.3)

Step 3. In equation (8.3) we give values w=0,1,2,.... As we give these values to @ the naturaln
in equation (8.3) changes. This change is periodic and we can determine the period for every
value of the natural n. We choose the values of o for which we have n=v; and n=v,.

Step 4. For n=v,, n=v, we calculate the values of K in equation (8.3). We get the odd
numbers

I, =K +20
el -

For small values of & a factor of IT belongs to the octet of I1,. There exists a value of o for
which K=a v K = £, since every odd symmetric numbers belongs to its octet.

(8.4)

We give two examples of application of the algorithm. In these examples we factorize small
odd numbers in order to understand the algorithm.

Example 8.1. For the symmetric number IT=Q = 2% +1=641x 6700417, 641e Q, and
6700417 € Q2,, . Hence we have v, =9 and v, =22. For n=v, =22, from equation (8.1) we get
IT+7-8w=2%K

22 +1+7-8w=2%K.

Giving values w=0,1,2,... we determine the values of @ for which the power 2" = 2% is

periodically appeared in the right side of the equation @ =1+ (2k +1)-2",k € N. To determine
the equations of such type is something simple (see example 8.3). So we get the equation

2% +1+7-8(1+(2k +1)-2") =2"K
k=012,.. '

For k=0,12,... we get K =1023,1021,1019,.... For k =8 we get K =1007 which gives the
octet to which 641 belongs (see equation (5.2).

(8.5)

For k =191 equation (8.5) gives
2% +1+7-8(1+(2-191+1)-2°) =2 641,

K =641.
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Every odd symmetric numbers belongs to its octet.

Giving values w=0,1, 2,... we determine the values of @ for which the power 2" =2° is

periodically appeared in the right side of the equation @ =65+k-2’,k € N. So, we get the
equation

232+1+7—8(65+k-27):29K
kK=012,.. '

For k=0,1,2,... we get K =8388607,8388605,8388603,.... For k =113767 we get
K =8161073 which gives the octet to which 6700417 belongs,

8161073 «—— 6700417 <« 5882495 «'— 8161079

4421839 «'— 6700423 <« 5882489 <« 4421833

(8.6)

For k =844095 equation (8.6) gives
2% +1+7—8(65+844095-27) =2°.6700417,

K =6700417.

Example 8.2. For the symmetric number IT= D =1030087 = 641x1607 ,

641 Qq and 1607 € QO,,. Hence we have v, =9 and v, =10. For n=v, =9, from equation
(8.4) we get

MM+1-8w=2"K

1030087 +1-8w=2°K .

Giving values w=0,1,2,... we determine the values of @ for which the power 2" =2° is

periodically appeared in the right side of the equation @ =57+ (2k +1)-2". So, we get the
equation

1030087 +1-8(57 +(2k +1)-2) = 2°K
k=012,.. '

(8.7)

For k =0 equation (8.7) gives
1030087 +1-8(57+(2-0+1)-2")=2°- 2011,

K =2011.
The odd K =2011 gives the asymmetric octet
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1007

T
2011 ——» 895 «*» 641 <« 1001
*$ $*
1061 ——» 889 <« > 647 «'—» 535

IT
529

which produces the symmetric octet

1007 <« 895 «*—» 641 «— 1001
"1 4
529 <« 889 «*» 647 <« 535

to which 641 belongs.

For k =342 equation (8.7) gives
1030087 +1-8(57+(2-342+1)-27) =2°-641,

K =641.

Giving values w=0,1 2,... we determine the values of @ for which the power 2"z =2 is
periodically appeared in the right side of the equation @=121+k-2°. So, we get the equation
1030087 +1-8(121+k-2°) = 2°°K
k=0,12,..

(8.8)

For k =0 equation (8.8) gives
1030087 +1—8(121+O-28) =2'°.1005,

K =1005.
From equation (8.4) we get

I1, =1005+ 26
Oel

and for & =1 we get IT, =1007 which gives the octet of 641.

For k=0,12,... we get K =1005,1003,1001,.... For k =2 we get K =1001 which gives the
octet to which 641 belongs.

Example 8.3. We calculate the @ of equation (8.1) for the IT=Q = 276569 =193x1433,
193eQ,,1433€Q,, v, =7, v, =8. For v, =7 we have

M+7-8w=2"K
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276576 —8w=2"K. (8.9)

We give values w=0,1,2,3 and we get

276576-8-0=2°-8643

276576-8-1=2°-34571

276576-8-2=2".17285 .

276576-8-3=2°-34569

The 2° power is periodically appeared for the odd values of @, so we choose the even values:

276576 -8(2k)=2"K
(2k) | (8.10)

k=0,12,..

We give values k =0,1,2,3 and we get
276576-8-2-0=2°-8643
276576-8-2-1=2" 17285
276576-8-2-2=2°.4321 .
276576-8-2-3=2".17283

The 2* power is periodically appeared for the odd values of k, so we choose the even values:
276576 -8(2-2-k)=2"K

k=0,12,..

276576 -8(4-k)=2"K

k=0,12,..

