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ABSTRACT. In this paper is shown that the quantity  𝑉 = ∫ |𝛚(𝑥, 𝑡)|2𝑑𝑥
 

ℝ𝑛 , 𝑛 = 2 

or 3, called here the vortegy, is a globally controlled scalar measure of the fluid 

vorticity degree. In the incompressible fluid, the physical properties of the vortegy 

are like the properties of energy 𝐸 =
𝜌

2
∫ |𝐮(𝑥, 𝑡)|2𝑑𝑥

 

ℝ𝑛 . In the inviscid fluid, the 

law of vortegy conservation operates, in the viscous fluid, vortegy is subject to 

dissipation, the law of vortegy dissipation is established. However, in contrast to 

the supercritical energy 𝐸 (for 𝑛 = 3), the vortegy  𝑉 is subcritical. It is also shown 

that when vortegy dissipation is considered, the system of generalized Helmholtz 

equations expresses the law of its conservation. The supercriticality paradox of the 

3D Navier-Stokes equations is resolved, the impossibility of a blowup scenario for 

their solutions and the inevitability of such a scenario for 3D solutions of the Euler 

equations are shown. 

 

 

 

The paper [1] analyzes possible strategies for solving the problem of global 

regularity of 3D Navier-Stokes equations. Three possible strategies are highlighted, 

and the main obstacle is indicated. Such an obstacle is the supercriticality of the 

Navier-Stokes equations with respect to scaling. According to the author in [1]: 

“… all of the globally controlled quantities for Navier-Stokes evolution which we 

are aware of (and we are not aware of very many) are either supercritical with 

respect to scaling, which means that they are much weaker at controlling fine-scale 

behaviour than controlling coarse-scale behaviour, or they are non-coercive, which 

means that they do not really control the solution at all, either at coarse scales or at 

fine”. 

Since as follows from the above, the supercriticality problem of the Navier-

Stokes equations is of extra importance, we will briefly touch upon this problem 

following [1]. 

The Navier-Stokes equations obey scale invariance. Let some smooth 

velocity field u(𝑥, 𝑡) and the pressure field 𝑝(𝑥, 𝑡) satisfy the Navier-Stokes 

equations in ℝ𝑛 (𝑛=2 or 3) during the half-time interval 0 ≤ 𝑡 < 𝑇 . Then, for any 

scaling parameter 𝜆 > 0, a new velocity field and a new pressure field can be 

formed: 
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u(𝜆)(𝑥, 𝑡) =
1

𝜆
u (

𝑥

𝜆
,

𝑡

𝜆2), 

 

𝑝(𝜆)(𝑥, 𝑡) =
1

𝜆2
𝑝 (

𝑥

𝜆
,

𝑡

𝜆2
), 

 

which will also be a solution to the Navier-Stokes equation for 0 ≤ 𝑡 < 𝜆2𝑇. 

Further in [1], two known (for today) globally controlled quantities are considered: 

 

- the maximum kinetic energy: 

 

sup0≤𝑡<𝑇  
1

2
∫|u(𝑥, 𝑡)|2

 

ℝ𝑛

𝑑𝑥, 

 

- the cumulative energy dissipation: 

 

1

2
∫ ∫|∇u(𝑥, 𝑡)|2

 

ℝ𝑛

𝑇

0

𝑑𝑥𝑑𝑡, 

 

(since in this case we are interested in purely mathematical aspects of the problem, 

in the formulas above, the constants  𝜌 and  𝜈 are omitted). 

Both quantities are bonded even for very large 𝑇, since the energy 

conservation law implies that these values are always less than the initial energy 

value 𝐸0. 

From the formulas above it follows that when scaling the energy (both), its 

scaled value will be equal to 𝜆𝐸 for  𝑛 = 3 and  𝐸 for  𝑛 = 2. Hence, in the three-

dimensional case, the control of these two key quantities worsened with the 

appearance of the coefficient  𝜆 when going to small scales (small values of  𝜆). 

Because of this worsening, these values are called supercritical. They become more 

and more useless as you move to smaller scales. In the two-dimensional case, the 

energy  𝐸 is invariant to scaling and the quantities under consideration are critical. 

