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The ground state energy of the hydrogen atom is computed from a relativist wave
equation based on finite structure for elementary particles and the results falls within
the experimental measurement error unlike the results from the Schrödinger and Dirac
equations. The solution exposes the origin of both the Pauli Principle and the attraction
for forming Bose-Einstein condensations. More importantly, it shows that the γ of special
relativity for the bound states takes on values less than one.
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I. HYDROGEN ATOM

In 1947 Polykarp Kusch and Henry Foley reported
their experiment of the gyromagnetic ratio of the elec-
tron (Foley and Kusch, 1948). This finding was eventu-
ally titled by others as the anomalous magnetic moment,
being a correction to the magnetic moment derived from
the Dirac equation. There was an intense effort both ex-
perimental and theoretical to establish the spectroscopic
structure of the hydrogen atom through out the 1930s
and 1940s (Schweber, 1994). This work on the magnetic
moment in part gave rise to a theory called quantum
electrodynamics that was used to compute the correc-
tions to the Dirac electron theory. Until the early 1960s
P. Kusch had no public problem with quantum electro-
dynamics but by 1967 he had come to the conclusion it
was not valid physics. The troubling experimental ques-
tion was the discrepancy in the ground state energy of
hydrogen 2S 1

2
. The experimental discrepancy to both the

Schrödinger and Dirac equations computed values were
large, > .003 eV. To a spectroscopist this is a large dis-
crepancy. Kusch was a stickler for semantics and the
adjective anomalous applied to his earlier experimental
work might be considered a slur. In the academic year
1966-67 when he took over the Columbia Radiation Lab-
oratory on I.I. Rabi’s retirement and initiated an investi-
gation using a post doctoral student and an undergradu-
ate to perform a more accurate measurement of the 2S 1

2

state using electron scattering to ionize hydrogen. That
work was never completed as the 1968 riots moved Kusch
to become university vice president.

Neither the Schrödinger nor the Dirac equations are di-
rectly derived from the relativistic conservation of energy
relation. In addition is their failure to recognize that the
γ of special relativity can take on values less than one for
the bound state. It did help that they treated particles
as mathematical points with no structure.
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II. SOLVING THE RELATIVISTIC WAVE EQUATION

There are a pair of laboratory frame wave equation de-
rived from the relativistic conservation of energy that re-
place the Schrödinger and Dirac equations (Wallace and
Wallace, 2020).
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The upper equation describes the behavior of a free
field that can be massless or massive and the lower equa-
tion describes the relative dynamics of a particle, free or
bound in a potential such as the hydrogen atom. The
upper equation naturally integrates electromagnetic the-
ory into quantum mechanics and is useful for problems
dealing with refraction of both photons and neutrinos.
By dropping the quadratic potential term and setting γ
to one results in the Schrödinger equation that has now
been properly derived as an approximation. Both equa-
tions 1 are derived from E2 = p2c2 + (moc

2)2 where mo

is the rest mass of the particle.

A. Solution for the Coulomb Potential

Applying the lower equation 1 to hydrogen atom with
the Coulomb potential was first not even considered be-
cause the point charge of the Coulomb potential is not
valid because the electron has a finite structure (Wal-
lace and Wallace, 2015). However, Peter Hagelstein in
looking for problem to give his quantum mechanics class
found a simple solution to the upper equation 1 using
the Coulomb potential. His three dimensional spheri-
cally symmetric trial solution is φ(r) ∼ rse−βr happens
also to solve the lower equation for a bound 2S 1

2
ground

state.

The trial solution for the time dependent portion of
the wave function:
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Taking φ(r) = rse−βr yields in 3D spherical coordinates:
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B. Relativistic Wave Equation Trial Solution

Applying the Coulomb potential to the two potential
terms the relativistic wave equation becomes:
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Separating the terms in powers of r allows Erel, s and β
to be computed as all factors of rm must equal zero.
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Solving for s and then substituting for the fine structure
constant α:

s2 + s =
Z2e4
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= α2Z2 (7)
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For β the equation is simplified by using the Bohr radius
ao:
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Then the expression for the ground state energy of the
2S 1

2
state when the factor representing the reduce mass

effect is applied where mN is the nucleon mass. (Bethe
and Salpeter, 1957).
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The γ dependence can be factored out by using the
expression for total energy Et = γmoc

2.
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Erel = Et −moc
2 = moc

2(γ − 1) (11)

Substituting into equation 10 to remove γ yields:
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The wave function then becomes:

Φ(r, t) = Ar
√
1+4Z2α2−1 e

− Zr

ao

√
1+4Z2α2

−iEt~ (14)

The ground state energies for the three different wave
equations are computed in Table I. γ in the bound state
now takes on values less than one as the self-energy is
reduced to supplying the field that binds the state. The
change in γ can be computed using equation 11.