We give values k =0,1,2,3 and we get
276576-8-4-0=2°-8643
276576-8-4-1=2°-4321
276576-8-4.2=2° -8641.
276576-8-4-3=2°.135

The 2° power is periodically appeared for the even values of k , so we choose the odd values:
276576 -8(4-(2k +1))=2'K
k=0,12,..

276576 -8(4+8k)=2"K

k=0,12,..

We give values k =0,1,2,3 and we get
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276576-8~(4+8-0) 2°.4321

276576-8- (4 +8 -1) =2".135

276576-8-(4+8-2)=2°-4319

276576-8- (4 +8- 3) =2".2159

where the 2" power of 2 appears,

276576-8-(4+8-3)=2" - 2159. (8.11)
We give additional values to k and get

276576-8-(4+8.7)=2" 2157, (8.12)
From equations (8.11), (8.12) we get

276576 -8(28+k-2°)=2"K

k=0,12,..

w=28+k-2°

k=0,12,..

The sequence o has a set of properties that have not been investigated in detail. One of them
is that in some cases the periodicity of powers of 2 is lost. We give one example.

Example 8.4. For the symmetric number

[M=Q= 41-(9+ 2119): 27 249173 913590 775394 528044 735747 064177,

in the calculation of o, after 1+119=120 steps the periodicity of powers of 2 is lost:

27 249173 913590 775394 528044 735747 063808 = 2'° x41

25 919945 917805 859521 624237 675466 719232 = 2''° %39

24 590717 922020 943648 720430 615186 374656 = 2°x37
23 261489 926236 027775 816623 554906 030080 = 2'° x35
The odd numbers 41, 39, 37, 35 in equation (8.13) are consecutive.

(8.13)

The algorithm can be executed for all intervals

Q :|:2k’2k+1:|,k:1,2,3,...,1/—1’ v+l= InTI .
k In2

In this case, an open topic for algorithm improvement is the determination of the optimal value
of n inequations (8.1), (8.3).

9. A categorization of the composite odd numbers

From equations (5.7), (5.8) we get the following 10 categories for composite odd numbers:
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Q=(8m, +7)(8m, +7)=8d+49 (9.1)
D =(8m,+7)(8m, +9) =8D +63 9.2)
Q=(8m,+7)(8m, +11) =8dD +77 (9.3)
D = (8m, +7)(8m, +13) =8® +91 (9.4)
Q=(8m, +9)(8m, +9) =8d +81 (9.5)
D = (8m, +9)(8m, +11) = 8d +99 (9.6)
Q= (8m, +9)(8m, +13) =8d +117 9.7)
Q =(8m, +11)(8m, +11) = 8d +121 (9.8)
D =(8m, +11)(8m, +13) =8 +143 (9.9)

Q =(8m, +13)(8m, +13) =8 +169 (9.10)
m,m, ®eN.

As a consequence of equations

81-49=8-4

99-91=8-1

117-77=8-5

121-49=8-9

121-81=8-5

143-63=8-10

169-49=8-15

169-81=8-11

169-121=8-6

for every odd number for which we don’t know its factors, we get at least two possible forms
(9.1)-(9.10) as product of two factors. We give two examples.

Example 9.1. For the
RSA120=227010481295437363334259960947493668895875336466084780038173258247009
162675779735389791151574049166747880487470296548479

we have

RSA120-63=80
RSA120-91=8®
RSA120-143=8®.

Therefore, it is either form (9.2),
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D =(8m,+7)(8m,+9) (9.11)
or from (9.4),

D =(8m, +7)(8m, +13) (9.12)
or form (9.9),

D =(8m, +11)(8m, +13). (9.13)
The factors of RSA120 are known and indeed are of the form (9.12).

Example 9.2. The factors of

RSA260=221128255295296664352810852550262309276120895024700153944137483191288
229414020019865127297265697465990859003300314000511707422045608592763579537571
859542988389587092292384910067030341246205457845664136645406842143612930176940
20846391065875914794251435144458199

are not known.

However, we have

RSA260-63=80

RSA260-143=8®.

Therefore, it is either form (9.2),

D=(8m,+7)(8m, +9) (9.14)

or form (9.9),

D =(8m, +11)(8m, +13). (9.15)
For every form (9.1)-(9.10) we can develop an algorithm similar to this of section 8.

There are five algorithms, one for each of the following subsets of equations (9.1) - (9.10):

1. (9.1), (9.5) (the A of the algorithm of section 8).

2. (9.2) (the B of the algorithm of section 8).

3.(9.3), (9.7),
+3-80=2"K. (9.16)
4.(9.4), (9.6),

1-3-80=2"K. (9.17)

5. (9.8), (9.9), (9.10).

The algorithm finds symmetric factors of IT. Numbers (9.8), (9.9), (9.10) have no symmetric
factors and therefore are not factorized by the algorithm. Factoring these numbers requires
special study. Factors of the form 8m+11, 8m+13 of the odd ITcan be found via conjecture 5.1.
We will return to this topic in next article.
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10. Conclusion

If we want to summarize this article in one sentence we would say that we study the symmetries
of natural numbers which arise from theorem (2.1). These symmetries establish a new
framework for the study of natural numbers which is entirely different from the context in which
they have been studied so far.
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