The critical quantities control all scales equally well (or equally poorly). One can 

also assume the existence of subcritical quantities, they will strengthen control on 

small scales and weaken on large ones. 

Further, in [1], by scaling the original solution, it is shown that for 

supercritical quantities there is no way to exclude the blowup scenario of the 

evolution of an initially smooth solution; in a finite time, singularities can appear 

in it. This is the main problem of the Navier-Stokes equations. To resolve it, the 

author in [1] sees only three possible strategies. One of the strategies is to discover 

a fundamentally new method that will provide smooth solutions. However, any 

new method that claims to solve this problem must necessarily resolve the 
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supercriticality paradox of these equations. And this, according to the author in [1], 

can be done only using the two remaining strategies: 

 

1. Solve the Navier-Stokes equation exactly and explicitly (or at least 

transform this equation exactly and explicitly to a simpler equation). 

 

2. Discover a new globally controlled quantity which is both coercive and 

either critical or subcritical. 

 

The first way is probably impossible for obvious reasons, only the second remains. 

Generalized Helmholtz equations are the direct consequence of the Navier-

Stokes equations for a viscous incompressible fluid: 

 

 

 

It is well known that different groups of terms in these equations describe 

different physical mechanisms through which vorticity propagates in the fluid, see 

for example [2]. These mechanisms are vorticity convection, vorticity diffusion, 

and vortex stretching. In accordance with the belonging to these mechanisms, each 

of the equations of system (1) can be conditionally divided into three equations: 

 

- vorticity convection equation 

 

- vorticity diffusion equation 

 

- vortex stretching equation 

𝜕𝜔𝑥

𝜕𝑡
+ 𝑢𝑥

𝜕𝜔𝑥

𝜕𝑥
+ 𝑢𝑦

𝜕𝜔𝑥

𝜕𝑦
+ 𝑢𝑧

𝜕𝜔𝑥

𝜕𝑧
= 𝜔𝑥

𝜕𝑢𝑥

𝜕𝑥
+ 𝜔𝑦

𝜕𝑢𝑥

𝜕𝑦
+ 𝜔𝑧

𝜕𝑢𝑥

𝜕𝑧
+ 𝜈∆𝜔𝑥  

𝜕𝜔𝑦

𝜕𝑡
+ 𝑢𝑥

𝜕𝜔𝑦

𝜕𝑥
+ 𝑢𝑦

𝜕𝜔𝑦

𝜕𝑦
+ 𝑢𝑧

𝜕𝜔𝑦

𝜕𝑧
= 𝜔𝑥

𝜕𝑢𝑦

𝜕𝑥
+ 𝜔𝑦

𝜕𝑢𝑦

𝜕𝑦
+ 𝜔𝑧

𝜕𝑢𝑦

𝜕𝑧
+ 𝜈∆𝜔𝑦 (1) 

𝜕𝜔𝑧

𝜕𝑡
+ 𝑢𝑥

𝜕𝜔𝑧

𝜕𝑥
+ 𝑢𝑦

𝜕𝜔𝑧

𝜕𝑦
+ 𝑢𝑧

𝜕𝜔𝑧

𝜕𝑧
= 𝜔𝑥

𝜕𝑢𝑧

𝜕𝑥
+ 𝜔𝑦

𝜕𝑢𝑧

𝜕𝑦
+ 𝜔𝑧

𝜕𝑢𝑧

𝜕𝑧
+ 𝜈∆𝜔𝑧 .  

𝜕𝜔𝑖

𝜕𝑡
+ 𝑢𝑥

𝜕𝜔𝑖

𝜕𝑥
+ 𝑢𝑦

𝜕𝜔𝑖

𝜕𝑦
+ 𝑢𝑧

𝜕𝜔𝑖

𝜕𝑧
= 0, (2) 

𝜕𝜔𝑖

𝜕𝑡
= 𝜈∆𝜔𝑖 , (3) 

𝜕𝜔𝑖

𝜕𝑡
= 𝜔𝑥

𝜕𝑢𝑖

𝜕𝑥
+ 𝜔𝑦

𝜕𝑢𝑖

𝜕𝑦
+ 𝜔𝑧

𝜕𝑢𝑖

𝜕𝑧
. (4) 
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Each of these equations has a clear physical meaning, understanding of which will 

allow to understand the essence of what is happening. 