C. Increasing Z

There is a strong divergence between the behavior of
the ground state energy from the relativistic wave equa-
tion verse the Schrödinger and Dirac equations as shown
in Figure 1. There is no single electron ionization data
at high Z and the best data is that of K-shell x-ray data
from electron scattering. Care has to be taken since NIST
tables report ionization data for high Z that are only cal-
culations and not experimental.

The reason the K-shell x-ray data is interesting is that
Moseley’s law breaks down (Condon and Shortley, 1951)
in the same area where the ground state energies diverge
for the three relations. This indicates the source of the
binding energy is altered.

In the limit of infinite charge γ does not go to zero.
The bound state energy is limited to a finite value inde-
pendent of Z limiting the electrostatic potential strength.

Erel ≥ −moc
2 {

√
5

4
− 1} = - .11803 moc

2 (15)

The ground state energies when computed from both
the Schrödinger and Dirac equation do not remain fi-
nite, but continue to decrease with increasing Z. This
finite binding occurs for potentials generated from the
self-energy of the particles themselves. That is not the
case for the gravitational potential which enter the field
equation in a different way (Wallace and Wallace, 2024).
In the opposite limit when Z → 0 then E goes to zero but

Table I Hydrogen ground state energy from of the
Schrödinger Equation (Bethe and Salpeter, 1957) , modi-
fied Dirac equation (Gordon, 1928), and the relativistic wave
ground state energy (eq. 13). The experimentally measured
ground state energy is -13.595 eV (Moore, 1971).

Schrödinger equation 1926

solution regular at origin

relativity not considered

ground state

energy ESchro. =

-13.5984 eV

deviation -.0034 eV − Z2moe
4

2(4πεo)2~2
mN

mo+mN

γ = 1

mod. Dirac Equation 1928

solution singular at origin

relativity incorrectly applied

ground state

energy EDirac =

-13.5986

deviation -.0036 eV −moc
2
√
1−Z2α2mN

mo+mN

γ = 1

Relativistic Wave Equation 2023

solution regular at origin

relativity correctly applied

ground state

energy Erel = moc
2{1−

-13.5953 eV

deviation -.0003 eV
√

1 + Z2α2

(1+Z2α2)
mN

mo+mN
}

γ = .9997339

not in the case of the Dirac equation solution. The Dirac
equation still produces a bound state with no potential.

At high Z the K-shell electron contribution to binding
is exhausted and they are crushed between the nuclear
charge and the outer electrons.

III. PARTICLES WITH STRUCTURE

The question remains of why the computed energy
from the relativistic wave equation for the hydrogen
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Figure 1 Binding energy of hydrogen like ions taking
Z from 1 to 74 in eV for three models.

Table II Ground state binding limits for the three
wave equations as a function of Z.

Analysis Z→ 0 Z→∞

Schrödinger 0 -∞
fails at upper limit

Dirac Bound State? Complex ∞
fails at both limits

Relativistic > .12 moc
2

predicts limit to 0 Limit to

Moseley’s Law Binding

ground state is within the error bounds of the experi-
mental value when a singular Coulomb potential, 1

r is
being used? Neither the electron nor proton are point
charges (Wallace and Wallace, 2015) (Wallace and Wal-
lace, 2019). The proton’s charge density is more compact
than that of the electron, however, it plays the dominant
role in defining the central force potential field due to its
greater mass. The proton’s potential is well approximate
by the singular Coulomb potential. The size effect of the
electron’s chare distribution will be reduced by the ra-
tio of its much smaller mass. All calculations are done
in center of mass coordinates and similar to the use of
the reduced mass, the same constraints operate on the
contribution of the individual charge distributions.

The necessary correction to the electrostatic potential
of the electron due to its structure can be computed from
the electrons state function in its self-reference frame,
u∗(r)u(r) and is shown in Figure 2.

VCoul.(r) = − Ze2

4πεor
(16)

∆V (r) = VCoul(r)−
∫ r

∞
uf∗(x)uf (x)dx (17)

Figure 2 The difference between the 1/r po-
tential of a point charge and the electron’s
structural potential is significant in the
electrons core region. In the plot r = 1
represent the electron’s Compton scale of
~/mc = 3.86×10−13m (Wallace and Wallace,
2015).

