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Vyacheslav Telnin

Abstract

In classical electrodynamics, four-vectors with four real
numbers t, X, y, z are used. It is noted that the same result
can be achieved with the help of quaternions with three real
numbers X, y, z and one imaginary i - t. This suggests that
we can go further, and consider all four numbers t, x, y, z
complex. And deal with quaternions with complex
coefficients:(a +i-t), (x+1i-b), (y+i-c), (z+i-d).
These objects, for the sake of brevity, we call octads. But you
can go even further, and work with quaternions, where all
four numbers t, X, y, z also quaternionic. For the sake of
brevity, we call these objects Q2 numbers. All next text deals
with the translation of classical electrodynamics into the
languages of octads and Q2 numbers.

Content
1.Quaternions.
2.Cartesian product of quaternions.
3.Algebraic and metric tensors
4.Conjugation
5.Indexless expressions
6.The first indexless octad action function
7.Indexless connection of fields F with potentials A

8.Index octad connection of the fields F with potentials
A.

9.F fields in classical electrodynamics
10.The second octad indexless action function

11.The third octad indexless action function
2




12.Variation by 6A
13.Index view of equations for fields F

14.Motion equations for a massive charged particle in
the field F.

15.Density A for the third octad action function
16.Results
1.Quaternions.

From the set of hypercomplex numbers, quaternions are
distinguished. These are numbers of the form:

iri=j-j=k-k=i-j-k=-1
=1 i,=10; i3=j; i, =k;
Il =lm - @Mk
X=1ln x"
n=1,23,4)(orn=a,x,y,2)

The multiplication table for the quaternions:

. .. m
ln "k =lm P hk

Ly Btz | U3 | I4 L

iy |iq] iy | i3 | i4

Lp|lp|-lq| Uy |-i3

Ly | i3 |-lg|-lg| I

i |ig] i3 |-ig]-i4




2.Cartesian product of quaternions.

We can consider the Cartesian product of several
quaternions:

YIXY2XY3X..XYN=QN;

The numbers QN are multiplied with one another by the
corresponding quaternions.

Let’s consider the simple case N = 2:
Q2=Y1 X Y2
Let Q be one of the numbers Q2:

Q=1iyXip x#-x"
w=1234) (wmmu=a,xyz)
n=1,234) (wiun=a,x,y,7)

It can be seen that Q is a 16-dimensional vector:
Q =my - Q¥
k=(1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16)

i [ iy | i3 | ia | in
i, 1129 [10
i, |34 |11]12
is|5 |6 |13 14
i,|7 8 [15[16
iy k




Q¥ =(a,t,x,b,y,c, 2 d,r,u, X W, K w,nb)

Q¥ | iy |z |3 |ia| in

-
<
o
=

| E| E| E

abBrpeéxsun
KNMHONPCTY®
X UYWL bblb3to A (Russian alphabet)
In general terms:
M =i, Xi, -mh7
Qk=vak_xv,xm

The algebraic tensors for quaternions and Q2 numbers are
defined as:

in e =1m @ i
My My =m, - F"
We express F ", in terms of ¢™, ,:
mn~mk=(anip'mVpn)-(n#xiq-m“qk)=

— P vp nq
=My n)X{p-ig)-m "y -m 7Y =

— . vp uwq __
_(n)l'(plvu)x(lh'(phpq)'m n' M =

5



_ : A h vp nq
=MmyXip)- @ vu P pgM M =

_ r _ : Ah r
=my - Fl e =MaxXip) m* " -Floy
From here:

Ah T — A h vp uq
mit F e =@ @ pgm Ty omt

We introduce for m*" .. the inverse element m "pw as:
m’, g, mih . = 6;1 -8k

And then we get

r _ r p w vp uq
F nk=Wpe @ yu P pgM M

So we expressed the algebraic tensor F ", for Q2 numbers
in terms of the algebraic tensor ¢ pw for quaternions.

The numbers Q2 can be called quaternions with quaternion
coefficients. And they require 16 real numbers for their
description. For the simplicity of the derivation the basic
equations, we consider only 8 real numbers: (a, t, x, b, y, c,
z, d). These will be quaternions with complex coefficients.
Let's call them octads.

