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1. Introduction

Remark:

We are using :Z—n, F'(2), F™(z) and D} as the differential operators and choosing the most suitable
notation for the case.

We will begin with the definition of the two-sided Laplace transform.! The Laplace transform of a
real function f(t) is defined as

F(z) = f @) - et 1)

where z = x + iy for x and y real.

We assume f(t) = 0 forall tand f(—t) = f(t). Further, f(t) is so rapidly decreasing that F(z) is
entire. Since we assume that f(t) is an even function, we can write

F(z) = jmf(t) e Zdt = jmf(t) ceftdt = foof(t) - cosh(zt) dt = 2 fmf(t) -cosh(zt)dt (2)
— 0 —0 —0 0

and the power series expansion of F(z)

(00}
F(z) =Za2n-22" =ay + ayz% + az* + - (3)
n=0

where a,, = $ff°mf(t) - t2ndt. Note that f(t) is non-negative, hence a,,, is strictly positive for all

n.Therefore, any coefficient is not missing.

The real and imaginary part of F(z) is

F(z) = ulx,y) +iv(x,y) (4)
where
u(x,y) = foof(t) - cosh(xt) - cos(yt) dt (5)
and
v(x,y) = foof(t) - sinh(xt) - sin(yt) dt (6)

1 Since we are only dealing with the two-sided Laplace transform, the term “two-sided” will be omitted afterward.



Since x or y is zero, the imaginary part is vanished, rewriting in

[o e}

F(x) = u(x, 0) = f @) - etdr = f ) - et = f " £ (6) - cosh(xt) dt = Y e x (@)

n=0

and

Fa = FO) =u@ = [ 1@ = [ @ e = f©-costnde=Y (D" a-y*" (®)
-® -® -® n=0

which are F(z) on x-axis and y-axis respectively. Clearly, F(x) and F(y) are even functions and
real when x and y real respectively, and since F(iy) is real when y real, we often use F(y) instead
of F(iy) for convenience.

To be F(z) entire, the coefficients a,,, should be rapidly decreasing. A rough estimation how
rapidly the coefficients decrease, we may use the rule of thumb

Z?f:l QAzn (9)
Qo
and we guess the less the value (9), the more rapidly the coefficients decrease.
Since F(0) = ap and F(1) = Y7o an, We can write (9) as

F(1)
OB (10)

The value (9) should be close to zero. Otherwise F(z) cannot be entire. For example, if f(t) =
e~t”, the value (9) is e¥/* — 1 ~ 0.2840.

2. log- convexity and log-concavity

A function f(x) is log-convex if In[f(x)] is convex. Similarly, a function f(x) is log-concave if
In[f(x)] is concave?.

Theorem 1: The log- convexity and log-concavity

1) A function f(x) is log-convex, if and only if

fAxy + pxp) < [f Ge)]t - [f ()] (11)
where A, u>0and A+ u = 1.

and

fO)-f")=If'(0]* =0 (12)

21f F(x) <0, then In[f(x)] is not defined. In this case, we assume that F(x) is log-convex if F(x) - F"(y) — [F'(¥)]?> = 0 and log-
concave if [F'(y)]? = F(x)-F"(y) = 0.



2) A function f(x) is log-concave, if and only if

fQxy + pxz) = [f (e)]t - [f (x)]#
where L, u>0and A+ u = 1.

and

fG ") = If)*P<0

Theorem 2: The strictly log- convexity and strictly log-concavity

1) A function f(x) is strictly log-convex, if and only if

fQxy + pxz) < [f Ge))t - [f (x2)]#
where L, u>0and A+ u = 1.

and

fE) - f"C) = [f'(0]* >0

2) A function f(x) is strictly log-concave, if and only if
fQxy + px) > [f (e)1* - [f ()]
where A, u>0and A+ pu = 1.

and

fE - f") = [f')]* <0

3. The Laguerre inequalities
The necessary but not sufficient conditions of F(y) to have

only real zeros are that F(y) and all the derivatives of F(y) are log-concave, where

FO) = u(0,y) = f " F@©) - evtar = f ") evtat = f " F©) - cos(yD) dt

Hence, we have the theorem

Theorem 3: The Laguerre inequalities

F(y) belongs to the Laguerre-Pdlya class if

[F D] = Fi () - FD(y) 2 0

wheren =0,1,2,3,...and for all y € R.

