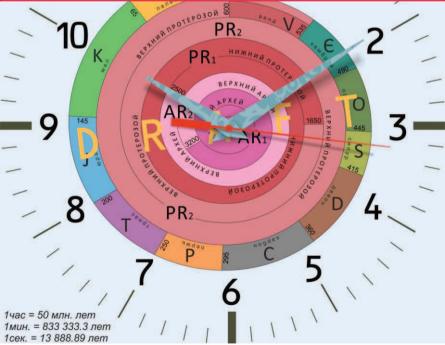
Числофизика: Темп элементарных событий (Number physics: Rate of elementary events)

Александр Васильевич Исаев (Alexander Vasilievich Isaev)

Abstract

Монография от 20.04.2016, в которой освещаются такие вопросы: Количество элементарных событий; Площадь, которую вычисляет li(N); Точность работы параметра К (порядкового номера простого числа); Граничное время и к-время; Виды к-времени у обычных чисел; Текущий темп элементарных событий; Темп событий на Большом отрезке; Шкала с равным количеством событий; Темп событий на Сверхбольшом отрезке; Новые смыслы (Сверхбольшой отрезок).

A monograph dated 20.04.2016, which covers the following issues: The number of elementary events; The area calculated by li (N); Accuracy of the parameter K (ordinal number of a prime number); Boundary time and k-time; K-time types for ordinary numbers; Current pace of elementary events; The pace of events on the Great Section; Scale with an equal number of events; The pace of events in the Ultra-Large segment; New meanings (Extra large segment).



http://www.geodrom.ru/img/11 3.gif

Оглавление

1.	Предисловие	2
2.	Количество элементарных событий	3
3.	Площадь, которую вычисляет $li(N)$	5
4.	Точность работы параметра K	8
5.	Граничное время и к-время	10
6.	Виды к-времени у обычных чисел	12
7.	Текущий темп элементарных событий	15
8.	Темп событий на Большом отрезке	18
9.	Шкала с равным количеством событий	22
0.	Темп событий на Сверхбольшом отрезке	23
11.	Новые смыслы (Сверхбольшой отрезок)	25
	Приложения (таблицы)	26

1. Предисловие

В истории точных наук есть немало примеров, когда некий, казалось бы, абстрактный, «надуманный» математический объект спустя некоторое время «вдруг» находил своё применение в теоретической физике. Упомяну лишь три поясняющих примера.

- Лобачевский (1792 - 1856)1). Николай построил знаменитую неевклидову геометрию, заменив в обычной геометрии всего лишь одну аксиому (о параллельных прямых, он заменил её отрицанием). Однако Лобачевский умер непризнанным, пройдя через непонимание ученых, невежественные насмешки, откровенную травлю, и не дожив до торжества своих идей всего... 10-12 лет. В геометрия Лобачевского итоге нашла применения, как в математике, так и в физике. Например, установлена тесная связь геометрии Лобачевского с кинематикой специальной теории относительности (СТО).
- 2). Непрерывные *группы*, введенные математиком Софусом Ли в 1870 году и носящие его имя, играют важнейшую роль в математике и физике. Например, в 2007 году физик Гаррет Лизи на основе группы Ли Е8 предложил *«теорию всего»*, которая объединяет *все* известные физические взаимодействия, существующие в природе.

3). Пространство Калаби-Яу (ПКЯ) — это класс шестимерных геометрических объектов, их математическое описание (сложное и изощренное) получено Э. Калаби (1957 г.) и Ш.Т. Яу (1977г.) вне всякой связи с физикой. А в 1984 г. было доказано, что требованиям к дополнительным измерениям, вытекающим из теории (квантовых) струн удовлетворяет именно... ПКЯ. Понятие о ПКЯ позволяет получить ответ на один из сокровенных вопросов физики: с чем связано существование семейств фундаментальных частиц и почему семейств именно три? До теории струн ответа на это вопрос не было.

Мир чисел — это также чисто математический объект, причем существующий вне зависимости от воли человека, его воображения (скажем, как гора Эверест). Общеизвестная *теория чисел* (сложный раздел высшей математики), подобно одержимому альпинисту, просто исследует, изучает, «покоряет» этот объект. И результат «покорения» будет *одинаковый* для всех «разумных» цивилизаций во Вселенной. Только сам язык (символы, знаки,...) «математики» окажется разным, но это никак не меняет сути сказанного.

Так вот, моя гипотеза-игра (космология чисел или виртуальная космология) сводится к тому, что мир чисел (как объект) также может найти своё применение в теоретической физике. Лично мне пока представляется, что мир чисел как бы «отражает» «устройство» пространства-времени (или некоторых его важнейших аспектов).

Во всяком случае, мир чисел, наверняка, ну хоть что-нибудь, да «отражает» из физики, ибо *такое* «*чудо природы*» *не может пропадать без всякой пользы*! Поэтому в любом случае моя работа — далеко не напрасный труд. Причем от «общения» с миром чисел сам я получаю наивысшие, из доступных только человеку, удовольствия — интеллектуальное, эстетическое, философское. Словно от общения с самим Творцом, создавшим столь совершенный мир чисел...

2. Количество элементарных событий

Когда мы движемся по числовой оси вправо от числа N=2, то «случайное» появление *простого числа* (2,3,5,7,11,13,17,19,23,...) – это некое фундаментальное, предельно элементарное событие — ничего более важного в мире чисел не происходит (пока числа «текут» от меньшего простого числа к соседнему большему простому числу). Само простое число P – это символ предельно элементарного, ведь оно (по определению) имеет только два целых делителя — единицу и само

число P. Почему слово «случайное» взято в кавычки? Потому, что это – иллюзия, ведь в мире чисел нет места случайности, этот мир абсолютно детерминирован. То есть, например, зная достаточно большой *порядковый номер* (K) простого числа P (в ряде всех простых чисел), – в принципе можно вычислить по некой формуле (по некому алгоритму) и само простое число, но на практике это сделать сложно (скажем, для чисел порядка 10^6 0).

В чем заключается фундаментальность простых чисел? В том, что именно из простых чисел, как из главных кирпичиков, строится бесконечное множество составных натуральных чисел (коих явное большинство). Например: $N = 492\ 280\ 031\ 250 = (2^1)\cdot(3^8)\cdot(5^6)\cdot(7^4)$ и никакой иной набор (комбинация) простых чисел никогда не даст нам указанного составного числа N (составленного из набора простых чисел, см. основную теорему арифметики). То есть самый главный закон мира чисел по своей «идеологии» весьма похож на то, как в теоретической физике из относительно небольшого «набора», скажем, квантовых струн (их отчасти и «отражают» наши простые числа?) строится ВСЁ в рамках струнной физики (это один из вариантов так называемой теории ВСЕГО, подобных теорий уже много придумано).

Даже в силу выше сказанного читателю должно быть понятно, почему одна из главнейших задач общеизвестной *теории чисел* — это поиск путей (формул) для наиболее точного вычисления *количества* (K) простых чисел на отрезке [2; N].

Предельно лаконичной (но, увы, и самой грубой) здесь является следующая красивая формула:

$$K \approx N/\ln N,$$
 (2.1)

точность которой определяется таким неравенством (при $N \ge 7$):

$$K < K_p < 1,25506 \cdot K,$$
 (2.2)

где $K_{\rm P}$ – *реальное* количество простых чисел на отрезке [2; N].

Пусть относительная погрешность (ОП) формулы (2.1) равна:

$$\mathbf{O\Pi} \equiv (K_{\mathbf{p}} - K)/K. \tag{2.3}$$

Тогда при $7 \le N < 10^3$ 08 по моим оценкам в части ОП, вообще говоря (т.е. это не всегда так), работает такая эмпирическая формула:

$$O\Pi \approx 1,37/(\ln N)^1,044.$$
 (2.4)

Например, возьмем число $N = 8,078 \cdot 10^{60}$. Запомните это число (хотя бы его порядок) — почти столько *планковских времён* содержится в возрасте Вселенной (около 13,81 млрд лет). Беря для своих примеров числа N такого порядка, я пытаюсь доказать (хотя бы самому себе), что **Большой отрезок** (мой термин, грубо говоря, этот отрезок доходит до

числа $N \sim 10^61$) «отражает» момент нашего «сегодня». Впрочем, наше «сегодня» может «отражать» и колоссальный отрезок, скажем, $N \sim e^{(e^137)}$ — об этом я как-то уже писал ранее. Ведь моя космология чисел — это весьма «сырая» гипотеза (в поиске «истин»). При этом $K_p \approx \text{li}(N) \approx 5,8\cdot10^58$ (про li... — подробно будет ниже) мы получим ОП $\approx 0,00723$. И это число, как и всякая ОП, имеющее смысл вероятности, всего лишь на 0,9 % меньше значения пресловутой Альфы: $\alpha = 0,007297... \approx 1/137$ — самой таинственной физической константы (безразмерной и также имеющей смысл вероятности).

Если в формуле $K \approx N/\ln N$ добавить «всего лишь»... единицу, то её точность резко увеличивается. Первым это доказал знаменитый русский математик Пафнутий Чебышёв, поэтому данную формулу я назвал формулой Чебышёва (в теории чисел у неё нет названия):

$$K \approx N/(\ln N - 1). \tag{2.5}$$

При $10^5 \le N < 10^308$ по моим оценкам в части ОП формулы Чебышева, вообще говоря, работает такая эмпирическая формула:

$$O\Pi \approx 1,43/(\ln N)^2,0457,$$
 (2.6)

и в конце *Большого отрезка* (при $N = 8,078 \cdot 10^{60}$) ОП формулы (2.1) превысит ОП формулы Чебышева почти в 138 раз (что близко к $1/\alpha$).

Самая точная (из ещё относительно несложных формул) — это следующая формула *теории чисел* (подробно о ней говорится в гл. 3):

$$K \approx li(N),$$
 (2.7)

где за символом li(N) (читается: «*ли малое* от числа N») кроется уже довольно солидное выражение (по сравнению с формулами 2.1 и 2.5).