Vorticity convection is a process of vorticity transfer by a flowing fluid 

(vorticity transfer by velocity). From equation (2) it follows that the vorticity value 

 𝜔 at some point 𝑀 during the time  𝑑𝑡 will be transferred to the neighboring point 

𝑀′ lying in the direction of the velocity vector 𝐮 at a distance 𝑢𝑑𝑡. 

Vorticity diffusion is a process of vorticity propagation caused by its uneven 

distribution in a fluid. All diffusion processes in nature are described by Fick's 

laws. Equation (3)  is an expression of Fick's second law for vorticity, from which, 

in particular, it follows that the diffusion mechanism always tends to equalize (to 

smooth) the vorticity values at adjacent points. 

Vortex stretching is a set of processes that occur when the vortex tube is 

stretched. The author of this paper considers the term "vortex stretching" 

unsuccessful; this term rather speaks of the cause, rather than the essence of the 

occurring physical phenomena. When the vortex is axially stretched, its diameter 

decreases due to the incompressibility of the fluid. This, in accordance with the law 

of conservation of angular momentum, leads to an increase in vorticity in the 

vortex. Outwardly, for the point under consideration, this process looks like the 

emergence of vorticity directly in the mass of the fluid and is mathematically 

described by the divergence of the field 𝑢𝑖𝛚, equation (4) can be written 

differently, 

 

Therefore, further, another term will be used - vorticity divergence. The process of 

vorticity divergence is reversible, since the vortex can not only stretch, but also 

contract, while the vorticity will be absorbed. Next, we need to derive one formula. 

For an arbitrary point 𝑀 in a fluid, consider a rectangular coordinate system 

 𝜉, 𝜂, 𝜁 such that the axis 𝜉 passing through this point has a direction that coincides 

with the direction of the vorticity vector 𝛚 at this point. Therefore, at the point 

under consideration, the vector 𝛚 has only one nonzero component 𝜔𝜉. In a small 

neighborhood of the point 𝑀, we also consider the velocity field 𝐮; the projection 

of the velocity vector 𝐮 onto the 𝜉 axis is denoted by 𝑢𝜉. Let’s calculate the 

divergence of the field 𝑢𝜉𝛚 at point 𝑀, taking into account the identity 𝜕𝜔𝜉/𝜕𝜉 +

𝜕𝜔𝜂/𝜕𝜂 + 𝜕𝜔𝜁/𝜕𝜁 = 0, we obtain, 

 

Divergence is an invariant to the choice of a coordinate system at a given 

point. If its value is known in some coordinate system, then this value will remain 

the same in any other coordinate system. Then we can write 

 

𝜕𝜔𝑖

𝜕𝑡
= div (𝑢𝑖𝛚). (5) 

div (𝑢𝜉𝛚) =
𝜕(𝑢𝜉𝜔𝜉)

𝜕𝜉
+

𝜕(𝑢𝜉𝜔𝜂)

𝜕𝜂
+

𝜕(𝑢𝜉𝜔𝜁)

𝜕𝜁
= 𝜔𝜉

𝜕𝑢𝜉

𝜕𝜉
= |𝛚|

𝜕𝑢𝜉

𝜕𝜉
. (6) 
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Let 𝛾𝑥, 𝛾𝑦 , 𝛾𝑧 be the angles between the  𝜉 axis and the 𝑋, 𝑌 and 𝑍 axes, 

respectively. Then the value of the function 𝑢𝜉 in a neighborhood of the point 𝑀 

can be represented as follows 

 

Now, using this formula, one can calculate the derivatives 𝜕𝑢𝜉/𝜕𝑥𝑖, while 

differentiating the angles 𝛾𝑥, 𝛾𝑦 , 𝛾𝑧 are assumed to be constant, from formula (6) it 

follows that to calculate the value div (𝑢𝜉𝛚) it is not required to know how 

orientation of the vector 𝛚 in space changes at points adjacent to 𝑀. Calculating 

the derivatives 𝜕𝑢𝜉/𝜕𝑥𝑖, putting them in formula (7) and transforming it, we get: 

 

This formula has a simple physical meaning, which becomes obvious if we 

notice that this formula is a complete analogue of formula (8). The quantities 

div (𝑢𝑖𝛚)𝜕𝑡 are the increments of the vorticity components 𝜕𝜔𝑖 . When 

recalculated to the direction 𝜉, these quantities are summed up as vectors, since the 

vorticity is of a vector nature. 