(13)

(14)

(15)

(16)

(17)

(18)

(19)



It means that if F(y) has only real zeros, then F(y) and all the derivatives of F(y) are log-
concave but not conversely.

Proposition 1:

Let f(x) be an even function, then we can express f(x) as polynomial whose powers are all even.
So, we can write

n
f(x) = by + byx? + -+ + bypx?®™ = z by * X%k (20)
k=0

where b, is real and can be positive, negative or zero.

Let p(x) be f(v/x), so, we can write
P = F(VE) = by + byx + -+ bypx = ) by - ¥ (21)
k=0

Clearly, if p is a root of f(x), i.e., f(p) = 0 then p? is a root of p(x). If p is real, p(x) has a real root
p%. Now, we define another polynomial, namely q(x) = p(x)|,-—, = p(—x), which can be written as

n
Q(0) = by = byx + =+ byyx™ = ) (=D by - ¥ (22)
k=0

If p is a root of f(x), p? is a root of p(x) and —p? is a root of g(x). Since f(x) is an even function,
if pis a root of f(x), then -p is also a root of f(x). Therefore, if f(x) has 2 - m real roots, p(x) and
q(x) have m real roots. As mentioned above, if p is a real root of f(x), p? is a real root of p(x) and
—p? is a real root of q(x). p? is non-negative and —p? is non-positive, hence we rewrite the
statement above:

If f(x) has 2 - m real roots, p(x) has m real roots in the interval [0, ) and g(x) has m real roots
in the interval (—oo, 0]. Consequently, if f(x) does not have any real root, p(x) has no real root in
the interval [0, o) and g(x) has no real root in the interval (—oo, 0]. In other words, if f(x) does
not have any real root, f(x) does not change the sign at all, hence, p(x) and q(x) do not change
the sign in the interval [0, o) and (—co, 0] respectively.

If f(x) if non-negative or non-positive, i.e., f(x) = 0 or f(x) < 0 for all x € R, then f(x) can be
zero. Assuming f(x) = 0 and f(p) = 0, then since f(x) is non-negative, f(p) is a local minimum,
thus f'(p) = 0. The case of f(x) < 0 is similar, and f(p) is a local maximum, thus f'(p) = 0.
Therefore, f(x) = 0or f(x) < 0forallx € Rand f(p) = 0, then f(p) is an extremum, hence

f'(p)=0

Since f(x) = p(x?), we have f'(x) = 2 x-p’(x?) where p’'(x?) denotes p'(x)|,—,2. Thus, if
f'(p) = 0, then p'(p?) = 0, and therefore p(p?) = 0 and p’(p?) = 0, which means is that if f(x) > 0
or f(x) <0 forall x € R, p(x) does not change the sign in the interval [0, o).

f(x) is an even function and therefore f'(0) = 0 but p'(0) # 0. It is because f'(x) is an odd
function. However, r(x) = f'(x)/x is an even function and therefore f'(p) = r(p) = 0. Thus, if

f'(p) =r(p) =0, then p'(p?) = 0.



Similarly, if f(x) = 0 or f(x) < 0 for all x € R, then q(x) = p(—x) does not change sign in the
interval (—oo, 0].

Now, we define g(x) as follows:
n
g(x) = f(ix) = by — bzx2 + -+ banzn = Z(—l)k * by - x %k (23)
k=0

then, g(x) = g(\/E) and naturally, p(x) = q(—x). Therefore, g(x) does not change the sign Vx € R,
if and only if q(x) and p(x) do not change the sign in the interval [0, o) and (—oo, 0] respectively.