3. Площадь, которую вычисляет li(N)

Обозначим через K_P — реальное количество *простых чисел* (2, 3, 5, 7, 11, 13,...) на отрезке [2; N], то есть, иначе говоря, K_P — это порядковый номер простого числа (в ряде всех простых чисел). Первым статистическую закономерность в расположении простых чисел подметил Карл Гаусс. В письме Энке (1849 г.) он сообщил, что ещё в 1792—1793 годах, в связи с изучением таблицы простых чисел, чисто эмпирически, обнаружил, что *плотность* простых чисел (K_P/N) «в среднем близка к величине, обратно пропорциональной логарифму» (то есть $K_P/N \sim 1/\ln N$). В упомянутом письме Гаусс впервые говорит о том, что $K_P \approx \text{Li}(N)$, однако и эту замечательную гипотезу Гаусс (по своему обыкновению) нигде не опубликовал...

Чтобы наглядно понять смысл Li(N) (читается как «ли *большое* от числа N») нам надо разобраться, что такое li(N) (читается как «ли *малое* от числа N»). Так вот li(N) — это *интегральный логарифм* (числа N), он был введён ещё Леонардом Эйлером в 1768 году. Интегральный логарифм — это определенный интеграл, который вычисляет *площадь* (S), заключенную между графиком функции $Y = 1/\ln X$ и осью абсцисс (горизонтальной осью, на которой находятся числа X = N). При этом указанная площадь S вычисляется от точки X = 0 (эта точка всегда «стоит на месте») до некой точки X = N, где N — «движется», то есть может быть любым положительным вещественным числом, в том числе и натуральным, кроме N = 1, где функция $Y = 1/\ln X$ претерпевает *разрыв*. На графике рис. X = 10 указанная площадь X = 11 заключена между красной линией и горизонтальной осью, причем график показан только до числа X = 13, а далее — красная линия продолжает свой бесконечный «спуск» на горизонтальную ось, никогда её не достигая.

«Прочитаем» нюансы на графике рис. 3.1 – это для нас очень

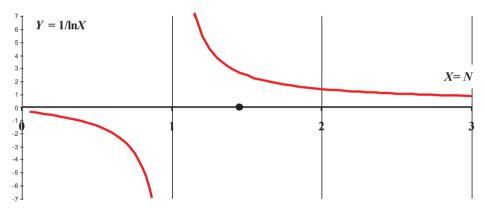


Рис. 3.1. График функции $Y = 1/\ln\!X$ на числовом отрезке от 0 до 3

важно. Мы видим, что при 0 < N < 1 площадь S всегда имеет знак «минус», ведь она «суммируется» (определенным интегралом) из бесконечного множества отрицательных значений функции $Y = 1/\ln X$. И когда N устремляется κ нулю $(N \to 0)$, то площадь S также устремляется κ нулю: $S \to 0$ (кстати, сам ноль не имеет знака «минус» или «плюс»). Когда N подходит κ единице слева (например, так: N = 0.9; 0.99; 0.999; 0.9999; 0.9999...), то наша площадь устремляется κ «минус» бесконечности: $S \to -\infty$. А вот когда N «переходит» за единицу («перепрыгивая» разрыв функция $Y = 1/\ln X$), то площадь S, всё ещё продолжая иметь знак «минус», возрастает до нуля: S = 0 при N = 0

1,451 369 234 883... (*число Рамануджана-Солднера*, жирная точка на горизонтальной оси рис. 3.1). Именно в этой точке две бесконечности ($-\infty$ слева от 1 и $+\infty$ справа от 1) как бы «компенсируют» друг друга. После указанной точки ($N\approx 1,45$) площадь S уже всегда будет иметь только знак «плюс» (интуитивно это должно быть понятно даже при разглядывании нашего графика). И, например, при N=2 указанная площадь вырастает до значения: S=1,045 163 780 117 49... – это и есть числовое значение $\mathrm{li}(2)$.

Откуда я беру столь точные значения площади S? Во-первых, напоминаю, что указанную площадь S вычисляет li(N), а во-вторых, в любом справочнике по (высшей) математике вы без труда найдете такую (в принципе, совсем нехитрую) формулу и для самого li(N):

$$\mathbf{li}(N) = \gamma + \mathbf{lnln}N + \sum G_{k}, \tag{3.1}$$

где: lnlnN - это двойной логарифм числа <math>N, то есть ln(lnN), причем при N < 1 уже нельзя вычислить lnlnN в поле вещественных чисел, но об этом ещё будет сказано ниже и достаточно подробно;

 $k = 1, 2, 3, 4, 5, 6, 7..., \infty$ – это номер *G-слагаемого* (это сугубо моё название, для удобства разговора), которое равно следующему:

$$G_{k} \equiv (\ln N)^{k/k/k!}; \qquad (3.2)$$

 $k! \equiv 1.2.3.4...k$ – это k-факториал (стандартная функция);

 $\gamma = 0,577\ 215\ 664\ 901\ 532...$ постоянная Эйлера-Маскеро́ни или постоянная Эйлера, которая выражается множеством самых разных формул и скрывает свою главную (?) тайну — до сих пор не выявлено, является ли это число γ рациональным (представимым обыкновенной дробью A/B из натуральных чисел A и B).

На практике для N > 1 можно суммировать (\sum) только те (первые) G-слагаемые, которые ещё «не провалились к нулю» (это легко увидеть на практике — при реальных вычислениях). Поскольку все остальные G-слагаемые (с ещё большими номерами k) будут настолько малы (близки к нулю), что практически уже не влияют на значение $\mathrm{li}(N)$.

Компьютер вычисляет k-факториал (как стандартную функцию) «только» до k=170 (а именно: $170!\approx 7,26\cdot 10^306$), и при k=171 компьютер уже выдает сообщение: «#ЧИСЛО!» (поскольку $171!>10^308$). Поэтому в моём алгоритме в части вычисления G-слагаемого далее вступала в работу формула Муавра-Стирлинга:

$$k! \approx [(2 \cdot \pi \cdot k)^{\circ} 0.5 \cdot (k/e)^{\circ} k] \cdot W, \tag{3.3}$$

где за главным членом этой формулы стоит параметр W, равный

$$W = 1 + 1/12/k + 1/288/k^2 - 139/51840/k^3 - 571/2488320/k^4 + \dots (3.4)$$

В своём алгоритме я сначала вычислял логарифм k-факториала: $\ln(k!) = 0.5 \cdot \ln(2 \cdot \pi) + 0.5 \cdot \ln k + k \cdot (\ln k - 1) + \ln W$, затем вычислял логарифм G-слагаемого: $Z_k \equiv \ln(G_k) = k \cdot \ln \ln N - \ln k - \ln(k!)$, и только потом находил G-слагаемые $G_k = \exp(Z_k)$, их сумму $\sum G_k$ и само $\ln(N)$.

Поняв, что такое li(N) и умея его вычислять, мы поймем и смысл Li(N). Так вот, Li(N) – это *совинутый* интегральный логарифм:

$$Li(N) \equiv li(N) - li(2), \tag{3.5}$$

и в данном случае его суть такова: Li(N) вычисляет площадь (S) под графиком функции $Y=1/\ln X$ на отрезке от X=2 до X=N. Как уже говорилось выше: li(2)=1,04516378011749... . И гениальность Карла Гаусса проявилась в том, что он первым понял такую важную истину:

$$K_{\rm p} \approx {\rm Li}(N),$$
 (3.6)

то есть количество (K_p) *простых чисел* на отрезке [2; N] численно примерно равно Li(N). Для N > 2 формула $K_p \approx \text{Li}(N)$, не вызывает особых вопросов, при этом довольно любопытны законы «поведения» *гауссовых слагаемых*, что рассмотрено мной в отдельной работе.

4. Точность работы параметра K

Выше говорилось, что li(N) вычисляет некую площадь (S), а при N >> 2 (существенно больше 2) указанная площадь численно близка к количеству (K_p) простых чисел на отрезке [2; N]. Причем далее мы будем исходить не из формулы $K_p \approx Li(N)$, а из такой формулы:

$$K_{\rm p} \approx {\rm li}(N),$$
 (4.1)

которая почти ничего не меняет при N >> 2, и при $10 < N < 10^24$, по моим оценкам, *относительная погрешность* (ОП) формулы такова:

$$\mathbf{O\Pi} \approx 1/N^{\wedge}\mathbf{0.5}.\tag{4.2}$$

А вот при N < 2 формула (4.1) откроет перед нами доселе никому не известные (разумеется, в свете *космологии чисел*) миры чисел – экзочисла и проточисла. Поэтому далее мы будем использовать такое обозначение $K \equiv \text{li}(N)$ (ли малое), то есть K – это параметр, значение которого при N >> 2 – трудно переоценить в рамках общеизвестной теории чисел (где поиск путей вычисления K_p – чуть ли не самая главная задача). А значение параметра K в области экзочисел и проточисел также переоценить невозможно.

Замечание. При *N* → 1 параметр $K \equiv \text{li}(N)$ устремляется к «минус» бесконечности $(K \to -\infty)$, что по модулю (без учета знака «минус»)

«совпадает» с результатом по другой важнейшей формуле *теории чисел*: $K \sim N/\ln N$, согласно которой при $N \to 1$ мы получаем: $K \to +\infty$, то есть у простого числа N = 1 (иногда и математики считают единицу – простым числом) его порядковый номер (K) устремляется к... бесконечности (∞) .

В теории чисел доказано следующее важное неравенство:

$$|K - K_p| < (1/8/\pi) \cdot N^{\wedge} 0.5 \cdot \ln N, \tag{4.3}$$

где $K_{\rm P}$ — реальное количество *простых чисел* на отрезке [2; N], а само неравенство верно при $N \ge 2657$. Знак *модуля* |...| стоит по следующей причине: при $N \ge 2$ и вплоть до **числа Скьюза** (которое до сих пор не известно) всегда $\mathrm{li}(N)$ будет больше $K_{\rm P}$, но вот после числа Скьюза разность $K - K_{\rm P} \equiv \mathrm{li}(N) - K_{\rm P}$ «**меняет свой знак бесконечное число раз**» (по-прежнему подчиняясь неравенству 4.3). Для справки: $1/8/\pi \approx 0,04$ и к 2016 году известно, что число Скьюза заключено между числами $10^{\circ}19$ и $1,39822 \cdot 10^{\circ}316$ (см. статью о числе Скьюза).