So, if q is an octad, then:
q=i,Xip-xHt- -x"
m=1,23,4) (oru=a,x,y,2)
n=12)

q :nv'qv (V: a’tﬁ‘xlblyﬁclzld)



We use the following form (i; = 1; i, =1i):

q” = (a,t,x,b,y,czd)

q¥ |11 in
iqgla|t
iy |Xx]|Db
iy |y|C
i, |z|d

u n
Ly xH-x

gq=igx(@a+i-t)+iyxx+i-b)+iy,Xy+i-c)+

+i,X(z+i-d)

q=ng-a+ngt+ny-x+ny-b+ny,-y+n.-c+

+tn,-z+ng-d

Ng=lg Xl Np=IXE Ne=1Iy, XI5 Ng=1i; X

To multiply octades, we build the following table:



t b |y d|v
ajla|t [x |b |y d
t|jt|j-aj/b|x|c |-y|d |-z
X|(x|bl-al-t|z|d]|-y]|-C
blb|x|-t|a|d]|-z]|-c
yly|c |-z|-d]|-a|-t|Xx
c|c|-y|d|z |-t |a |b |-X
z|z|d |y |Cc |Xx|-b|-a]|-t

M A2

Here f ’1,“, is an algebraic tensor for octads.

3.Algebraic and metric tensors
The multiplication of the vectors n , sets the algebraic tensor
— pl
nu'nv_nl'f uv

In a non-curved space n, = 1 and one can define the metric
tensor n ,, via the algebraic tensor f ’1,“, like this:

(nu,nv)zn/,n/:na'fam/:1'fauv=fa,uv



4.Conjugation

For quaternions 1" =1 i*=—-i j" '=—j k*=-k

For Q2 numbers:
Q=iyXip-xH-x"

wr=1234) (n=1,23,4)

You can conjugate Q in different ways: by the left Cartesian
factor, by the right one, or by both at once. To distinguish
between these conjugations, we introduce a dash sign over
Q. If it exists, then it must be conjugated by the left Cartesian
factor. If Q has an asterisk, then conjugate it by the right
Cartesian factor. If there is both a dash and an asterisk, then

it is necessary to conjugate both Cartesian factors.
Q=i, " Xip-xt-x™ Q =i, Xi, -xt-x"

— %
*

Q =i,/ Xip -xk.-x™

= . Q¢ moo= .CP
Q—mMQ mH—mpC” m

* __ . yP
w =my-HY,

If the product of Q2 numbers is conjugated, then a

permutation of Q2 factors is added:

(Q-R)=R-Q (Q-R*"=R"-Q"



For octads, the conjugations behave the same as for Q2
numbers (consideration is made for Q2 numbers, and octads
are a part of them).

— . gl no o= . * . hP
q=nyu-q Ny =MNp-Cy n,~=mn,-h",

CH[,L = (11 1;_11_11_1;_11_11_1) H = (a, t,x, b,y, C 2z, d)

W, =01,-1,1,-1,1,-1,1,-1) pu=(atxby,czd)

We will call the tensors d*, , ¢*, , H?, , ¢, , h”, by the
conjugation tensors.

5.Indexless expressions

For the octad, there are three types of its representation in
formulas:
ngX(@%+i-qY) +n,x(q*+i-q®) +
+n,x(@Y+i-q°) +n,x(q?+i-q%);

N n,-qt (u=atxb,yczd)

I q

The latter method — indexless — is the most compact. Let's
look, for example, at generalization of Maxwell's equations,
written in an indexless form for Q2 numbers (also for octads)
(the output of this formula will be given later):

D-F=—4m-j

The mathematical language of classic electrodynamics uses
three real coordinates (x, y, z) and one imaginary (i - t). And,
accordingly, three real components of the potential A*, AY, A*
and one imaginary component (i - A%).
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The octad mathematical language uses 4 complex
coordinates. That is, 4 real coordinates (a, x, y, z) and 4
imaginary coordinates (i-t, i-b, i-c, i-d). You can take
the indexless action functions for classical electrodynamics
and build by them the indexless octad action functions. Then
vary these indexless octad action functions by the
corresponding indexless octad variables. And we obtain
equations for index-free octad electrodynamics. Then go to
their index octad view. These equations will connect the 8
fields F¢, Ft, F*, Fb,FY, F¢,F?,F® with the eight coordinates
q9%q%q9%q%q%,q%q%q% And you get the index octad
electrodynamics.