Consequently, both f(x) and f(ix) do not change the sign Vx € R if and only if either p(x) or
q(x) does not change the sign Vx € R.

Proposition 2: The log- convexity of F(x)

From (7), F(x) is defined as:
F(x) = foof(t) e Xt

Forxland x2 (x1 #x2),and AL, u>0,A+u=1
FQxs + pxy) = f () - e-Grtuxt gy = f [F(8) - eat]A - [£(2) - e~%2t it

and by the Holder inequality, we have

[ 1@ et @ eirar < [ [ ro- e-xltdtr - [ [ ro- e-xztdtr
In addition, [f(t) - e *1t]Y/% and [f(t) - e *2t]*/* are not linearly dependent for x1 # x2, hence the
equality does not hold. So, we have
F(Axy + pxz) < [F(x)]* - [F (x)]#
This means that F(x) is strictly log-convex.
Since F(x) is strictly log-convex, we also have
F(x)-F"(x) —[F'(x)]* >0 (24)
Now, let G(x) be F(x) - F"(x) — [F'(x)]?, namely
G(x) =F(x)- F"(x) — [F'()]? (25)

then G(x) > 0 or G(x) = 0 for all real x. Since F(x), F"(x) and [F’(x)]? are even functions, G(x) is
also an even function. We define another function p(x) = G(\/}) Since G(x) is an even function,
p(x) # 0for0 < x < ooand p(—x) # 0 for —o < x < 0 by the proposition 1.

Since F(x) = [*_f(t)- e *dt,

e} o) o) 2
G(x)=j f(t)-e‘xtdt-f f(t)-tz-e"“dt—U f(t)-t-e"“dtl (26)



and

p(x) = fwf(t) e~ VE gy J.oof(t) T Uoof(t) 't e-ﬁtdtr 27)
which is non-zero for x = 0. Moreover, p(—x) is non-zero for x < 0, we have
p(—x) = foof(t) -eJmtdt-fmf(t)-t2 eVt gy — Umf(t)-t-e\/Tx'tdtr
or more intuitively,

* © e 2
p(—x)=f f(t)-eimtdt-f f(t)-tZ-eimtdt—U f(t)-t-ethdtl

and by changing the variable t » —t we have

00 0o o0 2
p(—x) = f f(£) - e~WHtgy . f f(t)-tz-e‘i‘/mtdt—U f(t)-t-e‘i\/mtdtl (28)

which is non-zero for |x| = 0. Further, we have p(—x) = p(i - |x]) from Eq. (28).

Eqg. (28) is not different than G(ix)|x=m and since G (ix) is real when x real, hence g(i - |x|) is

real when x real.
By changing the variable |x| » y? in Eq (27), we have
PG 1xDljeioyz = PG ¥2) = [, £ - e 8% de- [ f(6) 12 e W Ptde = [ f(©) -t e ear]

thus

0 © ) 2
p(i-y?) = ] f(t) e titge J f(t)-t?-e tWitge — U f(t)-t- e—i-lyltdtl

or

oo [ee} [oe) 2
p(i-y?) = f f(t) e ™dt f f(t) - t?-e Vdt — U f@) -t e“"ytdtl (29)
which is non-zero for y > 0. Furthermore, since g(i - y?) is real and an even function, g(i - y?) is
non-zero for all y € R. Hence, Eq. (29) is nothing but G (iy).

Or more easily, from Eg. (28) p(—x) is non-zero if |x| = 0, and this means that p(—x) is non-zero
Vv x € R. Hence, from proposition 1, both F(x) and F(iy) are non-zero Vx € R.

From Eq. (8), we have
Fo) = [ f@-ear

and since F'(y) = —i ffooof(t) t-e Widtand F'(y) = — f_"°oof(t) 12 et gt

2

FO) PO = (PO == [ f@-etae [ f@-etebtar [ [ - e-embra



which is — G(iy). Since G(iy) is non-zero forally € R, sois — G(iy) = F(y) - F"(y) — [F'(»)]>.