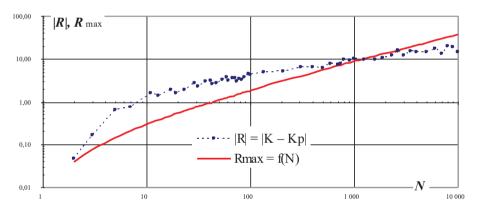


Рис. 4.1. Ситуация с разницей $R \equiv K - K_{\rm P}$ в самом начале натурального ряда

Введем такие обозначения: $R \equiv K - K_{\rm p}$ и $R_{\rm max} \equiv (1/8/\pi) \cdot N^{\circ} 0, 5 \cdot \ln N$, тогда неравенство (4.2) примет вид: $|R| < R_{\rm max}$, а на графике (рис. 4.1) становится ещё понятней смысл этого неравенства: при $N \ge 2657$ все синие точки (модули *разности* $R \equiv K - K_{\rm p}$) всегда будут лежать ниже красной линии $R_{\rm max} \equiv f(N) \equiv (1/8/\pi) \cdot N^{\circ} 0, 5 \cdot \ln N$.

По моим данным (небольшой объем которых, разумеется, вызывает сомнения) при N>100 разность R может быть связана с $R_{\rm max}$ примерно следующим эмпирическим соотношением:

$$R \approx R_{\text{max}}/0.0105/(\ln N)^2.3521.$$
 (4.4)

Например, при $N=8,078\cdot10^{6}0$ мы получим $K\equiv \text{li}(N)\approx 5,8\cdot10^{5}8$, а разность $R\equiv K-K_{\text{p}}\approx 1,35\cdot10^{2}8$ (что в 1177 раз меньше R_{max}).

Более того, вполне возможно, что число Скьюза окажется порядка $N \approx 8,078 \cdot 10^{60}$ (см. мою статью «Число Скьюза $\sim 10^{61}$ »). При этом возможна и такая удивительная картина (кстати, она не описана в упомянутой статье): после числа Скьюза мы вдруг (сразу) получаем разность $R \equiv K - K_p \approx -1,35.10^28$, то есть всё ту же колоссальную разность R, но только со знаком... «минус». Хотя до (фантастического!) момента, по мере «колоссально долгого» роста разницы R, у неё всегда был знак «плюс». И уже после прохождения Nчисла Скъюза начинаются бесконечные колоссальные колебания разницы R с бесконечной (псевдослучайной) сменой его знака (более того, нечто подобное происходит и в мире... малых экзочисел, о чем расскажу позже). Всё это не выглядело бы столь удивительным, если бы функция R = f(N), по мере роста N, скажем, наверняка, начинала бы убывать к нулю (как описано в статье «Число Скьюза ~ 10⁶1», но у меня нет 100 %-й уверенности, что это верно). Но, как бы там не было (в любом случае), смена знака у разницы R – абсолютно неизбежна – это доказано в теории чисел. Читатель, неужели даже такое оставляет Ваш разум... безразличным?

5. Граничное время и к-время

Введем следующие два понятия (отчасти в новой редакции).

Граничное время (t) — это двойной логарифм правой *границы* отрезка [0; N], то есть: $t \equiv \ln \ln N$, что надо понимать так: $t \equiv \ln (\ln (N))$.

K-время (t_K) — это двойной логарифм параметра K, где $K \equiv \text{li}(N)$ (именно «ли малое», а не «ли большое»), то есть: $t_K \equiv \text{lnln}K$. В ряде случаев (при некоторых наших оценках в первом приближении) мы будем полагать, что $K \approx N/\text{ln}N$ или $K \approx N/(\text{ln}N-1)$. То есть при N > 2 параметр K — это приблизительное количество простых чисел, на отрезке [0; N], и чем больше N, тем ближе параметр K к реальному количеству простых чисел на указанном отрезке.

K-время реальное $(t_{\rm KP})$ — это двойной логарифм параметра K, где K — это реальное количество простых чисел, на отрезке [0;N], причем в данном случае правая граница N — это K-ое простое число.

Какова связь между $t_{\text{кр}}$ и $t_{\text{к}} \equiv \text{lnln}K$? Где $K \equiv \text{li}(N)$ и напоминаю, что именно «ли малое», а не «ли большое». Нетрудно прийти к такой эмпирической оценке (относительной погрешности – ОП):

$$O\Pi \equiv (t_{K} - t_{KP})/t_{K} = 1 - t_{KP}/t_{K} \approx a/N^{\wedge}b, \tag{5.1}$$

где a=1,1916; b=0,7617 для $7 \le N \le 10^4$ и a=0,0892; b=0,5584 для $10^4 < N \le 10^2$ 4. То есть уже при $N=10^4$ имеем $|O\Pi| \approx 0,08\%$ и можно смело полагать, что $t_{\rm KP} \approx t_{\rm K}$, то есть разница между $t_{\rm KP}$ и $t_{\rm K}$, довольно быстро становится не существенной (с точки зрения космологии чисел). При $N < 10^4$ нужно учитывать, что $t_{\rm KP} < t_{\rm K}$, а из формулы (5.1) следует, что $t_{\rm KP} \approx (1-1,1916/N^0,7617)\cdot t_{\rm K}$.

Пусть N = 2, 3, 5, 7, 11, 13, 17, 19, 23,... – это простое число, а K = 1, 2, 3, 4, 5, 6, 7, 8, 9,... – его порядковый номер в ряде всех простых чисел, то есть *реальное* количество простых чисел, на отрезке [0; N]. В этом случае к-время (реальное) всегда будет меньше граничного времени: t_{KP} < t. Найдем соотношение между t_{KP} и t в первом приближении (то есть это будет довольно грубая оценка). Исходя из наших определений и формулы $K \approx N/\ln N$, можно записать: $t_{KP} \equiv \ln \ln K \approx \ln (N/\ln N) = \ln [\ln N - \ln \ln N] = \ln [\ln N \cdot (1 - \ln \ln N/\ln N)] = \ln \ln N + \ln (1 - \ln \ln N/\ln N) \approx \ln \ln N - \ln \ln N/\ln N$, откуда получаем такое соотношение:

$$t_{\rm KP}/t \approx 1 - 1/\ln N. \tag{5.2}$$

При N > 11 модуль относительной погрешности (ОП) формулы (5.2) убывает по закону (моя эмпирическая оценка): $|O\Pi| < 0.089/\ln N$. Таким образом, по мере роста N к-время устремляется к граничному времени ($t_{\rm K}/t \to 1$ при $N \to \infty$), но при этом всегда $t_{\rm K} < t$. В конце *Большого отрезка* имеем $t_{\rm K} \approx 4.943386$ и $t \approx 4.978219$, поэтому $t_{\rm K}/t \approx 0.993003$, а по формуле (5.1) получаем $t_{\rm K}/t \approx 0.992870$, то есть даже в конце Большого отрезка сохраняется существенная разница между граничным временем (t) и t-временем (t). И даже при t = 10 3 308 эта разница остается существенной (вполне заметной): $t_{\rm K}/t \approx 0.99859$.

Пример 5.1 Пусть $N=8,696\cdot10^{\circ}60$, тогда $K=\text{li}(N)\approx6,24216298\cdot10^{\circ}58$ и t=4,94391105253179, а $t_{\text{K}}=4,90809496204006$. При этом получаем ОП $\equiv (t-t_{\text{K}})/t_{\text{K}}\approx 0,00729735$, что имеет смысл некой вероятности (в мире чисел) и численно совпадает с $\alpha\approx 1/137-$ постоянной тонкой структуры (это фундаментальный физический параметр Вселенной в современную эпоху). При этом число N всего лишь в 1,0718 раза больше максимально возможного возраста Вселенной (13,87 млрд лет), выраженного в единицах планковского времени (8,11351·10^60). И даже один этот пример наводит на мысль, что граничное время (t) и (или) к-время (t_{K}) хотя бы отчасти могут «отражать» математическое «устройство» таинственного феномена в физике, которое называют «время», и которому посвящен настоящий Монблан научных и псевдонаучных трудов (но «воз и ныне там»...).

6. Виды к-времени у обычных чисел

Обычные числа — это вещественные числа, превосходящие число $N=1,451\ 369\ 234\ 883\dots$ (число Рамануджана-Солднера, см. гл. 3) при котором параметр $K=\mathrm{li}(N)=0$ (то есть $t_{\rm K}=\to +\infty$, см. ниже).

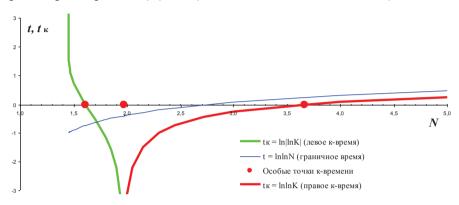


Рис. 6.1. Поведение к-времени $(t_{\rm K})$ у обычных чисел (N) в начале числовой оси

Справа от числа Pамануджана-Cолднера ($N \approx 1,45$) происходит рост параметра K от нуля до единицы: K = 1 при $N \approx 1,9690474892247$ (это средняя красная точка на графике рис. 6.1). При этом к-время ($t_{\rm K}$) убывает от «плюс» бесконечности до «минус» бесконечности (зеленая линия на рис. 6.1), причем на указанном (и относительно коротком) отрезке к-время является... **комплексной величиной**, поскольку здесь $\ln K < 0$ и $t_{\rm K} \equiv \ln |\ln K| = \ln (-\ln K)$ (а иначе к-время здесь и не вычислить). Такое к-время мы условно назовем *левым* к-временем обычных чисел (относительно срединой красной точки $N \approx 1,97$). Внутри этого отрезка отметим число $N \approx 1,60667141$ (это крайняя слева красная точка на рис. 6.1), где $K \approx 0,36787944$ и $t_{\rm K} = \ln (-\ln K) = 0$. Значит, когда 1,61 < N < 1,97, то вещественная часть (комплексного) к-времени становится отрицательной, иначе говоря, у 70 % всех левых к-времен обычных чисел мы имеем: $t_{\rm K} < 0$.

