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1. Abstract

Algebraic equations are derived to approximate the relationship between the
rectangular components and the polar coordinates of a vector. These equations can
then be used without recourse to imaginary numbers, transcendental functions, or
infinite sums. This is done with an error of approximately one-half percent.

2. Method

Place a vector of magnitude 1 with its initial point at the origin, and its terminal
point at (1,0), rotating counter-clockwise such that a positive angle θ is formed
between the vector and the x-axis. As the terminal point of the vector completes
one rotation around the origin, three different distances are summed:

1: The distance traced along the unit circle will be Dc = 2π.
2: The total distance traced in the x dimension, from  = 1, to  = −1, and back
again, will be D = 4.
3: Likewise, the total distance traced in the y dimension,from y = 0, to y = 1, to
y = −1, and then back to 0, will be Dy = 4.

Assume that the proportion Dc
D+Dy

= π
4 stays approximately constant over 0 ≤

θ ≤ 2π.
∫ θ

0
| cosθ|+ | − sinθ|dθ = sinθ− cosθ+ 1 for 0 ≤ θ ≤ π

2 will deliver

the sum Dy + D as a function of θ in the first quadrant. For any given point on
the unit circle within the first quadrant, θ can be approximated using

(1) θ =
π

4
(y −  + 1)

For right triangles, and in the first quadrant, for all distances, 1 can be modified
thus:

(2) θ =
π

4
(
y − 

r
+ 1)

3. Simple form: Within right triangles and the first quadrant

In this section the simplest form represented by 1 will be used to conduct trans-
formations back and forth between rectangular and polar coordinates, restricting
the analysis to angles within right triangles, i.e. quadrant 1, upon the unit circle.

Date: February 17, 2021.

1



2 JOSEPH BAKHOS

This simple form will give θ to within 3 percent; a later section will provide a more
detailed and accurate version that gives θ to within one-half percent.

Once the principles are established, following sections will present the general
form, valid at all distances, and in all 4 quadrants.

Substituting
Æ

1 − y2 for x, and then solving 1 for y gives

(3) y = r

p

−16θ2 + 8πθ + π2 + 4θ − π

2π
By a similar process, the x coordinate is given by

(4)  = r

p

−16θ2 + 8πθ + π2 − 4θ + π

2π

When r = 1, These are the x and y coordinates on the unit circle, or sinθ and
cosθ. Multiplying by r will thus give the x and y coordinates of a vector of any
distance in the first quadrant.

4. General Forms

A major issue in applying these principles to the other three quadrants is deter-
mining an algebraic method to govern the changes in the signs of the coefficients
with step functions so as to be continuous while giving the correct sign at the cor-
rect time. In prior works this was accomplished using the imaginary plane. This
method accomplishes the same thing by first defining a function E that is used to
reduce the error in θ, and also defining the following algebraic step functions to
govern the coefficients in the general equations:

5. The helper functions

The error correction function, E. Because the error in θ given by 1 is continuous
and periodic, this periodic function is used to reduce the error from 3 percent down
to one-half percent.

(5) E =
.1324y(2 − y2)

(2 + y2)2

Step function: the θ constant function, T, adjusts the constant of 1 to the
appropriate quadrant.

(6) T = |4
y

|y|
−



||
| − 2

y

|y|
Step function: the sign of the input, ς, for the coordinate functions gives the

correct sign for the input adjusted to the quadrant

(7) ς = (
π
2 − θ

|π2 − θ|
)(
π − θ

|π − θ|
)(

3π
2 − θ

|3π2 − θ|
)

Step function: the constant of π, P, for the coordinates functions

(8) P = ((
θ − π

2

|θ − π
2 |
) + 1)((

θ − 3π
2

|θ − 3π
2 |
) +

3

4
)
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Step function: the constant, K, of the denominator function for x

(9) K = (
θ − π

2

|θ − π
2 |
)(
θ − 3π

2

|θ − 3π
2 |
)

Step function: the constant,  of the denominator function for y

(10)  =
π − θ

|π − θ|

6. The General Conversion Functions

These functions are continuous; they work uniformly, unambiguously, and uni-
versally in all four quadrants, and at all distances:

To extract θ, given rectangular coordinates, with an error of less than one-half
percent:

(11) θ =
π

4
(

||y −

y
|y|

r
+ T) + E

To extract , for a vector of any magnitude r, given θ; (When r = 1, this is the
cosθ function):

(12)  = r

Æ

−16(ς(θ − Pπ))2 + 8π(ς(θ − Pπ)) + π2 − 4(ς(θ − Pπ)) + π

2Kπ

To extract y, for a vector of any magnitude r, given θ; (When r = 1, this is the
sinθ function):

(13) y = r

Æ

−16(ς(θ − Pπ))2 + 8π(ς(θ − Pπ)) + π2 + 4(ς(θ − Pπ)) − π

2π

7. Graphic comparison

Figure 1. True Cosine, 0 ≤ θ ≤ 2π



4 JOSEPH BAKHOS

Figure 2. Approximate Cosine, according to equation 12

8. An alternative approach to rotation

A polar/rectangular coordinate system might be used, based on 2, wherein angles
are defined as ”quaterns” instead of radians. 2 would then be written as:

(14) ϟ =
y − 

r
+ 1

3 would become:

(15) y =
r

2
(
Æ

−ϟ2 + 2ϟ+ 1 + ϟ− 1)

4 would become:

(16)  =
r

2
(
Æ

−ϟ2 + 2ϟ+ 1 − ϟ+ 1)

There are several reasons this may be useful in certain contexts:
1: The equations and calculations described in this paper would then be exact.
There would be an exact relationship between polar and rectangular coordinates.
2: Under this approach, the relationship between rectangular and polar coordinates
would then be real and algebraic, rather than imaginary or transcendental.
3: Traditionally, angles are dimensionless, because they are understood as rc

rds ,
so the unit of length cancels. Quaterns have a definite unit, i.e. average distance
per axis per unit of r.

9. Conclusion

The archaic Greek symbol for koppa, ϟ, is suggested for use representing quaterns.
There are several reasons for this:
1: Quaternions are the best way to describe rotations, so an allusion is made to
that, as well as the phrase ”quarter turn.”
2: ϟ was the archaic Greek letter ”q”. It also represented the number ”90”, which
recalls 90 degrees.
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