We know that F(y) - F"(y) — [F'(y)]? # 0 for all y € R, hence F(y) is either strictly log-convex or
strictly log-concave. To determine it, we examine F(y) - F"'(y) — [F'(y)]? at y = 0. From Eqg. (8), we
have

FO)= ) (- ag -y
n=0

Since F(0) = ay, F'(0) =0and F""(0) = =2 a,, we have F(0) - F"(0) — [F'(0)]? = —2a, ' a, < 0,
hence F(y) is strictly log-concave. It is because F(y) - F"'(y) — [F'(y)]? does not change the sign
for all y.

Note that we have proved F(y) is log-concave using p(—x) which is log-concave and defined as
F(=V%) = ) (D" g2 (x<0) (30)
n=0

so, p(0) = a,, p'(0) = —a, and p”'(0) = 2a, and since p(—x) is log-concave, (a,)? > 2a,a,.
Moreover p(x) is positive for x > 0 and (a,)? > 2aay, F(\/E) is also log-concave for x > 0.
Further, since [F'(¥)]? = F(y) - F""(y) > 0, p(—x) and p(x) does not change the sign for x > 0 and
x < 0 respectively. Hence F(vx) and F(—+/x) are log-concave Vx € R because of (a;)? > 2a,a,.

A more intuitive method to determine F(y) whether log-convex or log-concave from F(x) - F"'(x) —
[F'(x)]? is changing x to iy. From F(x)-F"(x) — [F'(x)]* >0, we use another notation of
derivatives, i.e.

2 2
F(x) -%F(x) — [:—xF(x)] > 0 and we change x to iy, that is,

F(y) " s F(iy) = [75 F(iy)] ——F(zy> L) - [FEF@)| = —F@) - 2 Fly) + [SF@)] >0
which derives F(y) - F""(y) — [F'(0)]? <

This can be explained as follows:

By Eq. (4), F(z) = u(x,y) + iv(x,y), where u(x, y) is the real part and v(x, y) is the imaginary part
of F(z). Since

F,()_6u+_6v_ ou ny av
2= 0x lax — a(iy) La(iy)
0*u  9*v  0*u 0%

FO= 252~ 302 L amyy

and so on.

Since the imaginary part vanishes on x-axis and y-axis, by Eq. (7) and (8), F(x) = u(x, 0) and
F(iy) = u(0,y). Indeed, F(x) and F(iy), and all their derivatives are generally not same but they
are same at the origin where x = 0 and y = 0. Hence, we can write:

F(i )’) a—zzF(X) = F(ly) and so on,

. 7]
Flemo = F)lyeo  32F (0| _ =50 @l = B

hence we have



d? d 2 , a? d 7
(F(x) PG - |- F )| ) - (F(zy) ) - [ )] ) S
which leads
(FG) - F" () = [F (1) amo = (<) - F" () + [F' 0Dy (32)

Therefore, if both F(x) - F""(x) — [F'(x)]? and F(iy) - F" (iy) — [F'(iy)]? do not change the sign
d2
a(iy)?

2 2 2
Vx,y € R, the sign of F(x) -%F(x) — [;—x F(x)] and F(iy) - F(iy) — [ﬁ,y)F(iy)] does not
change Vx,y € Rand the signissameasx =0and y = 0.

Furthermore, if G(x) is the sum of products of two derivatives of F(x), and G(x) and G (iy) do not
change the sign Vx,y € R, then the sign G (x)|,=;y iS same as of G(x) as long as G (iy) is real.

We have proved the first step of the Laguerre inequalities. From (19), if n is even, the nt"
derivative of F(z) is as follows:

F@R(Z) = [T f(t) - t?*-e2tdt (33)
where n = 2k.