Справа от числа $N \approx 1,97$ к-время ($t_{\rm K}$) возрастает от «минус» бесконечности до «плюс» бесконечности (красная линия на рис. 6.1), причем на указанном отрезке (*бесконечной* длины) к-время вычисляем по нашей «классической» формуле: $t_{\rm K} \equiv {\bf lnln} K$. Такое к-время мы условно назовем *правым* к-временем обычных чисел (относительно срединой красной точки $N \approx 1,97$). Внутри этого отрезка отметим число $N \approx 3,6652462$ (это крайняя справа красная точка на рис. 6.1), где $K = e \equiv 2,817...$ и $t_{\rm K} = {\bf lnln} K = 0$. Значит, когда 1,67 < N < 3,66, то к-время является вещественным *отрицательным* числом, и только при N > 3,66 к-время уже *навсегда* становится положительным: $t_{\rm K} > 0$.

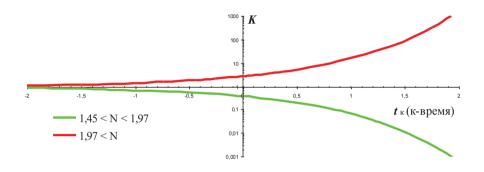


Рис. 6.2. Две эквивалентные вселенные мира чисел: «зеленая» и «красная»

На графике рис. 6.2 (параметр К отложен в логарифмической шкале) видно, что с точки зрения к-времени $(t_{\rm K})$, текущего из «минус» бесконечность в «плюс» бесконечность, происходит зеркальное (относительно точки, где K = 1) изменение параметра K: красная и линии на графике расходятся строго (соответственно: $K \to +\infty$ и $K \to 0$). И, если следовать по красной линии графика, то нашему «сегодня» соответствует, скажем, параметр $K \approx$ 10^61, а если следовать по зеленой линии графика, то нашему «сегодня» будет соответствовать $K \approx 1/10^{61}$. Причем «зеленое» значение ничем не хуже «красного», просто смысл последнего нам абсолютно ясен и понятен: $K \approx N/\ln N \approx 10^61$ – это количество *простых чисел* на отрезке [1; N], а вот смысл «зеленого» значения ($K \approx 1/10^61$) - «понятен» пока только в рамках космологии чисел - это некое «отражение»... гипотезы Бранденбергера-Вафа (читай ниже).

В *теории суперструн* (вариант физической теории ВСЕГО) колебательные движения квантовой струны разделяют на две категории (и все движения струны – это просто их суперпозиция):

- обычные колебания (вдоль квантовой струны укладывается в точности целое число волн);
- однородные колебания (соответствуют поступательному движению струны как целого, форма струны не изменяется), энергия этих колебаний обратно пропорциональна радиусу (R) циклического измерения. Большие значения радиуса R соответствуют большим значениям mononocuveckoù энергии и малым значениям konefamenbhoù энергии, а малые значения радиуса k соответствуют малым значениям топологической энергии и большим значениям колебательной энергии.

В итоге получается важнейший результат: всякому большому радиусу (R) вселенной соответствует некий малый радиус, при котором топологические энергии струны, вычисленные для вселенной с большим радиусом, равны колебательным энергиям струны, вычисленным для вселенной с малым радиусом (и наоборот).

Поскольку физические свойства вселенной зависят лишь от полной энергии конфигурации струны, то теория суперструн приводит к важнейшему результату: нет никакого физического различия между геометрически различными состояниями вселенной: когда мы мысленно обращаем историю Вселенной вспять, то сокращение её радиуса R ниже значения планковской длины физически эквивалентно... увеличению радиуса 1/R (гипотеза Eранденбергера-Eвафа).

Согласно *М-теории* (это дальнейшее логическое развитие теория суперструн) на масштабах, меньше планковских *существует танковских область* — *нуль-брана, в которой совершенно иные понятия о пространстве-времени* (быть может, их там нет вовсе?). Также любопытна гипотеза Венециано-Гасперини, допускающая *существование доисторической Вселенной*.

Из уравнений Эйнштейна вытекает возможность того, что черная дыра может быть окном в другую вселенную, связанную с нашей лишь в центре черной дыры. Грубо говоря, там где останавливаются стрелки часов нашей Вселенной начинается отсчет времени (другой) вселенной, которая прикреплена к нашей.

Всё выше сказанное вы можете более детально прочитать в замечательной книге: Грин Брайан, "Элегантная Вселенная.

Суперструны, скрытые размерности и поиски окончательной теории", М.: Едиториал УРСС, 2004. (стр. 160-161, 223, 232).

7. Текущий темп элементарных событий

Выше говорилось, как вычислить параметр K в конце отрезка [2; P], где K – это количество элементарных событий (порядковый номер простого числа P в ряде всех простых чисел). Можно сказать, что K – это количество «актов появления» простых чисел на отрезке [2; P]. Исследуем «динамику» указанных элементарных событий.

Текущий темп событий (T) – так мы назовем параметр:

$$T \equiv (K_i - K_{i-1})/(t_i - t_{i-1}) \equiv 1/(t_i - t_{i-1}). \tag{7.1}$$

Очевидно, чем меньше интервал времени $(t_i - t_{i-1})$ между соседними элементарными событиями (между соседними *простыми числами* с порядковыми номерами K_i и K_{i-1}), тем больше текущий темп событий (T). Параметр T – это *текущий* темп элементарных событий, который вычисляется для каждого конкретного (i-го) простого числа (P_i) , имеющего *граничное* время $t_i \equiv \ln(P_i)$ и порядковый номер $(K_i \equiv i)$, то есть правильней было бы писать T_i , но я, как всегда, стремлюсь уйти от «лишних» индексов (чтобы у читателя «не рябило в глазах»). Эти текущие темпы элементарных событий (T) на графике рис. 7.1 представлены красными точками (которые «случайно» разбросаны на плоскости в той же мере, как и *простые числа* на числовой оси).

Введем такое обозначение: $M_i \equiv P_i - P_{i-1}$ – это i-й **м-фактор**, то есть текущее расстояние (по числовой оси) между двумя соседними *простыми числами*. Разумеется, что $P_i > P_{i-1}$, а индекс i – это порядковый номер простого числа (в ряде всех простых чисел). Используя формулы *теории чисел* (формулу $K = P/\ln P$ и обратную ей формулу $P = K \cdot \ln K$) нетрудно получить $C \cdot P \cdot R$ масштабный фактор:

$$M_c \approx 1 + (1 + 1/P) \cdot \ln P - \ln \ln P.$$
 (7.2)

(эту главу я написал раньше, чем большую статью «М-фактор...». Где более правильная формула: $M_c \approx \ln K + \ln \ln K - 1 + (\ln \ln K - 2)/\ln K$, но и отсюда также вытекает, что $M_c \approx \ln P$, поэтому данную главу я уже не стал переписывать, исправлять). Таким образом, с ростом длины отрезка [2; P] средний масштабный фактор устремляется к логарифму правой границы: $M_c \rightarrow \ln P$.

Из формулы $M_i \equiv P_i - P_{i-1}$ получаем $P_{i-1} \equiv P_i - M_i = P_i \cdot (1 - M_i/P_i)$, поэтому $\ln(P_{i-1}) \approx \ln(P_i) - M_i/P_i$ (поскольку всегда $0 < M_i/P_i < 1$). Значит, $t_i - t_{i-1} \approx \ln\{1/[1 - M_i/P_i/\ln(P_i)]\} \approx M_i/P_i/\ln(P_i)$ и мы получаем:

$$T \approx P \cdot \ln P/M,$$
 (7.3)

где T — это *текущий* темп событий, вычисленный для (конкретного) простого числа P, отстоящего от предыдущего (соседнего меньшего) простого числа на расстоянии, равном M. Поскольку (при P >> 2) для cpedhero масштабного фактора в первом приближении можно записать $M_c \sim \ln P$ (см. формулу 7.2), то некий color cpedhu темп событий (C_c) по порядку величины равен правой границе отрезка [2; C_c]:

$$T_{c} \sim P.$$
 (7.4)

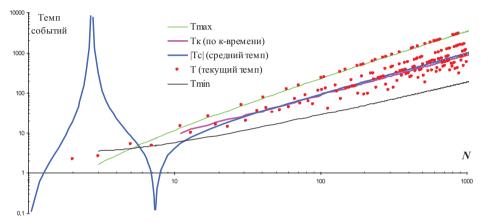


Рис. 7.1. Текущий темп элементарных событий в самом начале натурального ряда

Если в формуле (7.1) вместо *граничного* времени ($t \equiv \ln \ln P$) взять *к-время* ($t_K \equiv \ln \ln K$), то нетрудно получить такую формулу:

$$T_{\rm K} \approx K \cdot \ln K,$$
 (7.5)

где T_{κ} – « κ -темп событий» (лиловая линия на графике). Поскольку $K = P/\ln P$, то из формулы (7.5) следует, что $T_{\kappa} \sim P$, то есть на достаточно большом отрезке [2; P] κ -темп событий (T_{κ}) по порядку величины близок κ правой границы (P) указанного отрезка. Ниже говорится об этом же, но несколько в «мудреной», «навороченной» форме.

Из формулы для граничного времени $t \equiv \ln \ln N$ мы получаем обратную формулу $N \equiv e^{(e^t)}$. При этом формула Чебышева $K = N/(\ln N - 1)$ примет следующий вид (K -)то некая функция времени t):

$$K = f(t) = e^{(e^t)/(e^t - 1)}.$$
 (7.6)

Средний темп событий (T_c) – это скорость изменения функции K = f(t), то есть это *первая производная* от указанной функции по (граничному) времени t, поэтому мы приходим к такой формуле:

 $T_c \approx Q \cdot N$, где $Q \equiv 1/[1 + 1/(e^{(2 \cdot t)} - 2 \cdot e^{t})]$. (7.7) Например, при $N = 8,078 \cdot 10^{60}$ (в конце Большого отрезка) мы имеем: $t \approx 4,943385778...$ и $Q \approx 0,9999484$, а это значит, что на отрезке [2; N] средний темп событий устремляется к правой границе отрезка, то есть параметр T_c численно устремляется к числу N (синяя линия на графике рис. 7.1). И этот вывод хорошо согласуется с тем, что мы получили выше (см. формулу 7.4).