If in the indexless octad equations you will consider all
variables to be the Q2 numbers, then you get the indexless
Q2 electrodynamics. Then you should go to the index Q2
form of equations. These equations will connect the sixteen
fields F* (u=a,tx,b,y,c,zd,r, 1% 1,4, 11,,5) with the
sixteen coordinates Q*. And we get the equations for index
Q2 electrodynamics.

6.The first indexless octad action function

In classical electrodynamics, the action function for a particle
of mass mis:

S=—mc-[ds ds - ds = (dx,dx)
dx — vector, ds,S — scalars

Consider the indexless octad action function for a particle of
mass m:

1S=—mc-[ds ds-ds=dq-dq

dq — octad ds, 1S — scalars
11



We vary the indexless S; by the indexless dq:

6(dq - dq)
615——mc-f6d5——mc~fﬁ—
(d57) - dq +dq - (d 6q) _

=—mc-[

2-ds

=~ 2 J1@sD p+7- [@60)] =

1 _ _ dq
=5 J(6q-dp+dp-59) p=mc-—

For a free particle at any § ¢ and 6q, there must be
§,5=0
From here we have: dp =0 dp=20

That is, the momentum p is conserved.

7.Indexless connection of fields F with potentials A

For the potentials A, we define the derivative by the
coordinates q as:

8.Index octad connection of the fields F with potentials
A.

Indexless view of fields: F =D - A
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And the index octad view is as follows:
FA :flvﬂ_avAu

(Here it is taken into account that for octads, the algebraic
tensor is f’lw. For Q2 numbers, use the algebraic tensor

FAy )
For octads, all eight F* are:
F®=0%%—0'A' — 0¥A* + 9P A —
—0YAY + 0°A€ — 07A% + 0%A ¢
Ft=0%t+0°A% - 0¥Ab — 9PA* —
—0YAC —0°AY — 0%A% — 94A”
F*¥=0%% —9'AP + 0*A% — 9PAt +
+0YA% —0°A% — 0%AY + 0%4°
FP=0%AP + 9tA* + 0¥At + 0P A% +
+0YA% + 0°A% — 0%AC — 0% AY
FY =0%Y —0'A€ — 0%A% + 0P A% +
+0YA®* — 0°At + 074X — 0%AD
FC¢=0%°+0tAY —0*A% - 9PA% +
+0YAt + 0°A% + 0%AP + 9% A*
F? =0%A% —9'A% + 9*AY — 0P A¢ —
—0YA* + 9°AY + 074% — 994t
F4=0%%+ 9*A% + 0¥A€ + 0PAY —

—0YAP —9CA* + 0ZAt + 094
13



9.F fields in classical electrodynamics

To move from the octad electrodynamics to the classical one,
you should put:

Av=AP =4 =A% =0

And the remaining non-zero A¢, A*, AY, A% should not depend
on g% q?,q¢ q%. That is, the four derivatives:

9%,0%,9¢,04

from them should give zero. Here is what remains after this
transition:

F%=—0'A'— 0%A%* — 9YAY — 9%A% =
=0 A 4+ 0,A* +0,AY +0,A” =0
(This is zero by the Lorentz calibration.) Further
Ft=0
F*=0YA% —0%?AY = — 0,A? + 0,AY = —H*
FP = 0'A* + 0*At = — 0,A* — 0, A" = EX
FY = —0%A%7 + 07A* = 0,A7 — 0,A* = —H"”
F¢=0'AY +0YAt = -0, AY —0,A' = E”
F? = 0%AY — VA% = —9,AY + 0,A* = —H*
F4=0'A% + 0%A' = — 0,A% — 0,A" = E*
And we have:
F*=0 F'=0 F*=-H* Fb=E~