We define £, (t) = f(t) - t?*. Since both £(t) and t2* are non-negative and even, f,,(t) is also a
non-negative even function. So, we can write

FPO(2) = Fy(2) = [° for(t) - e~%dt (34)
where k=0,1, 2, ...

We have proved that the Laplace transform of any non-negative even function holds the
Laguerre inequalities. That is, F,,(iy) = F®¥ (iy) is log-concave for all k > 0.3

Now, we will prove the Laguerre inequalities for odd n. Letn be 2k + 1 fork =0, 1, 2, ..., then
form (7), the (2k + 1) derivative of F(x), i.e., F@*D(x) is as follows:

-zt

o oo e
F(Zk“)(x) — J f(t) . t2k+1 el dt = x - J f(t) . t2k+2 . o dt (35)
and since
-1 -zt
f ezt‘rdT —
—00 X
we have
o'} -1
F(2k+1)(X) =x- J f f(t) . t2k+2 . eZtT dt - dt (36)

We define G, (x) as

3Indeed, F@)(iy) = (—1)k - F(Z")(x)|x=iy, but the sign of FK) (iy) - F2k+2)(jy) and [F2k+D (iy)]2 is same for all k.



1 ® 1

G (x) = ~ FQ@k+D (x) = f f f(t) - t2k*2 . Xt qr - dt

Forx1 and x2 (x1 # x2),and A, u>0,A+u=1,
(o] -1

Gox(Axy + ux,) = f f f(t) - t¥,+2 . oAxatpxa)tt gr. gt

or
00 -1
Gax (Axy + px;) = f f [f(t) - t2+2 - eXatT] AL [£ (1) - t2K42 - eX2tT]0 g7 - dt

and by the Holder inequality of double integral. We have

o] -1
J. J. [f(t) . t2k+2 . exltr]l . [f(t) . t2k+2 . exztr]u dr - dt

u

0 -1 A e} -1
<j j f(t)-tz’”z-exl”dr-dtl U j f(t)-t2kt2. eX2tT dr . gt

hence
Goie (A1 + pxz) < [Gor(x1)] + [Gar (x)]#
which means G, (x) is log-convex.
From (35) and (37), the inequality (38) can be written:
ffooof(t) - t2k*2 . sinhc(Ax, t + px,t) dt

u

0 A
< j f(t)-tz’”z-sinhc(xlt)dtl .

j f(t) - t2k*2 . sinhc(x,t) dt

sin

where sinhc(xt) =

:E’Ct). Note that sinhc(xt) = 1 and even.

With the same manner we used before, it can be shown that

Gae) = 1 [0 -6 sinc(ye)

is strictly log-concave. The function sinc(yt) is defined as %
From (36),
FERFD () = x + Gy (x)
and

F(2k+1)(l‘y) = (=% -y Gy (iy)

G, (x) is log-convex but x is log-concave, therefore F2¥+D(x) is not log-convex for all x € R.

(37)

(38)

(39)

(40)

F@k+1(iy), however, is log-concave Yy € R because both +y and G, (iy) are log-concave Vy €

R.



Since F(iy) is nothing but Fourier Transform of f(t), we have shown that the Fourier transform of a
non-negative even function satisfies the Laguerre inequalities.

4. The generalized Laguerre inequalities

From (1), the Laplace transform is defined as
F(z) = foof(t) L e~7tdy
and therefore
|IF(2)I? =F(2)-F*(z2) = F(x +iy) - F(x — iy) = foo foof(tl) f(ty) e ¥ttt . o=t gt - dt,  (41)
By changing the variables t = t; + t, and t = t;, we have
|F(x +iy)|? = foo joof(r) ft—1) e Xt eV WD gy dt (42)
Letting T = —t, and assuming f(t) is even, we have
|F(x +iy)|? = J-°° Uoof(T) ft+ 1) eV WD gr|ext gt (43)
or simply,
F(x + iy)|? = foory(t) et gt (44)
where
(1) = foof(r) ft—1) e W eVtDgr = foof(r) f(t+71) eVt ety (45)
The conjugate of 7, (£)
ry(t) = jmf(r) ft+1) e Ve VD g (46)
and by substitution T — 7 — t, and assuming f(t) is even, we have
ry(t) = ]mf(r — 1) f(7) - eV D . emTgy = foof(r) ft—1) eV eYED . g