To simplify the writing of formulas further, introduce the notation, 

 

 𝜔 = |𝛚|. 
 

Now formula (9) can be transformed by replacing the cosines with their values, 

cos 𝛾𝑖 = 𝜔𝑖/𝜔, we get: 

 

This formula was the ultimate goal. If we talk about what equations (4) describe in 

the whole space, then this will be an overly complex process, the essence of which 

can be understood using the following simple example. Suppose we are 

considering the process of axial stretching (along 𝜉 axis) of a vortex with an initial 

radius 𝑟0 and an initial vorticity 𝜔0. Due to the incompressibility of the fluid, its 

current radius 𝑟 under tension will decrease, and the vorticity will increase in 

accordance with the law of conservation of angular momentum, 𝜔𝜉 = 𝜔0𝑟0
2/𝑟2. If 

the vortex radius 𝑟 is strictly constant along the vortex axis 𝜉, then there will be no 

axial vorticity gradient in the vortex, 𝜕𝜔𝜉/𝜕𝜉 = 0. Let us now assume that a 

constriction has appeared on the vortex - a small local decrease in the radius 𝑟. In 

this case, the vorticity unevenness will appear in the constricted area, i.e. axial 

vorticity gradient, 𝜕𝜔𝜉/𝜕𝜉 ≠ 0. But then in accordance with the identity 

div (𝑢𝜉𝛚) = ω𝑥

𝜕𝑢𝜉

𝜕𝑥
+ ω𝑦

𝜕𝑢𝜉

𝜕𝑦
+ ω𝑧

𝜕𝑢𝜉

𝜕𝑧
. (7) 

𝑢𝜉 = 𝑢𝑥 cos 𝛾𝑥 + 𝑢𝑦 cos 𝛾𝑦 + 𝑢𝑧 cos 𝛾𝑧 . (8) 

div (𝑢𝜉𝛚) = div (𝑢𝑥𝛚) cos 𝛾𝑥 + div (𝑢𝑦𝛚) cos 𝛾𝑦 + div (𝑢𝑧𝛚) cos 𝛾𝑧 . (9) 

𝜔 div(𝑢𝜉𝛚) = 𝜔𝑥 div(𝑢𝑥𝛚) + 𝜔𝑦 div(𝑢𝑦𝛚) + 𝜔𝑧 div(𝑢𝑧𝛚). (10) 
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𝜕𝜔𝜉/𝜕𝜉 + 𝜕𝜔𝜂/𝜕𝜂 + 𝜕𝜔𝜁/𝜕𝜁 = 0, 

 

a vorticity gradient must necessarily appear in the direction perpendicular to the 𝜉 

axis, the vortex will begin to deform, which will lead to interaction between 

different parts of the vortex. The result of this process is illustrated by this video 

(available on the Internet in open sources). 

Considering the mechanisms of vorticity propagation, important conclusions 

can be drawn. To do this, it is enough to trace a small area of a moving fluid during 

its movement. Then, from equations (2), (3), (4) it follows that the convection 

mechanism cannot change the value of vorticity in this region at all. The diffusion 

mechanism always tends to smooth out the vorticity value in this area with the 

level of the surrounding background. The divergence mechanism can increase the 

vorticity value, and this is the only mechanism that can lead to its unlimited 

growth. The action of the mechanisms of divergence and diffusion of vorticity is 

always in different directions, they always work against each other. All the variety 

of phenomena occurring in a viscous fluid: the birth and decay of vortices, their 

interaction, the formation of vortex cascades, etc. - this is always a manifestation 

of only convection, diffusion and divergence of vorticity, there are no other 

mechanisms, this follows from the form of equations (1). 