А вот в самом начале натурального ряда формула (7.7) выдает нам... чёрт знает что (см. «взлёты и падения» синей линии). Так, при 1 < N < e (где e = 2,718...) параметр T_c убывает от нуля до «минус» бесконечности (внимание! на графике приведен модуль Тс). Затем параметр $T_{\rm c}$ «взрывается» из «минус» бесконечности ($T=-\infty$ при N=е) и вплоть до числа $N = e^2 \approx 7.389$ параметр T_c (стремительно убывая по модулю) остается отрицательным (T < 0). При N > 7.389 параметр T_c становится положительным и завершает свой «взрывной» рост около числа N=17 (седьмое простое число). На графике — это место, где синяя линия сливается с лиловой линией, которая показывает к-темп событий (вычисленный по к-времени, см. формулу 7.5). Таким образом, формула (7.7) просто перестает работать в начале натурального ряда (при N < 17, на пороге *сингулярности* формулы 7.7). И хотя реальный темп событий (красные точки) спокойно продолжает убывать (вплоть до N = 2) — формула (7.7) рисует совершенно... фантастическую картину. Возможно, что пресловутый Большой взрыв при рождении Вселенной – это просто экстраполяция законов известной нам физики на первые мгновения Вселенной, при которых указанная физика... ещё не начала работать [по аналогии с формулой (7.7) в мире чисел]. И вместо Большого взрыва при рождении Вселенной почти... ничего не происходило с точки зрения нашего «сегодня» [подобно тому, как в мире чисел в самом начале натурального ряда темп событий был в 10^61 меньше, чем в конце Большого отрезка]. Кстати, а есть физикитеоретики, утверждающие, что при возникновении Вселенной темп событий был в 10^61 меньше, чем в настоящее время (в момент нашего «сегодня», «сейчас»)?

В мире чисел есть так называемые *простые близнецы* — простые числа у которых $M \equiv P_i - P_{i-1} = M_{\min} = 2$. Простых близнецов бесконечно

много (математики это уже доказали?), и именно они определяют максимально возможный темп событий (T_{max}):

$$T_{\text{max}} \approx P \cdot \ln P/2,$$
 (7.8)

По этой формуле построена зеленая линия на графике рис. 7.1.

Теория чисел говорит, что в конце отрезка [2; P] максимально возможный масштабный фактор будет следующим $M \equiv P_i - P_{i-1} = M_{\text{max}} \approx 0,7574 \cdot (\ln P)^2$. Поэтому минимально возможный темп событий (T_{min}) будет определяться по такой формуле:

$$T_{\min} \approx P \cdot \ln P / 0.7574 / (\ln P)^2. \tag{7.9}$$

По этой формуле построена чёрная линия на графике рис. 7.1.

Например, при $N=8,078\cdot10^{6}0$ (в конце Большого отрезка) мы имеем: $T_{\text{max}}\approx 5,66\cdot10^{6}2$; $T_{\text{min}}\approx 7,61\cdot10^{5}8$ и $T_{\text{max}}/T_{\text{min}}\approx 7448$. Поэтому не стоит удивляться, что в отдельные (как правило, экстремальные) моменты нашей жизни темп событий (само *время*) вдруг *замедляется* или *ускоряется*. Мир чисел говорит нам, что в наше «сегодня» темп событий может *мгновенно* измениться почти в 7448 раз!

8. Темп событий на Большом отрезке

Геохронологи́ческая шкала (см. также одноименную статью в Википедии) — это геологическая временная шкала истории Земли, применяемая в геологии и палеонтологии, своеобразный календарь для промежутков времени (которые лишь для удобства разговора я назвал **этапами**, см. в Приложении табл. 8.1). Согласно мнению ученых, возраст Земли оценивается примерно в 4,6 млрд лет (начало 31-го этапа в геохронологии, см. табл. 8.1), а возраст Вселенной (B) оценивается как $B \approx 13,81$ млрд лет или $B \approx 8,078\cdot10^{\circ}60$ *планковских времен* (элементарных временных интервалов, «квантов» времени).

Лично я нигде не встречал *объяснения* геохронологической шкалы, то есть не нашёл ответа на главный вопрос геохронологии – почему *длина этапов сильно сокращается*, когда мы приближаемся к нашему «сегодня» ($B \approx 13,81$ млрд лет). И вот здесь моя *космология чисел* впервые дает некие (и даже количественные) «объяснения» – в этом смысле мой труд можно считать вполне оригинальным. Эту и последующие главы следовало бы публиковать наполовину в зеленом цвете — настолько сильно геохронологическая шкала переплетена с математикой мира чисел (делая последнюю не столь скучной).

Внимание! Чтобы далее (ниже) не путаться с терминологий и обозначениями – забудьте о предыдущей главе (гл. 7), словно вы её и вовсе не читали. Впрочем, я уверен, что меня никто НЕ читает (и лишь единицы – «смотрят»), и мои тексты – это для... неведомых потомков.)) Просто надеюсь позже посетить свои же идеи (вперед Альцгеймера и прочих «друзей» всякого ленивого пенсионера). Короче говоря, на обширную тему «темп элементарных событий» можно посмотреть под разными углами зрения, с разных сторон и ниже предлагается интуитивно самый понятный и «полезный» взгляд.

Геохронологическая шкала указывает нам H_i – начало i-го этапа в годах от нашего «сегодня» ($B \approx 13,81$ млрд лет). Началу i-го этапа соответствует такой текущий возраст (B_i) Вселенной:

$$B_i = B - H_i. \tag{8.1}$$

Ясно, что B_i – это ещё и *конец* предыдущего (i+1)-го этапа. Так, концу нулевого этапа соответствует (наше «сегодня»): $B_0 = B - H_0 = 13\,810\,000\,000$ лет, а концу 32-го этапа соответствует такой возраст: $B_{31} = B - H_{31} = 9\,210\,000\,000$ лет. Начало 32-го \div 40-го этапа – это моя экстраполяция [в виде экспоненты: $H_i \approx 123800000 \cdot \exp(0,1162 \cdot i)$] последних этапов, взятых из общеизвестной геохронологии. Ну а всего у меня получилось 42 этапа (все подробности – ниже).

В рамках моей *космологии чисел* нашему «сегодня» в мире чисел (на бесконечной числовой оси) соответствует некий *Большой отрезок* [2; P]. Правда, каким должно быть число P (правая граница отрезка) — с этим я до сих пор так и не определился. В своих трудах я чаще всего брал число порядка $P \approx 8,078 \cdot 10^{\circ}60$ — количество *планковских времен* в возрасте Вселенной (см. выше). С этого числа мы и начнем наши изыскания в части геохронологии.

Однако в данном случае (для объяснения геохронологии, см. табл. 8.2) мы возьмем $P \approx 1,165\cdot10^{\circ}63$ — это такое простое число, порядковый номер (K) которого (в ряде всех простых чисел) равен $K \approx \text{li}(P) \approx 8,078\cdot10^{\circ}60$ (то есть это — всё то же... количество планковских времен в возрасте Вселенной). Так мы поступаем в силу лейтмотива данного трактата: K — это прежде всего количество элементарных событий в мире чисел, которые «отражают» некие элементарные события физического мира (символ которых — планковское время). Почему здесь во главу угла я поставил параметр K? Да только потому, что мы будем оперировать понятием κ -время: $t_{\rm K} \equiv {\rm lnln} K$ — это и будет момент нашего «сегодня», который мы обозначим как нулевое время: $t_{\rm O} \equiv {\rm lnln} K \approx 4,943386$ (опуская индекс «к», ведь он здесь кругом). Таким

образом, мы будем исходить из того, что (просто гипотеза): «течение» реального времени, данного нам в ощущениях, отчасти описывает («отражает») параметр «к-время» из мира чисел.

<u>1-я t-гипотеза</u>. Она предлагает простейший ответ на такой вопрос: какому κ -времени (ti) соответствует произвольный *текущий возраст* Вселенной (Bi)? Здесь мы исходим из самой обыкновенной пропорции (что вызывает большие сомнения, см. чуть ниже):

$$t_i \equiv (B_i/B) \cdot t_0 = (B_i/B) \cdot \ln \ln K. \tag{8.2}$$

Однако в качестве оправдания *1-й t-гипотезы* могу напомнить, что время (как оно понимается физиками-теоретиками и нами, простыми «обывателями») также «течёт» якобы равномерно, то есть при самых обычных вычислениях времени мы также, фактически, используем самую обыкновенную пропорцию. И только колоссальные скопления материи (как видимой — планеты, звезды, галактики,..., так и невидимой — черные дыры, тёмная материя,...), или огромные скорости способны изменять ход времени, его темп (то есть изменять темп неких элементарных событий в физическом мире?).

Тогда концу (i+1)-го этапа геохронологии будет соответствовать такое количество (K) элементарных событий (уже произошедших): $K_i \equiv \exp[\exp(t_i)] = \exp\{\exp[(B_i/B)\cdot t_0]\} = \exp\{\exp[(B_i/B)\cdot \ln\ln K]\}$, откуда:

$$K_i = \exp[(\ln K)^{\wedge}(B_i/B)]. \tag{8.3}$$

Эта формула наталкивает на мысль допустить следующее: пусть $K_i \equiv K^{\wedge}(B_i/B)$, где $K_i \equiv \exp[\exp(t_i)]$, тогда мы приходи к такой гипотезе.

<u>2-я t-гипотеза</u>. Она предлагает затейливый ответ на тот же вопрос: какому κ -времени (ti) соответствует произвольный текущий возраст Вселенной (Bi)? Здесь мы исходим из следующего:

$$ti \equiv \ln\ln[K^{\wedge}(Bi/B)] = \ln(Bi/B) + \ln\ln K. \tag{8.4}$$

При этом $t_i = 0$ соответствует весьма внятному условию:

$$B_i = B/\ln K. \tag{8.5}$$

Вообще 2-я t-гипотеза (кстати, а как её можно обосновать?) приводит к более интересным результатам, в том числе и к... *отрицательному* к-времени ($t_i < 0$), что стыкуется с выше сказанным (см. гл. 6).

Сравним между собой, как работают 1-я и 2-я t-гипотезы. Возьмем параметры B и B_i из общеизвестной геохронологической шкалы (см. табл. 8.2) и пусть $K \approx 8,078 \cdot 10^{\circ}60$. График на рис. 8.1 показывает, что при малых номерах i (на этапах, близких к нашему «сегодня») к-время у обеих гипотез почти совпадает. А вот по мере роста i (на этапах, уходящих к возникновению Вселенной) к-время по 2-й t-гипотезе (красные точки на графике) не спешат уменьшаться.