which is the equation (34), therefore, 7, (t) is real. Moreover, 7, (t) is an even function which can
be easily proved. The function r,(t) is real and even but does not hold the positivity, namely, It can
be negative.

Since |F(x + iy)|? is even for x, the Eqg. (44) can be written as
FGe+ )1 = ) Agy - (47)
n=0

where



Agn = — [ 1,(t) - t2" dt (48)

= -

Imagine |F(x + iy)|? on the horizontal line where y is constant. If 4,,, > 0 for all n, then we have a
unique global minimum at x = 0 and |F(x + iy)|? is increasing while |x| increasing. Hence If A,,, is
non-negative for all n, zeros of |F(x + iy)|? can exist only at x = 0, i.e., iy-axis.

By reforming (45), so that
1, (t) = f f(0)-eYT- f(t+1) e¥EDgr (49)

and by letting g(7) = f(1)-e 97, 1, (t) is the cross-correlation function of g(z) and g*(r) where
g (t) = f(r) - eV". Let F(w) be the Fourier transform of f£(7), then the Fourier transform of g(z) is
F(w — y) and the Fourier transform of g*(t) is F(w + y). By the cross-correlation theorem, we
have

o)

1 )
1, (t) = Ef_ Flw—y) Flw+y) e*dw

and since F(y) is even, we have
1 (® .
1y (1) =§f Fy—w) Fiy+w)- e'dw (50)

which is similar to the Wigner-Ville distribution function. By changing variable x = if, from (44),
we have

1 (®° r® ) )
|F(i6 + iy)|? = — Fly—w) F(y+w)- e e ®tdydt (51)
21

and
f°° fooF(y—w)-F(y+a))-ei“’t-e‘i9tdwdt=fooF(y—w)-F(y—a))-lfooei“’t-e‘ietdtldw
and
fooei‘“t e~ 0t = 21 - 5(6 — w)
thus, we have
|F(i9+iy)|2=JOOF(y—a))-F(y+w)-6(w—9)dw

and by omitting i for convenience, we have,
|F(6+y)I?=F(y—6)-F(y +6) (52)

which is the characteristic equation of |F(x + iy)|?> where x = if, hence, from (44)
[F(O+y)|? = f 7, (¢) - et de (53)

The nt* moment of |F(x + iy)|?, which is denoted as M,,, is defined as follows



M, (y) = f_ " () dt (54)

or

M, (y) = (=D" - DFIF (x + iy)|?|x=0 (55)

Another method to get M,,(y) is differentiating (53), that is,

1
(—l)n ' DglF(@ +}’)|2|9=0

or by (52), M, (y) |s —-DE[F(8 —y) - F(6 + y)]g=o Which can be computed using the Leibniz

M,(y) =

rule, that is,

1
Mu) = =5 DYIFQY = 6) (v + )]o- Z( D5 () F9OO) - FO 0 (56)

T (- )”
However, since 7, (t) is an even function, M, (y) vanishes when n is odd and we need to compute

only for even n, hence,

2n

Mon(y) = DF"IF(y = 0) - F(y + O)lp=o = (~1" ) (=% (31) - FR ) - Fen0)  (57)

k=0
and we have
oo 1 (0]
F(x + iy)|? = ZOW Moy (y) - X2 = Zow) X2 (58)
where
2n
1
L) = (~D" -m;(—l)k (3M) - F® ) - Fenb(y) (59)

Theorem 4: The generalized Laguerre inequalities

The zeros of F(z) locate only on the iy-axis if and only if L,,(y) = 0 for any y and n.