FY=—HY F¢=EY F?=—-H* Fi=E*
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10.The second octad indexless action function

In classical electrodynamics, the action function for a particle
with an electric charge e in an electromagnetic field is:

S=—e-[(A,dx)
dx u A — vectors S — scalar

For octadic electrodynamics, as an analog, we construct
1 - _
25=—e-f§-[A-dq+dq-A]

dq,A —octads, ,S — scalar

11.The third octad indexless action function
In classical electrodynamics, the action function for the

field

1 .
- . (F., .Fik.
$=- 1 [Fiy-Fik.dn

d) =dt-dx-dy-dz
F;, —tensor S —scalar
In three-dimensional form:
S = i-f(EZ—HZ)-dQ
8m
For octad electrodynamics, as an analog, we form:
1 _
3S=—-[F-F-dn F=D-A

8w
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d2=da-dt-dx-db-dy-dc-dz-dd

F — octad 3S — scalar

12.Variation by 6A

535:%-I[(D-5A)-F+f-(D-5A)]-d!)z

=%-f[(6_A-§)-F+f~(D-8A)]~d!2=

1 - - — -
=g-f[—6A-(D-F)—(F-D)~6A] -d0

dn
€=fP'E

ao .1 _ — —
6,5 = —fp-a-fz-[éA-dq+dq-5A]=

=f%-[—6Z-j—]_‘-5A]-d!2

. dq
J=p dt
625"‘835:0

52-(—%-]—%-(5%)):0
<_l.]‘-_i.(f.§)>.5,4=o
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The last two equations coincide when conjugated. And give
the following equation:

D-F=—4m-j

This is an index-free equation for the fields of F. In the
transition to classical electrodynamics, it passes into
Maxwell's equations. Let's show it.

13.Index view of equations for fields F
Substitute in the indexless equation
D-F=—4m-j
definitions for D, F, J:
D=n;-0* m=n,-c*, F=n,-F° j=n,-j¥
We obtain an index formula suitable for octads:
fl-ct -0 F = —4m-j

(Here it is taken into account that for octads, the algebraic
tensor is fV,, and the conjugation tensor is c“l. For Q2
numbers, use the algebraic tensor F ¥, ; and the conjugation
tensor C*,.)

The case of Q2, due to the large length of the index
equations, we will not prescribe here. We will limit ourselves
to the octad variant.

In the case of the octads will be 8 equations:
_47-[.ja=aaFa_atFt+axe_abe+
+ 0V FY —9°F¢ + 9% F* — 94 F¢

17



—4m-jt =0 F' + 0" F* + 0* FP + 0P F* +
+0YFC+0°FY + 07 F% 4+ 04 F*
—4m-j* =0 F* — 9" FP —0* F* + 9" F* —
—0YFZ+0°F%*+ 0% FY — 94 F¢
—4m-j? =0°FP + ' F* —0* F* — 9" F* —
—0YFY—0°F*+0*F* + 0 F”
—A4m-jY = 0% FY —9' FC + 0¥ F? — 9P F?% —
—0YF 4+ 9°F' — 0% F* + 94 FP
—4m-j¢ = 0% FC + 0" F¥ + 0¥ F4 + 0P F* —
—0YFt —0°F*— 0% FP — 9? F¥
—4m-j7 = 0% F* — 0" F* —0* FY + 0" F° +
+0Y F*—0°FP — 97 F* + 94 F*
—4m-j4 =0 F 4+ 9" FZ — 0¥ F* - 9" F¥ +
+0Y FP +0°F* —9* Ft — 9% F®

To move from the octadic electrodynamics to the classical
one, you should put:

F*=0 F'=0 F*=—-H* FP=E*
FY=—HY F¢=EY F?=—-H* F1=E*
je=jr=jc=j*=0

And non-zero F* FP,FY,F¢,F? F%should not depend on
q%q°,q¢ q%. That is, the four derivatives

9%,0%,0¢,0¢4

18



from them should give zero. Here is what remains after this
transition:

0=—4m-j9=0*FX+ 9Y FY + 9% F% =
=—0,F*—0,FY —0,F" =
=0, H*+ 03, HY + 0, H” = div H

divH =0

—4r-jt=—4m-p=
=0*FP+ 0V FC+ 07 F =
=—0,F'— 0,F°-0,F%=

=—0,E*— 0,FY — 0, E* = —divE

divE = 4m-p

— A4 - j* = —9' FP — 9Y FZ + 97 FY =
=0, F°+0,F?—0,F =
=0, E*—0,H* + 0, H” =

= 9, EX — [rot H]* = — 4m - j*

—4m-jP =9 F¥ — 9Y F4 + 0% F¢ =
=—0,F*+ 0, F1—0,F° =
=0, H*+ 0,E* - 0,E” =

19



=0, H* + [rot E]* = —4m - j® = 0

—4m-jY = —9' F¢ + 0¥ FZ — 9% F* =
=0,F— 0, F?+0,F* =
=0, EY + 0, H* — 9, H* =

=0, EY —[rot HY = —4m - j¥

—4m-j¢=0' FY + 0¥ F* - 07 Fb =
=—0,F¥ -0, F*+0,F° =
=0,HY— 0,E*+0,E* =

=6tHy+[rot§]y=—4n-jC=

—A4m-j2 = —9 ' FE— 0¥ FY + 0¥ F* =
=0, F'+ 0, FY — 0, F* =
=0, E?— 0, HY + 0, H* =

=0, EZ — [rot H|? = — 4 - j*

— 47 jd = 9t FZ — 9X FC 4 Y Fb =
=—0, F?+ 0, FC — 0, F" =
= 0, H? + 0, EY — 0, E* =
=0, H? + [rotE]? = —4m-j2 =0
20



We got four equations:
divH =0
divE = 4 - P
,E—[rotH|=—4m-J
atﬁ + [rot E] =0
And these are the Maxwell equations.

That is, in the transition from octadic electrodynamics to
classical electrodynamics, the equations for the fields F pass

into the Maxwell equations for the fields E and H.

14.Motion equations for a massive charged particle in
the field F.

The action function for a particle of mass m and charge e in
an octad field F with potential A is:

S:15+25

1S=—mc-[ds ds-ds=dq-dq
1 - —
25=—e-f§-[A-dq+dq-A]

To describe the motion of this particle in the field F, we vary
Sbydqganddq:

1 _ _ dq
§15=5-J(©6q-dp+dp-8q) p=mec-—

525=—e-f3- A-dSqg+dég-Al=
2
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1 —
=—e-f5-[—dA-6q—6§-dA]
552615"'6 ZS:

1 —
= E-f{Sq-(dp+e-dA)+

+(dp+e- dA)-8q}
And we equate 6S to zero: 65 =0
In order for this to be performed for any §g and é g, you need:
dp+e-dA=0 and dp+e-dA=0

The second equation reduces to the first equation. And we
have the equation:

dp=—e-dA=—-e-dq-F

dp dq dq
a- e g eVl V=g
dp
— =—¢e-V-F
T e-V

Let's move on to the index octadic view:

d A
n/l'd—i=—e-n,1-f’1w-V”-F"

dp’1 i

_dt =_e.f MV.VH'.FV

(Here it is taken into account that for octads, the algebraic
tensor is fV,,. For Q2 numbers, use the algebraic tensor

Fvua)
Let's check this formula for octads:

22



dp?
dt

dp*
dt

dp?
dt

dp”¥
dt

dp°
dt

dp*
dt

dpd

dt

—e - (V4-F*—Vt-Ft—V*.F*+Vb.Fb —

—VY-FY 4+ V¢ . FC—VZ.FZ4+V%.F4)

—e - (V4 -Ft+Vt . F*—yx.Fb_yb.Fx

— VY. FC¢—VC.FY—yZ.Fd—y2.F?)