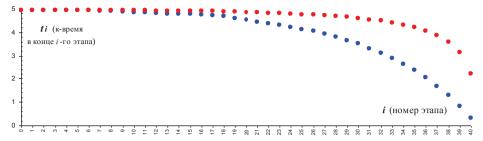


Рис. 8.1. К-время (ti) в конце i-го этапа по 1-й (синей) и 2-й (красной) t-гипотезе

Таким образом, «внутри» каждого i-го этапа можно вычислить количество элементарных событий, произошедших на i-ом этапе (в виде разницы: $K_i - K_{i+1}$). При этом, зная длительность i-ого этапа (в виде разницы: $t_i - t_{i+1}$), можно вычислить **темп событий** i-ого этапа:

$$Ti \equiv (K_i - K_{i+1})/(t_i - t_{i+1}).$$
 (8.6)

Мои расчеты в части Большого отрезка приведены в табл. 8.2. Если *темп событий i*-го этапа (T_i) отобразить на графике (см. рис. 8.2), то мы увидим, что на ближайших к нам (к нашему «сегодня», то есть на самых *достоверных*) этапах, темп элементарных событий примерно... *одинаковый* (красные точки на графике при i = 0, 1, 2, 3, ..., 17). Причем именно 2-я t-гипотеза (красные точки) дает заметно большее количество этапов (18 этапов) с темпом событий близкого порядка ($T_i \sim 10^63 \div 10^60$). На основании этого можно предположить, что «*правильная*» *геохронологическая шкала должна содержать соседние этапы с темпом событий близкого порядка* ($T_i \sim 10^60$).

На графике рис. 8.2 хорошо видно, что при i > 17, темп событий убывает: почти по экспоненте (от аргумента i) — для 1-й t-гипотезы (синие точки) и даже ещё быстрее — для 2-й t-гипотезы (красные точки). Причем на старших этапах (скажем, при i = 40) мы получаем крайне малое количество элементарных событий (на весь 40-й этап): $K_{40} \equiv e^{(e^2,2)} \approx 8270$ — нижняя красная точка, $K_{40} \equiv e^{(e^0,32)} \approx 4$ — нижняя синяя точка и всё это — почти за 800 млн лет! То есть, с точки зрения нашего «сегодня», в ранней Вселенной событий... почти и не было. В столь странном выводе виноват выбранный нами Большой отрезок, на котором «всего лишь» $K \approx 8.10^6$ 0 простых чисел (или в нашей терминологии — элементарных событий), и их «не хватает» в ранней Вселенной. Но в любом случае и данная глава дает пищу для размышлений и новых идей.

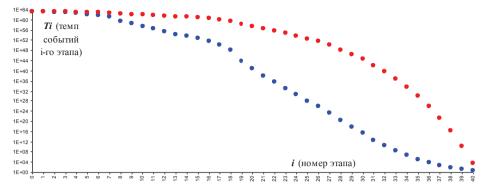


Рис. 8.2. Темп элементарных событий (Ti) «внутри» каждого (i-го) этапа

9. Шкала с равным количеством событий

Нетрудно убедиться, что синие и красные точки на графике рис. 8.1 это (по порядку величины и самой «картинки») — почти графики количества элементарных событий: $K_i \equiv e^{\wedge}(e^{\wedge}t_i)$ соответственно для 1-й и 2-й t-гипотез. Иначе говоря, *«правильная» геохронологическая шкала* — это когда её соседние этапы содержат количество элементарных событий (K_i) близкое по порядку величины (особенно для малых номеров i). И сколько бы этих этапов (i) не было, работая только с 1-й t-гипотезой, — всегда можно вычислить параметры «правильной» шкалы (такой что: $\Delta_i \equiv K_i - K_{i+1} = K/i_{max} = \text{const}$). Пример для $i_{max} = 7$ представлен в табл. 9.1, а для случая $i_{max} = 31$ — в табл. 9.2 (повторяю, всё это проделано только для 1-й t-гипотезы).

Пусть i_s – номер *старшего этапа* (то есть это i_{max}), иначе говоря, самого далёкого от нашего «сегодня» этапа (гипотетической шкалы). При этом, учитывая формулы из предыдущей главы, несложно получить такие выражения (с аналогичным смыслом, см. гл. 8):

$$K_i = (K/i_s) \cdot (i_s - i + 1), \tag{9.1}$$

$$t_i = \ln(K_i), \tag{9.2}$$

$$B_i = (t_i/t_0) \cdot B, \tag{9.3}$$

$$H_i = B - B_i. (9.4)$$

Именно по данным формулам и были построены таблицы 9.1 и 9.2 (в чем легко убедиться, все исходные данные – в шапке таблиц).

При этом для *старшего* этапа (с номером $i = i_s$) мы получим:

$$K_{min} = K/i_s, (9.5)$$

$$t_{min} = \ln(K_{min}), \tag{9.6}$$

$$B_{min} = (t_{min}/t_0) \cdot B, \tag{9.7}$$

$$t_{min}/t_0 \approx 1 - \ln(i_s)/\ln K/\ln \ln K, \qquad (9.8)$$

$$H_{max} = B - B_{min} \approx B \cdot O \cdot \ln(i_s) \tag{9.9}$$

где $Q \equiv 1/\ln K/\ln\ln K$ — константа для отрезка [2; P], поскольку $K \approx \text{li}(P)$, причем всегда Q << 1, ведь речь идет о больших отрезка (больших K). Например, наш *Большой отрезок* [2; P] имеет следующие параметры: $P \approx 1,165\cdot10^{63}$ и $K \approx \text{li}(P) \approx 8,078\cdot10^{60}$ (количество простых чисел на Большом отрезке), поэтому для БО мы получаем: $Q \approx 0,00144$.

При этом из формулы (9.9) вытекает обескураживающий вывод: даже когда $i_s = K$ (количество этапов равно количеству простых чисел на Большом отрезке), то $H_{max} \approx 2\,800\,000\,000$ лет. То есть начало самого далекого этапа (H_{max}) — это всего лишь... 20% от возраста Вселенной ($B=13\,810\,000\,000$ лет). И начало *старшего этапа* (то есть параметр H_{max}) приблизится к моменту рождения Вселенной (то есть $H_{max} \approx 13\,810\,000\,000$ лет назад), когда количество всех этапов будет порядка... $i_s \approx 10^{\circ}301$ (что в колоссальное количество раз больше параметра K указанного Большого отрезка). И этот «парадокс» тем сильнее, чем больший отрезок [2; P] мы будем рассматривать (в качестве Большого отрезка). Впрочем, указанный «парадокс» — это всего лишь следствие 1-й t-гипотезы (см. гл. 8).

10. Темп событий на Сверхбольшом отрезке

Ещё раз напомню, что в рамках моей космологии чисел нашему «сегодня» в мире чисел (на бесконечной числовой оси) соответствует некий Большой отрезок [2; P]. Но каким должно быть число P (правая граница отрезка) — с этим я до сих пор так и не определился. Чаще всего я брал число порядка $P \approx 8,078\cdot10^{\circ}60$ — количество планковских времен в возрасте Вселенной (13,81 млрд. лет). Однако мои изыскания в части геохронологии показали, что $P \sim 10^{\circ}61$ — это... ничтожно малое число, вызывающее целый ряд сомнений (см. гл. 8 и 9), когда мы пытаемся использовать (применить) понятие «темп элементарных событий». Поэтому в данной главе мы найдем отрезок [2; P], который бы сводил к минимуму подобные сомнения.

Как и раньше (выше по тексту) пусть: i = 0, 1, 2, 3, 4, 5, 6, 7, ... - номер этапа гипотетической хронологической шкалы (количество всех этапов выяснится ниже). Пусть также $t_0 \equiv \ln\ln K -$ это κ -время нулевого этапа (при i = 0), то есть это κ -время нашего «сегодня», когда возраст

Вселенной равен $B \equiv 13,81$ млрд. лет, и пусть B_i — текущий возраст Вселенной (млрд. лет) в начале i-го этапа.

Как возраст B_i зависит от номера этапа (i)? Общепринятая геохронологическая шкала (синие точки на рис. 10.1, построенные по табл. 8.1) приводит нас к такой *модели* (см. красные точки) убывания возраста (B_i) Вселенной в начале i-го этапа:

$$B_i \approx 13.81 \cdot 10^9 / E^i,$$
 (10.1)

где E = 1,002979109162 — параметр, с помощью которого мы почти совмещаем синюю и красную точки с номером i = 18. Иначе говоря, наша *модель* (формула 10.1) воспроизводит начало (Bi) ближайших к нам этапов геохронологической шкалы (при i = 0, 1, 2, 3, 4, ..., 18).

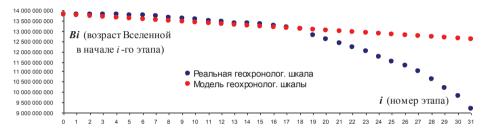


Рис. 10.1. Убывание возраста (Bi) Вселенной в начале i-го этапа геохронологии

Если $8,078\cdot10^{6}0$ **эви** (элементарных временных интервалов или, иначе говоря, *планковских времен*) — составляют $B \equiv 13,81$ млрд. лет (возраст Вселенной), то, значит, 1 эви — это примерно $Bi \approx 1,71\cdot10^{-51}$ лет (находим из обыкновенной пропорции, то есть $B/Bi \approx 8,078\cdot10^{6}0$). При этом из формулы (10.1) мы находим $i_{max} \equiv i = 47146$ — номер самого далекого этапа в биографии Вселенной, в начале которого $B_{min} \equiv Bi \approx 1,71\cdot10^{-51} \approx 1$ эви (см. в Приложении табл. 10.1).