Definition: The copositive-definite function

A function f(x) is copositive-definite if and only if

N N
Z Z CnCr f(Xn +x,) =0 (60)

n=1k=1

for any complex values c,, real values x,, and non-negative integer N > 0.

Some properties of the copositive-definite function

1. If f(x) is copositive-definite, f(0) = 0.



2. If f(x) is copositive-definite, its (2n)t" derivatives, i.e., f?™ (x) is also copositive-definite.
3. If f(x) and g(x) are copositive-definite, f(x) - g(x) is also copositive-definite.

Indeed, F(y + 0) = F(iy + i0) = F[i(y + 0)], i.e., this function lies on the iy-axis. F(y — 0) is the
same. We will map F(y — 6) - F(y + 8) on x-axis, i.e., F(x — 0) - F(x + 8), and we have
F(x—0) = foof(t)-e‘xt-eetdt (61)
and
Flx +0) = f CE) et e Ot (62)
F(x — 0) is copositive-definite for 6, because

N N . N N
Z Z CnCiF (= (6, + 6))) = f F£) - e*t - Z Z e e @O0t gt
n=1 k ® n=1 k

2

N

et

n=1

=foof(t)-e‘xt- dt >0

In the same way, F(x + 0) is also copositive-definite for 8, thus F(x — 8) - F(x + ) is copositive-
definite for 6 by the property 3.

Since F(x — 0) - F(x + 6) is copositive-definite for 8, D" [F(x — 8) - F(x + 6)] is copositive-
definite by the property 3. Also, D3"[F(x — 6) - F(x + 8)]9—o = 0 and we have

2n
Man() = DFIF(x = 0) - Fx + O)lg=g = ) (~DF- (31 - FR G- FEmP ) 20 (63)
k=0
and

1
L,(x) = @l My, (y)

F®(x) - F@"=0)(x) is an even function, and therefore M,,(x) is an even function, hence the

power series of M,,(x) has only even powers of x.Thus by the proposition 1, P,,(x) = M,,,(v/x)
does not change the sign for x > 0, and Q,,,(x) = P,,,(—x) does not change the sign for x < 0.

From (7), we have
F(x) =u(x,0) = j::f(t) e Xt = f:f(t) -e*tdt
and
F®(x) - F@n=0)(x) = J_O:Of(t) -tk ext dt - f:of(t) . g2n-k . pxt gy (64)

Let pp(x) = F®(x) - Fn=h) (x)|x=\/z = F®(Vx) - F@=B(yx), and g, (x) = pr(—x), then



p(—x) = f () -tk eVt ge. f F(b) - 2k g=Vxt gt
If x <0, then
pi(—x) = f f(&) -tk eVt gt f (&) - t2nk o= WI gt = py (=i - |x]) (65)
By changing variable |x| —» y?, we have
(=i XD =y = Pe(=i- y*) =f f(&) -tk eIt dt'f f(&) -2k emthIt gt

and since
f_‘x’oof(t) kL etlyIt gt . f_‘x’oof(t) cp2n—k . pllylt gy = f_°°oo f(@o) - th ettt gt . f_"ooo f(o - t2n—k . o-ilylt g¢
we have

pi(—i-y?) = foof(t) e de fmf(t) PR e gt

which is nothing but

(=i 1xDlgzyz = (1" FO@i - y) - FER (- y) (66)
From (63) we can write
Qn(x) = Py (—x) = i(—nk (%7 (=) - o) (67)
=
where Q,,(x) does not change the sign for x < 0, hence
Man(y) = D§"[F(y = 6) - F(y + 6)]g=g = (—1)"- i(—l)k (3) - F®RGy) - Fer i)
=0

or since F® (iy) - FZ"=K)(iy) is real, i can be omitted. Thus

2n
Mon() = (=" ) (=¥ - (*1) - FO ) - Fen ) (68)
k=0

does not change sign for all y € R and n > 0, which yields M,,(y) = 0 or M,,(y) < 0forally € R
andn > 0.