—e - (V4-F*—Vt.Fbyy*.Fe—yb.Ft 4

+ VY -FZ—VC¢.F4—VZ.FY +V%.FC)

—e- (VO -Fb 4Vt . FX4y*.Ft4yb.Fa4
+ VY -F44VC . FZ—VZ.F¢—V2d.FY)
—e-(V&-FY -V - FC—V*.FZ4+ Vb .Fd 4
+VY-F4—Ve . Ft4VZ.F*—ya.Fb)
—e - (V4-FC+V - FY—V*.Fd—yb.FZ 4
+VY-Ft4+ Ve -F*4+VZ.FP 4+ Ve.FY)
—e - (V4 -F?—Vt . Fd4Vy*.FY —Vb.Fc—
—VY.FX4Ve.FP yyZz.Fa—_yd.Fh
—e- (V- F4+V - FZ4V*.FC+Vb.Fy —

—VY-FP —VC.FY+VZ.Ft 4+ V2. F%)
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_ dg*

Vhk=— Vi=1
dt

To move from the octadic electrodynamics to the classical
one, you should put:
F*=0 F'=0 F*=-H* Fb=Eg~
FY=—HY FC=EY F?=-H? F®=E*
And we get the following 8 equations:

dp“

dt = e (BH)

%’fze-(ﬁ,ﬁ)
djtx: e-(E+[vxH])*
dd—ptb=e-<ﬁ—[ﬁ><fl)x
%: e-(E+[vxH])
W e (i~ [5xE]Y
d;;: e-(E+[vxH])?
%= e (H—[vxE])?

And we see that the formula gives the correct Lorentz force:
d 7] - —
d—f=e-(E+[ﬁ><H])
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As well as the correct change in the energy of the particle in
time:
dpt R
d—pt = ¢ (3,
So, we can assume that the correct index-free formula for a
particle in the field F is:

dp dq
— =—¢-V-F ==
- ¢ =%

A completely index-free formula is obtained by replacing dt
with ds:

15.Density A for the third octad action function

5—1 [F-F-dn F= F#
3 T 8n =M

S=[A-dn
d) =da-dt-dx-db-dy-dc-dz-dd
1

A=— F-F=ny- A n,=n,-cf

1
A _ 1 p
A _@.f pv-cM-F“-FV
For octadic electrodynamics, we obtain:

1
/1“:Q-[F“-Fa—Ft-Ft+Fx-Fx—Fb‘F”+

+FY-FY —F¢-F¢+F%.F?—F%.F4]
25



1
Af=4—-[Fa-Ft+FX-Fb+FY-FC+FZ-Fd]
T

A=A =0 =A"=A*"=4%=0

To move from the octadic electrodynamics to the classical
one, you should put:

F¢=0 F'=0 F*=—-H* FP =E*
FY=—-HY FC=EY F?=-H? F4=FE*
And we get the following 8 equations:
1 1 —_ =
A = — . [H? — E? At =——.(H,E
ar | | 1. (B
A=A =AY =N =2"=44=0
For Q2 electrodynamics, we take
F=m,-FH m, =m,-C’,

Also, for Q2 electrodynamics, we should use the algebraic
tensor F 4, .

16.Results

From mathematics, we took the language of quaternions and
constructed the octads. And in their language, we wrote
down three indexless action functions — for a free particle, for
a free field, and for their interaction. And from them we got
two index-free formulas:

D-F=—4m-j
dp

— =—¢-V-F
a ¢
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From the first formula, we can find the fields F (a
generalization of the electric and magnetic fields). From the
second formula, we can find the trajectory of a charged
massive particle in the fields F. And all this simultaneously in
two electrodynamics — in eight-dimensional octadic
electrodynamics, and in sixteen-dimensional Q2
electrodynamics. Due to the large length of the index
formulas in Q2 electrodynamics, we have not given these
formulas here.

The unsolved problem is the derivation of the energy-
momentum tensor for the particle, the field F, and their
interaction in these two electrodynamics. But to solve this
problem, we must consider curved space-time. And this is
troublesome. For now, we can take comfort in the thought
that our three hypercomplex indexless action functions give
the correct Maxwell equations and the Lorentz force, and are
therefore correct themselves.
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