На вопрос: какому κ -времени (t_i) соответствует данный *текущий возраст* Вселенной (B_i)? – моя 2-я t-гипотеза дает следующий ответ:

$$ti \equiv \ln\ln[K^{\wedge}(Bi/B)] = \ln\ln K + \ln(Bi/B) = t_0 + \ln(Bi/B). \tag{10.2}$$

Из формулы (10.2) находим, что $t_{\min} \equiv t_i = 0$ при таком условии:

$$K = \exp(B/B_{\min}). \tag{10.3}$$

И теперь мы можем «сконструировать» $\it Cверхбольшой отрезок [2; P]$, имеющий следующие параметры:

 $K = \exp(B/B_{\min}) \equiv \exp^{\wedge}(B/B_{\min}) = 10^{\wedge}(B/B_{\min}/\ln 10) \approx 10^{\wedge}(10^{\wedge}60);$ $t_0 \equiv \ln\ln K = \ln(B/B_{\min}) \approx \ln(8,078\cdot 10^{\wedge}60) \approx \ln 8,078 + 60\cdot \ln 10 \approx 140,244;$ $P \sim K \cdot \ln K \approx 10^{\wedge}(10^{\wedge}60) \cdot 10^{\wedge}61 = 10^{\wedge}(10^{\wedge}60 + 61) \approx 10^{\wedge}(10^{\wedge}60),$ то есть в конце Сверхбольшого отрезка κ -время ($t_K \equiv \ln\ln K$) уже почти не отличить от граничного времени ($t \equiv \ln\ln P$), поскольку $t_K/t \approx 1 - 1/\ln P$

(подробней см. гл. 5). Таким образом, на указанном (чудовищно огромном!) отрезке [2; P] находится порядка $K \approx 10^{\circ}(10^{\circ}60)$ простых чисел, иначе говоря, столько происходит элементарных событий. И в самом конце отрезка (в наше «сегодня») κ -время достигает значения $t_0 \equiv \ln \ln K \approx 140,244$ — это κ -время нулевого этапа (при i=0).

Количество элементарных событий, произошедших к моменту начала i-го этапа, стремительно нарастает, когда мы начинаем мысленно перемещаться к нашему «сегодня» [при этом номер этапа (i) – убывает]. Причем, когда $i > i_{\text{max}} \equiv 47146$, то к-время вообще... *отрицательное* (возможность чего уже обсуждалась выше, см. гл. 6). При $i = i_{\text{max}}$, образно говоря, происходит зарождение положительного к-времени – оно «стартует» от нуля: $t_i \equiv \text{lnln}(K_i) = 0$ и в мире чисел уже произошло почти три элементарных события: $K_i = \text{e}^{\wedge}(\text{e}^{\wedge}t_i) = \text{e}^{\wedge}(\text{e}^{\wedge}0) = \text{e} \equiv 2,718... \approx 3$. А вот при i = 44940 мы имеем $t_i \approx 6,56$ и уже $K_i \approx 10^{\wedge}307$ элементарных событий (см. табл. 10.1).

При этом нетрудно доказать, что в рамках принятой *модели* (то есть исходя из формул 10.1, 10.2, 10.3) верны и такие утверждения:

$$t_i - t_{i+1} = \ln E = \mathbf{const}, \tag{10.4}$$

$$\mathbf{K}i = (\mathbf{K}i+1)^{\wedge} \mathbf{E}, \tag{10.5}$$

$$K_i = \exp[E^{\wedge}(i_{\text{max}} - i)]. \tag{10.6}$$

Учитывая, что по мере эволюции Вселенной (то есть при уменьшении номера этапа i) количество элементарных событий (K_i) стремительно нарастает, а разница к-времен для всех этапов — величина постоянная ($t_i - t_{i+1} = \text{const}$), то мы опять приходим всё к тому же выводу: **при эволюции Вселенной темп элементарных событий стремительно нарастает**. Используя формулу (8.6), нетрудно вычислить **темп событий** на i-ом этапе (в рамках принятой здесь модели).

11. Новые смыслы (Сверхбольшой отрезок)

Согласно принятому выше определению Сверхбольшой отрезок содержит такое количество (K) простых чисел, что $\ln K \equiv 8,078\cdot10^{\circ}60$, где $8,078\cdot10^{\circ}60$ — это количество планковских времен в возрасте Вселенной. То есть правая граница (P) Сверхбольшого отрезка [2; P] — это число такого порядка: $P \sim 10^{\circ}(10^{\circ}60)$. Любопытно, что числом такого порядка мог оказаться исходный объем (W, в естественных единицах) фазового пространства, на который должен был нацелиться Творец, чтобы сотворить вселенную, совместимую со вторым началом термодинамики. То есть $W \sim 10^{\circ}(10^{\circ}60)$ — наиболее

вероятное значение, которое могло иметь место в реальных условиях при Большом взрыве (см. Роджер Пенроуз «Новый ум короля...», в гл. 7 см. параграф «Насколько особым был Большой взрыв?»).

В конце Сверхбольшого отрезка между соседними простыми числами по-прежнему будет встречаться (но уже крайне редко) разница равная 2 (м-фактор у простых близнецов: $M_{\min} = 2$, см. в конце гл. 7). А максимально возможная разница между соседними простыми числами (ещё реже) будет такой: $M_{\max} \approx 0.7574 \cdot (\ln P)^2 \approx 4.94 \cdot 10^121$. При этом наиболее вероятная разница между соседними простыми числами будет такого порядка: $M \approx \ln K \approx 8.078 \cdot 10^60$. То есть чаще всего (в большинстве случаев) между двумя соседними простыми числами будет насчитываться порядка $8.078 \cdot 10^60$ составных натуральных чисел (у которых по определению больше двух целых делителей).

Иначе говоря (в терминах моей *космологии чисел*), в конце Сверхбольшого отрезка (в наше «сегодня») между двумя соседними элементарными событиями чаще всего происходит порядка 8,078·10^60 пустых событий (их «отражают» составные натуральные числа). Но иногда (чрезвычайно редко) пустых событий может оказать и всего лишь одно (это минимум) или порядка 10^121 (это максимум).

Короче говоря, если пристально рассматривать Сверхбольшой отрезок, то мы придем к радикально иным трактовкам (смыслам) пресловутого числа 8,078·10^60 (количество планковских времен в возрасте Вселенной). И выше был приведен лишь один пример (в части м-фактора) из множества возможных новых смыслов.

20.04.2016

© А. В. Исаев, 2016

Геохронологическая шкала (и её экстраполяция) Таблица 8.1

1 еохронологическая 1		шкала (и	ее экстраполяция	l)	таолица 8.1
Эра	Период	Эпоха	Начало этапа Эта		Возраст Вселенной
(эратема)	(система)	(отдел)	$m{H}i$ (лет назад)	i	Bi = B - Hi
			0	0	13 810 000 000
	Четвертичный	Голоцен	11 700	1	13 809 988 300
		Плейстоцен	2 588 000	2	13 807 412 000
		Плиоцен	5 333 000	3	13 804 667 000
	Неогеновый	Миоцен	23 030 000	4	13 786 970 000
Кайнозой		Олигоцен	33 900 000	5	13 776 100 000
	Палеогеновый	Эоцен	56 000 000	6	13 754 000 000
		Палеоцен	66 000 000	7	13 744 000 000
	Меловой		145 000 000	8	13 665 000 000
Мезозой	Юрский		201 300 000	9	13 608 700 000
	Триасовый		252 170 000	10	13 557 830 000
	Пермский		298 900 000	11	13 511 100 000
	Каменноугольный		358 900 000	12	13 451 100 000
	Девонский		419 200 000	13	13 390 800 000
Палеозой	Силурийский		443 800 000	14	13 366 200 000
	Ордовикский		485 400 000	15	13 324 600 000
	Кембрийский		541 000 000	16	13 269 000 000
	Эдиакарий		635 000 000	17	13 175 000 000
Неопротер.	Криогений		720 000 000	18	13 090 000 000
	Тоний		1 000 000 000	19	12 810 000 000
	Стений		1 200 000 000	20	12 610 000 000
Мезопротер.	Эктазий		1 400 000 000	21	12 410 000 000
	Калимий		1 600 000 000	22	12 210 000 000
	Статерий		1 800 000 000	23	12 010 000 000
Палеопротер.	Орозирий		2 050 000 000	24	11 760 000 000
	Риасий		2 300 000 000	25	11 510 000 000
	Сидерий		2 500 000 000	26	11 310 000 000
Неоархей			2 800 000 000	27	11 010 000 000
Мезоархей	1		3 200 000 000	28	10 610 000 000
Палеоархей			3 600 000 000	29	10 210 000 000
Эоархей			4 000 000 000	30	9 810 000 000
Катархей (это уж	е эон, а не эратема)		4 600 000 000	31	9 210 000 000
			5 100 364 875	32	8 709 635 125
Возраст В	селенной (вероятн	ый):	5 728 834 353	33	8 081 165 647
В = 13,81 млрд лет			6 434 744 151	34	7 375 255 849
			7 227 636 502	35	6 582 363 498
Для этапов $i = 3240$			8 118 229 441	36	5 691 770 559
значения Hi — это экстраполяция			9 118 561 681	37	4 691 438 319
по моей эмпирической экспоненте:		10 242 155 354	38	3 567 844 646	
$Hi = 123 \ 800 \ 000 \text{*exp}(0.1162 \text{*}i)$		11 504 198 794	39	2 305 801 206	
			12 921 751 850	40	888 248 150
			13 711 528 963	41	98 471 037
			13 810 000 000	42	0