Consider the system of equations (1). Multiplying the first equation by 2𝜔𝑥, 

the second by 2𝜔𝑦 and the third by 2𝜔𝑧, and add these three equations, then taking 

into account that 𝜔2 = 𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 and using formulas (6), (10) we get: 

 

In this equation, the quantity 𝜕𝑢𝜉/𝜕𝜉 is a function of coordinates and time. The 

structure of this equation is like the structure of the equations of system (1). This 

similarity suggests that the scalar quantity 𝜔2 has propagation mechanisms like 

vorticity, and equation (11) is the law of its evolution. 

Let us introduce the concept of vortegy 𝑉 by determining its bulk density, 

 

From this definition, it follows that the vortegy contained in the volume of the 

fluid 𝑊 is equal to: 

𝑉 = ∫ 𝜔2𝑑𝑊
 

𝑊

. 

 

Regarding the vortegy, let us put forward two hypotheses with the aim to see 

which equation of evolution these hypotheses will lead to. 

𝜕(𝜔2)

𝜕𝑡
+ 𝑢𝑥

𝜕(𝜔2)

𝜕𝑥
+ 𝑢𝑦

𝜕(𝜔2)

𝜕𝑦
+ 𝑢𝑧

𝜕(𝜔2)

𝜕𝑧
= 2𝜔2  

𝜕𝑢𝜉

𝜕𝜉
+ 

 

+2ν(𝜔𝑥Δ𝜔𝑥 + 𝜔𝑦Δ𝜔𝑦 + 𝜔𝑧Δ𝜔𝑧). 

(11) 

vortegy bulk density = 𝜔2. (12) 

http://www.youtube.com/watch?v=59LL_IRs1MQ
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So, the first hypothesis asserts that convection, diffusion, and divergence are 

the mechanisms of vortegy propagation, there are no other mechanisms. 

The second hypothesis is the statement about the persistence of the vortegy. 

To formulate the second hypothesis, we first select in the space of fluid motion a 

simply connected volume 𝑊 bounded by a closed surface 𝑆. Now the second 

hypothesis can be formulated as follows: 

The change of vortegy in the volume 𝑊 during the time 𝜕𝑡 is equal to the 

vortegy that entered this volume during this time through the surrounding surface 

 𝑆, plus the vortegy formed (absorbed) in this volume due to divergence, minus the 

vortegy that left this volume through the same surface during this same time. 

This formulation at 𝑊 → 0 corresponds to the following equation, 

 

 

where 𝑗𝑥, 𝑗𝑦, 𝑗𝑧  are the vortegy flux densities along the corresponding axes, and 

the term Div describes the vortegy divergence. 

For the convection mechanism (transfer of vortegy by velocity), write down 

the vortegy flux density in the direction of 𝑖−𝑑 coordinate, 

 

𝑗𝑖 = 𝑢𝑖𝜔2. 
 

Then, from (13) and the condition of fluid incompressibility div 𝐮 = 0 the 

equation of vortegy convection follows, 

 

For the mechanism of vortegy diffusion, write down Fick's first law in the 

direction of the  𝑖−𝑑 coordinate, 

𝑗𝑖 = −𝜈
𝜕(𝜔2)

𝜕𝑥𝑖
. 

 

Then, from (13) follows the equation of vortegy diffusion (Fick's second law) 

To describe the process of vortegy divergence, let us turn to definition (12). 

It can be seen from it that the formation (absorption) of vortegy will always occur 

with any change in the vorticity 𝜔. Then, if there is a small change in the vorticity 

𝜕𝜔, then the change in the value of 𝜔2 will obviously be equal to 2𝜔𝜕𝜔. 