The classical potential that is singular at the origin
can be corrected for the fact the electron has a dis-
tributed charge. The Coulomb potential does not take
into account the electron’s finite size that rolls off close
to the origin. This correction is small for the hydrogen
atom’s ground state and the nuclear charge distribution
effect is even smaller (Wallace and Wallace, 2015), how-
ever, the energy correction will grow for higher Z sin-
gle electron ions. The first order perturbation contribu-
tion due to the electrons charge distribution is calculated
as < 1S|δV (r)|1S >= .007098eV (Wallace and Wallace,
2015). With the center of mass correction this is reduced
to 3.863× 10−6eV or an insignificant contribution to the
ground state energy.

A weak point in the argument for the Dirac relativis-
tic wave equation is being solely for the electron. The
second point of failure is that the electron is represented
as a mathematical point. Its possible to produce a gen-
eral derivation for the particle structure in its own frame
of reference using a second order equation to generate a
pair of solutions, for both a fermion and boson in three
spatial dimensions. The restriction to a single spatial
spherically symmetric variable, r, ensures U(1) group
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symmetry. Where uf (r;κ, n, γ) one for fermion and one
ub(r;κ, n, γ) for a boson dependent on three parameter:
n the dimension (1, 2, or 3), κ inverse particle scale. Dy-
namics is not expressed in this space, except indirectly
through the relativistic parameter γ (Wallace and Wal-
lace, 2014).

The electron’s architectural description defines its
static electric field, u∗(r)u(r)r̂, that is dependent on two
parameter: inverse scale κ and γ. In the self-reference
frame where there are no internal dynamics γ is a func-
tion of the particle’s relative environment and that in-
cludes not only relative motion to another free particle
that defines kinetic energy but also what occurs in a
bound state under the restraints of an external poten-
tial.

The spatial expression uf (r) and ub(r) for 3D elemen-
tary massive fermion and boson in their own frame of
reference, which for the fermion solution will be taken
as an electron is one of the two solutions of equation 19.
The lower solution being for the boson where 1F1 and
U are confluent hypergeometric functions (Wallace and
Wallace, 2014).

uf (r) = Ae−κr1F1[
2

1 + iγ
, 2, (1 + iγ)κr]

ub(r) = Ae−κrU [
2

1 + iγ
, 2, (1 + iγ)κr]

(18)

The field equation that produced these solution is derived
from the behavior of a longitudinal field when coupled to
the laboratory frame relativistic wave equation that can
generate pair-production of the same particle. This anni-
hilation renewal process isolates the two spaces because
of the statistical independence generated by the loss of
a history as to which particles annihilate (Wallace and
Wallace, 2014).

∂2u(r)

∂r2
+(

n− 1

r
+κ{1− iγ})∂u(r)

∂r
− iκ2γu(r) = 0 (19)

A. Origin of Fermion and Boson Statistics

The role of γ for the bound state and its effect on
structure of the particle is of interest for both bosons
and fermions. The simplest way to display the effect is
to plot the particle’s density function comparing values
of γ, when both greater and less than one.

The effect of an external binding potential in altering
γ acts differently on fermions and bosons. This can be
seen in their density function, u∗(r)u(r)rn−1 for the three
dimensional solutions.

In the electron’s own frame of reference, its self-
reference frame, γ modifies the electron’s structure. In
free space for γ < 1 the electron expands, its wave func-

Figure 3 Origin of the Bose-Einstein con-
densate is seen in the shrinkage of the bo-
son density function in the self-reference
frame with an external binding potential.

Figure 4 Origin of fermion repulsion is seen
in the density function diverging in an ex-
ternal binding potential.

tion is divergent and grows, inhibiting additional occu-
pation of the same state. However, in a bound state this
divergence is controlled by the binding potential and γ
can take on values that are less than 1.

IV. DISCUSSION

The bound quantum particle’s equivalent response to a
tidal force has been ignored. The effect of tidal force can
now be computed. The severe restrictions on a quantum
particle’s structure found in their individual self-reference
frame does not allow a tidal like shape change as these
quantum particles have only one free variable that can be
affected, their radial scale (Wallace and Wallace, 2014).
Any response would have to change the particles density
profile while preserving spherical symmetry.

In addition to the origin of quantum statistics, the de-
fect in special relativity has been partially solved. The
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surprise result was that the additional corrections to the
ground state energy of hydrogen due to the finite size of
the electron are small.
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