Темп элементарных событий на Большом отрезке Таблица 8.2

1 ev	ип элементарны	х событии на	Большом	отрезке 1	аблица 8.2
	Возраст Вселенной	Возраст по шкале	Темп событий	Возраст по шкале	Темп событий
Этап	(в годах)	к-времени	<i>i</i> -го этапа	к-времени	і -го этапа
i	Bi = B - Hi	ti (1-я гипотеза)	Ti	<i>ti</i> (2-я гипотеза)	Ti
0	13 810 000 000	4,943386	1,13E+63	4,943386	1,133E+63
1	13 809 988 300	4,943382	1,06E+63	4,943385	1,118E+63
2	13 807 412 000	4,942459	9,28E+62	4,943198	1,088E+63
3	13 804 667 000	4,941477	5,73E+62	4,943000	9,813E+62
4	13 786 970 000	4,935142	2,74E+62	4,941717	8,472E+62
5	13 776 100 000	4,931251	1,25E+62	4,940928	7,169E+62
6	13 754 000 000	4,923340	5,42E+61	4,939323	6,073E+62
7	13 744 000 000	4,919761	1,06E+61	4,938595	3,955E+62
8	13 665 000 000	4,891482	3,10E+59	4,932831	1,954E+62
9	13 608 700 000	4,871329	2,34E+58	4,928702	1,127E+62
10	13 557 830 000	4,853120	2,35E+57	4,924957	6,828E+61
11	13 511 100 000	4,836392	2,31E+56	4,921504	3,980E+61
12	13 451 100 000	4,814915	1,58E+55	4,917054	2,151E+61
13	13 390 800 000	4,793330	1,95E+54	4,912561	1,376E+61
14	13 366 200 000	4,784524	5,09E+53	4,910722	9,852E+60
15	13 324 600 000	4,769633	7,07E+52	4,907605	6,027E+60
16	13 269 000 000	4,749731	4,44E+51	4,903423	2,873E+60
17	13 175 000 000	4,716083	1,06E+50	4,896314	1,142E+60
18	13 090 000 000	4,685657	1,17E+48	4,889841	2,349E+59
19	12 810 000 000	4,585429	5,31E+43	4,868219	1,734E+58
20	12 610 000 000	4,513837	6,07E+40	4,852483	2,239E+57
21	12 410 000 000	4,442246	1,11E+38	4,836495	2,890E+56
22	12 210 000 000	4,370655	3,12E+35	4,820248	3,730E+55
23	12 010 000 000	4,299063	1,06E+33	4,803732	4,073E+54
24	11 760 000 000	4,209574	1,94E+30	4,782697	3,149E+53
25	11 510 000 000	4,120085	7,52E+27	4,761209	2,875E+52
26	11 310 000 000	4,048493	7,21E+25	4,743680	2,696E+51
27	11 010 000 000	3,941106	1,58E+23	4,716797	9,604E+49
28	10 610 000 000	3,797923	1,65E+20	4,679790	1,592E+48
29	10 210 000 000	3,654741	4,27E+17	4,641360	2,635E+46
30	9 810 000 000	3,511558	1,65E+15	4,601395	2,915E+44
31	9 210 000 000	3,296784	3,01E+12	4,538283	7,409E+41
32	8 709 635 125	3,117675	2,86E+10	4,482423	3,448E+39
33	8 081 165 647	2,892710	2,66E+08	4,407529	4,783E+36
34	7 375 255 849	2,640024	4,16E+06	4,316123	2,962E+33
35	6 582 363 498	2,356203	1,13E+05	4,202387	7,382E+29
36	5 691 770 559	2,037409	5,39E+03	4,057014	6,556E+25
37	4 691 438 319	1,679333	4,40E+02	3,863732	1,793E+21
38	3 567 844 646	1,277135	5,82E+01	3,589954	1,246E+16
39	2 305 801 206	0,825378	1,15E+01	3,153421	1,549E+10
40	888 248 150	0,317955	4,01E+00	2,199489	3,759E+03
41	98 471 037	0,035248	7,99E+01	0,000000	

"Короткая" геохронологическая шкала (всего 7 этапов) Таблица 9.1

B = 13 810 000 000 P = 1,165E+63 K = Li(P) = 8,078E+60 $t_K = \ln \ln K = 4,943386$

наиболее вероятный возраст Вселенной (лет) граница отрезка [2; P] на числовой оси кол-во элементарных событий (простых чисел) к-время (двойной логарифм параметра K)

	Начало (лет назад	Возраст Вселенной	Возраст по шкале	Количество	Кол-во эл.
Этап	от "сегодня")	(в годах)	к-времени	событий	событ. этапа
i	Ні (геохронология)	Bi = B - Hi	ti = Bi/B*t	$\mathbf{K}i = \mathbf{e}^{\wedge}(\mathbf{e}^{\wedge}ti)$	Ki - Ki + 1
0	0	13 810 000 000	4,943386	8,078E+60	1,0098E+60
1	2 661 180	13 807 338 820	4,942433	7,068E+60	1,0098E+60
2	5 736 442	13 804 263 558	4,941332	6,059E+60	1,0098E+60
3	9 378 081	13 800 621 919	4,940029	5,049E+60	1,0098E+60
4	13 841 556	13 796 158 444	4,938431	4,039E+60	1,0098E+60
5	19 606 521	13 790 393 479	4,936367	3,029E+60	1,0098E+60
6	27 752 035	13 782 247 965	4,933452	2,020E+60	1,0098E+60
7	41 732 125	13 768 267 875	4,928447	1,010E+60	1,0098E+60
Сумма элементарину событий (на всех этапах). 8					

Сумма элементарных событий (на всех этапах): 8,078Е+60

"Длинная" гео		хронологическая і	икала (всего 31	этап)	Габлица 9.2
	Начало (лет назал	Возраст Вселенной	Возраст по шкале	Количество	Кол-во эл

	начало (лет назад	возраст вселеннои	возраст по шкале	Количество	Кол-во эл.
Этап	от "сегодня")	(в годах)	к-времени	событий	событ. этапа
i	Hi (геохронология)	Bi = B - Hi	ti = Bi/B*t	$Ki = e^{(e^{t}i)}$	Ki - Ki + 1
0	0	13 810 000 000	4,943386	8,078E+60	2,5245E+59
1	632 498	13 809 367 502	4,943159	7,826E+60	2,5245E+59
2	1 285 887	13 808 714 113	4,942925	7,573E+60	2,5245E+59
3	1 961 591	13 808 038 409	4,942684	7,321E+60	2,5245E+59
4	2 661 180	13 807 338 820	4,942433	7,068E+60	2,5245E+59
5	3 386 399	13 806 613 601	4,942174	6,816E+60	2,5245E+59
6	4 139 190	13 805 860 810	4,941904	6,564E+60	2,5245E+59
7	4 921 725	13 805 078 275	4,941624	6,311E+60	2,5245E+59
8	5 736 442	13 804 263 558	4,941332	6,059E+60	2,5245E+59
9	6 586 091	13 803 413 909	4,941028	5,806E+60	2,5245E+59
10	7 473 790	13 802 526 210	4,940710	5,554E+60	2,5245E+59
11	8 403 095	13 801 596 905	4,940378	5,301E+60	2,5245E+59
12	9 378 081	13 800 621 919	4,940029	5,049E+60	2,5245E+59
13	10 403 455	13 799 596 545	4,939662	4,796E+60	2,5245E+59
14	11 484 688	13 798 515 312	4,939275	4,544E+60	2,5245E+59
15	12 628 194	13 797 371 806	4,938865	4,292E+60	2,5245E+59
16	13 841 556	13 796 158 444	4,938431	4,039E+60	2,5245E+59
17	15 133 832	13 794 866 168	4,937969	3,787E+60	2,5245E+59
18	16 515 960	13 793 484 040	4,937474	3,534E+60	2,5245E+59
19	18 001 321	13 791 998 679	4,936942	3,282E+60	2,5245E+59
20	19 606 521	13 790 393 479	4,936367	3,029E+60	2,5245E+59
21	21 352 519	13 788 647 481	4,935742	2,777E+60	2,5245E+59
22	23 266 296	13 786 733 704	4,935057	2,524E+60	2,5245E+59
23	25 383 406	13 784 616 594	4,934300	2,272E+60	2,5245E+59
24	27 752 035	13 782 247 965	4,933452	2,020E+60	2,5245E+59
25	30 439 795	13 779 560 205	4,932490	1,767E+60	2,5245E+59
26	33 545 806	13 776 454 194	4,931378	1,515E+60	2,5245E+59
27	37 223 901	13 772 776 099	4,930061	1,262E+60	2,5245E+59
28	41 732 125	13 768 267 875	4,928447	1,010E+60	2,5245E+59
29	47 554 993	13 762 445 007	4,926363	7,573E+59	2,5245E+59
30	55 782 527	13 754 217 473	4,923418	5,049E+59	2,5245E+59
31	69 903 953	13 740 096 047	4,918363	2,524E+59	2,5245E+59
					0 070E±60

Сумма элементарных событий (на всех этапах): 8,078Е+60

B = 13 810 000 000 lnK = ln(li(P)) = 8,078E+60 $t_K = lnlnK = 140,244$ возраст Вселенной (лет) логарифм кол-ва простых чисел κ -время (двойной логарифм K_0)

	Возраст Вселенной в	ной в начале этапа (лет) Возраст по шкале		Кол-во элем.
Этап	геохронология	моя модель	к-времени	событий
i	Bi = B - Hi	$Bi = B_0 / E^{\wedge}i$	<i>ti</i> (2-я гипотеза)	ln(Ki), Ki
0	13 810 000 000	13 810 000 000	140,244283	8,078E+60
1	13 809 988 300	13 768 980 703	140,241308	8,054E+60
2	13 807 412 000	13 728 083 245	140,238333	8,030E+60
3	13 804 667 000	13 687 307 262	140,235359	8,006E+60
4	13 786 970 000	13 646 652 395	140,232384	7,983E+60
5	13 776 100 000	13 606 118 284	140,229409	7,959E+60
6	13 754 000 000	13 565 704 569	140,226435	7,935E+60
7	13 744 000 000	13 525 410 893	140,223460	7,912E+60
8	13 665 000 000	13 485 236 900	140,220485	7,888E+60
9	13 608 700 000	13 445 182 235	140,217511	7,865E+60
10	13 557 830 000	13 405 246 542	140,214536	7,842E+60
11	13 511 100 000	13 365 429 469	140,211561	7,818E+60
12	13 451 100 000	13 325 730 662	140,208586	7,795E+60
13	13 390 800 000	13 286 149 772	140,205612	7,772E+60
14	13 366 200 000	13 246 686 447	140,202637	7,749E+60
15	13 324 600 000	13 207 340 338	140,199662	7,726E+60
16	13 269 000 000	13 168 111 098	140,196688	7,703E+60
17	13 175 000 000	13 128 998 379	140,193713	7,680E+60
18	13 090 000 000	13 090 001 834	140,190738	7,657E+60
19	12 810 000 000	13 051 121 120	140,187764	7,634E+60
20	12 610 000 000	13 012 355 891	140,184789	7,612E+60
21	12 410 000 000	12 973 705 805	140,181814	7,589E+60
30	9 810 000 000	12 630 980 363	140,155042	7,389E+60
31	9 210 000 000	12 593 463 062	140,152068	7,367E+60
10733	?	1,8809E-04	108,317038	1,100E+47
44939	?	1,2136E-48	6,56512	#ЧИСЛО!
44940	?	1,2100E-48	6,56215	2,446E+307
47145	?	1,7146E-51	0,00297	2,726
47146	?	1,7095E-51	0	2,718
47147	?	1,7044E-51	-0,00297	2,710