Considering formulas (5), (6), we can write, 

𝜕(𝜔2)

𝜕𝑡
+

𝜕𝑗𝑥

𝜕𝑥
+

𝜕𝑗𝑦

𝜕𝑦
+

𝜕𝑗𝑧

𝜕𝑧
= Div, (13) 

𝜕(𝜔2)

𝜕𝑡
+ 𝑢𝑥

𝜕(𝜔2)

𝜕𝑥
+ 𝑢𝑦

𝜕(𝜔2)

𝜕𝑦
+ 𝑢𝑧

𝜕(𝜔2)

𝜕𝑧
= 0. (14) 

𝜕(𝜔2)

𝜕𝑡
= 𝜈 (

𝜕2(𝜔2)

𝜕𝑥2
+

𝜕2(𝜔2)

𝜕𝑦2
+

𝜕2(𝜔2)

𝜕𝑧2
) ≡ 𝜈∆𝜔2. (15) 
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It is also necessary to show that the process of vortegy divergence in an 

infinite volume of fluid under the conditions of the Cauchy problem does not lead 

to the emergence or loss of its quantities. In other words, it is necessary to show 

that the integral 

 

at all times will be identically equal to zero. 

As applied to the Cauchy problem, only the problem with a finite velocity 𝑢 

and finite total energy of the initial state, 𝐸0 < ∞, is of interest. This condition 

corresponds to the velocity field 𝐮, which decreases at infinity faster than 𝑟−3/2. In 

this case, the decrease order of the vorticity field 𝛚 will be faster than 𝑟−5/2. 

Formula (16) describes the divergence of the vortegy; therefore, the quantity 

2𝜔 div (𝑢𝜉𝛚) can be represented as the divergence of some abstract vector field 

𝛙, i.e. can be written as 

div(𝛙) = 2𝜔 div (𝑢𝜉𝛚). 

 

This condition does not uniquely determine the field 𝛙 itself; however, it uniquely 

determines the decrease order of this field at infinity - faster than 𝑟−13/2. Now the 

integral (17) can be written like this, 

 

∭ 𝜔 div(𝑢𝜉𝛚)

+∞

−∞

𝑑𝑥𝑑𝑦𝑑𝑧 =  
1

2
∭ div(𝛙)

+∞

−∞

𝑑𝑥𝑑𝑦𝑑𝑧. 

 

We apply to the second integral the Gauss-Ostrogradsky formula (divergence 

theorem), which expresses the integral over the volume in terms of the integral 

over the surface covering this volume. Consider a sphere of infinitely large radius 

as such a surface, 

∭ div(𝛙) 𝑑𝑥𝑑𝑦𝑑𝑧 = ∬ 𝜓𝑛𝑑𝑆

 

𝑆

∞

−∞

, 

 

here 𝑆 is the surface of the sphere, 𝜓𝑛 is the normal component of the field 𝛙. 

From this it is clearly seen that for the field 𝛙 decreasing at infinity faster than 

𝑟−13/2, this integral will be always identically equal to zero. This means that the 

process of vortegy divergence does not lead to the emergence (loss) of its 

quantities but is associated only with its redistribution in space. 

𝜕(𝜔2)

𝜕𝑡
= 2𝜔 div (𝑢𝜉𝛚) = 2𝜔2  

𝜕𝑢𝜉

𝜕𝜉
. (16) 

∭ 𝜔 div(𝑢𝜉𝛚)

+∞

−∞

𝑑𝑥𝑑𝑦𝑑𝑧, (17) 
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Collecting all three equations (14), (15), (16) together we obtain 

 

Expanding the Laplace operator and using the formula 𝜔2 = 𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2, we 

get 

where, 

 

Dis = 2𝜈 ((
𝜕𝜔𝑥

𝜕𝑥
)

2

+ (
𝜕𝜔𝑥

𝜕𝑦
)

2

+ (
𝜕𝜔𝑥

𝜕𝑧
)

2

) + 2𝜈 ((
𝜕𝜔𝑦

𝜕𝑥
)

2

+ (
𝜕𝜔𝑦

𝜕𝑦
)

2

+ (
𝜕𝜔𝑦

𝜕𝑧
)

2

) + 

 

It is clearly seen that the value of Dis does not depend on the sign of the 

derivatives 𝜕𝜔𝑖/𝜕𝑥𝑗; this sign is always only positive. Therefore, the value Dis, 

regardless of the sign of the quantities 𝜕𝜔𝑖/𝜕𝑥𝑗, always only increases the value of 

the derivative 𝜕(𝜔2)/𝜕𝑡 in equation (19). Comparing equation (11), obtained from 

the Helmholtz equations, with equation (19), which expresses the conservation 

law, we see that they differ only in the term Dis. Hence, it becomes clear that the 

term Dis describes the irreversible loss of vortegy - its dissipation, and in the 

solutions of the Helmholtz equations (1) at 𝜈 ≠ 0, vortegy will not be conserved. 