To determine the sign of M,,,(y), we simply substitute n = 0 and y = 0, because the sign of
M,,,(y) does not change for all y € R and n > 0. Hence
Mo(0) = [f(0)]> = a§ >0
where a, is defined in (3). Therefore M,,,(y) > 0forally € Rand n > 0.

Another way to determine the sign of M,, (y) is the substitution x to iy. Since
dk 2n-k

- WF(}’)

y=0

F(k)(x) . F(Zn_k)(x)lxzo = WF



and M,,,(x) and M., (iy) do not change the sign, from (63) we have

2n k dZn—k
= k. S — >
Man(iy) = Z( D () ay D) gy F0) 2 0
which is
m dk 2n—k

M, (iy) = i 12” kZ(— )k ) A(iy)F ()’)'WF()’) =0
Hence

Maon(iy) = Man(y) = (=1)" - Z( D (1) F9OG) - Feno () = 0
Since L,(x) = -M,,(y) = 0, the generalized Laguerre inequalities are valid for a two-sided

(Zn)'
Laplace transform F(z) of a non-negative even function f(t) as long as F(z) converses.

5. The Riemann hypothesis
The Riemann zeta function {(s) is defined

c(s)=2%=1+i+i+---

n=1

where s = ¢ + iw.

It is known that the zeros of {(s) are located only on the strip 0 < o < 1. Riemann conjectured
that all the zeros of {(s) are located on the line ¢ = % so-called “Riemann hypothesis”.

Using the Riemann’s functional equation, an entire and symmetric function can be obtained
which is called the xi function £(s) where

£(s) = 5 s(s — DF (3) £6) (69)
The function £(s) can be written as
i) = | "o et rar (70)
where
e(t) = 2m i g=mn’e? (Znnze;t - Be%t) (71)

and it can be shown that @(t) > 0 for all t and an even function.

By substitution z = s —% where z = x + iy , and @(t) is even, we have



o

o(2) = f " o0 et = f (1) - cosh(zt) dt (74)

—00

and since ®(z) is a shifted function by % of &(s), ®(z) is entire and the zeros of ®(z) should be
located on the strip —% <x< % . From (69), we have
1 1 z 1 z 1 1
— 2.7 3.(,2_Z).T(Z+L2). Z
d)(z)—zn4 T 2 (z 4) F(2+4) C(z+2> (75)

which is Riemann’s original definition of xi-function.

We consider the function ¢(t) defined in (71). It is positive and even. Moreover, it is decreasing
very rapidly?, thus ®(iy) belongs to the Laguerre-Pdlya class and has only real zeros. It means
that all the zeros of ®(z) are located at x = 0, and hence, all the zeros of §(s) and {(s) are located

ato = % . Thus, the Riemann hypothesis is true.

Another popular definition ®(z) is:

d(iz) = foo(p(t) -cos(zt) dt = 2 foo(p(t) - cos(zt) dt
—0oo 0

and by substitution t —» 2t, we have

[0e]

d(iz) = 4f @(2t) - cos(2zt) dt (76)
0

We define @(t) as

o) = nz n2 - e~m*e* . (2n2e9% — 3¢50)

n=1

then B(t) = - @(2t) and eq. (74) will be
d(iz) = 8J @(t) - cos(2zt) dt
0
and by defining Z(z) =§ ®(iz/2), we have

2(z) = foo(b(t) - cos(zt) dt (77)
0

or simply,
2(z) =2 d(iz) (78)

This function is called the big-xi or upper-case xi function and used to prove the Riemann
hypothesis and to find the location of zeros in most literatures. Since ®(iz) is only the rotation of
®(z) by 90°, the zeros of Z(z) locate only on the x-axis.

4 According to rule of thumb (10), %— 1 =~ 0.0233, which is much smaller than f(t) = et