In an inviscid fluid (𝜈 = 0), Eq. (11) and Eq. (19) coincide, hence the 

vortegy will be conserved. However, here it is necessary to make a reservation, 

since it is possible to correctly speak about the conservation of vortegy only for 

those moments of time for which the solutions of these equations remain regular. 

So, the first hypothesis has been completely confirmed, the vortegy really 

has only three propagation mechanisms: convection, diffusion, and divergence. 

The second hypothesis in the formulation given above was not confirmed: in a 

viscous fluid, vortegy is not conserved, it is subject to dissipation. However, it is 

still possible to talk about the law of vortegy conservation if we modify the second 

hypothesis and formulate this law as follows: 

The change of vortegy in the volume 𝑊 during the time 𝜕𝑡 is equal to the 

vortegy that has entered this volume during this time through the surrounding 

surface 𝑆, plus the vortegy formed (absorbed) in the considered volume due to its 

divergence, minus the vortegy absorbed in the considered volume of radiation. for 

its dissipation, minus the vortegy that left this volume through the same surface 

during the same time. 

𝜕(𝜔2)

𝜕𝑡
+ 𝑢𝑥

𝜕(𝜔2)

𝜕𝑥
+ 𝑢𝑦

𝜕(𝜔2)

𝜕𝑦
+ 𝑢𝑧

𝜕(𝜔2)

𝜕𝑧
= 2𝜔2  

𝜕𝑢𝜉

𝜕𝜉
+ 𝜈∆𝜔2. (18) 

𝜕(𝜔2)

𝜕𝑡
+ 𝑢𝑥

𝜕(𝜔2)

𝜕𝑥
+ 𝑢𝑦

𝜕(𝜔2)

𝜕𝑦
+ 𝑢𝑧

𝜕(𝜔2)

𝜕𝑧
= 2𝜔2  

𝜕𝑢𝜉

𝜕𝜉
+ 

 

+2ν(𝜔𝑥Δ𝜔𝑥 + 𝜔𝑦Δ𝜔𝑦 + 𝜔𝑧Δ𝜔𝑧) + Dis, 

(19) 

+2𝜈 ((
𝜕𝜔𝑧

𝜕𝑥
)

2

+ (
𝜕𝜔𝑧

𝜕𝑦
)

2

+ (
𝜕𝜔𝑧

𝜕𝑧
)

2

). (20) 
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This formulation corresponds equation (11) obtained from the system of 

Helmholtz equations (1). 

The physical properties of the vortegy 𝑉 are terribly similar the properties of 

energy 𝐸, this similarity explains its name, the vortegy - vortex&energy. Kinetic 

energy in a viscous fluid is lost, it transforms into another form of energy - heat, 

which is not considered by the Navier-Stokes (Helmholtz) equations. This process 

is known as energy dissipation. However, if in the Cauchy problem we add the 

residual kinetic energy of the entire volume of the fluid and the accumulated 

energy of dissipation, then for any moment of time this value will be the same - 𝐸0, 

it is set by the initial conditions, the law of energy conservation is in effect. 

Something similar happens with vortegy; it is lost in a viscous fluid, but no new 

forms of vortegy arise in this case. If we add up the residual vortegy of the entire 

mass of the fluid and the accumulated vortegy of dissipation, a time-independent 

quantity 𝑉0 will also be obtained, it is also determined only by the initial 

conditions, the law of vortegy conservation is in effect. 

So, by analogy with energy, we have in ℝ𝑛 ( 𝑛 = 2 or 3) two new globally 

controlled quantities: 

 

- the maximum value of vortegy: 

 

sup0≤𝑡<𝑇 ∫|𝛚(𝑥, 𝑡)|2

 

ℝ𝑛

𝑑𝑥, 

 

- the cumulative vortegy dissipation (the term Dis is defined by (20)): 

 

∫ ∫ Dis(𝑥, 𝑡)

 

ℝ𝑛

𝑇

0

𝑑𝑥𝑑𝑡. 

 

Both quantities are bonded for any values of time 𝑇, since the vortegy conservation 

law implies that these quantities are always less than its initial value 𝑉0, therefore, 

both quantities are coercive. However, in contrast to the supercritical energy 𝐸, 

both values are subcritical. It is easy to verify that the formulas above give a scaled 

vortegy value equal to 𝑉/𝜆 for 𝑛 = 3 and 𝑉/𝜆2 for 𝑛 = 2. 

An example of vortegy calculating can be given, for example, for the 

toroidal vortex shown in the figure below. For simplicity, let us assume that for the 

initial moment of time 𝑡0, all the vortegy (and vorticity 𝜔0) of this vortex was 

concentrated in the volume of the torus 𝑊, which is characterized by dimensions 𝑑 

and 𝑟. Then the initial vortex vortegy 𝑉0 will be determined by the formula 

 

𝑉0 = 𝑊𝜔0
2 = 𝜋2𝑑2𝑟𝜔0

2/2. 
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Figure 1. Toroidal vortex. 

 

In a viscous fluid at any subsequent time instant, i.e., for 𝑡 > 𝑡0, all the parameters 

of this vortex - 𝑑, 𝑟, 𝜔0, will lose their initial meaning. However, it can be argued 

that the vortex vortegy will monotonically decrease over time 𝑉(𝑡)𝑡0<𝑡≤∞ < 𝑉0, 

this is a manifestation of the process of vortegy dissipation. During evolution, this 

vortex can disintegrate into a system of vortices; the total vortegy of this vortices 

system will also be less than the value 𝑉0. This video (available on the Internet in 

open sources) shows the process of interaction of two toroidal vortices, initially 

lying in the in parallel planes. As a result of this interaction, a system of vortices is 

formed that no longer lie in these planes. And in this case, the total vortegy of the 

system of vortices will be a monotonically decreasing function of time, and at any 

subsequent moment of time it will always be less than the initial vortegy value of 

the two vortices. 

This could be the end of this paper. The next logical step would be to try to 

apply the already existing techniques of rigorous proofs of global regularity, which 

turned out to be ineffective when using supercritical energy 𝐸. Considering what 

was said in [1], there is every reason to expect that replacing supercritical energy 𝐸 

with subcritical vortegy 𝑉 will lead to success ... 

 

The desire of the author of this paper to “look beyond the horizon here and 

now” is understandable. It justifies the use of less rigorous, but simpler and faster 

methods for obtaining preliminary results of solving the problem. 

It is easy to see that equation (11) is invariant to a change in the coordinate 

system. In any other system of rectangular coordinates 𝜑𝜂𝜁, shifted and rotated 

relative to the 𝑋𝑌𝑍 coordinate system, the equation will not change its form and 

will look exactly the same, 

 

𝜕(𝜔2)

𝜕𝑡
+ 𝑢𝜑

𝜕(𝜔2)

𝜕𝜑
+ 𝑢𝜂

𝜕(𝜔2)

𝜕𝜂
+ 𝑢𝜁

𝜕(𝜔2)

𝜕𝜁
= 2𝜔2

𝜕𝑢𝜉

𝜕𝜉
+ 

 

+2ν(𝜔𝜑Δ𝜔𝜑 + 𝜔𝜂Δ𝜔𝜂 + 𝜔𝜁Δ𝜔𝜁). 

(21) 

https://youtu.be/qelUVA80jE4
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Let us assume that in a fluid we observe a certain small region that moves 

with the fluid and in which conditions for the growth of vorticity have been created 

(vorticity divergence occurs - the values of 𝜕𝑢𝜉/𝜕𝜉 are very large and continue to 

increase). We are interested in the answer to the question, can the growth of 

vorticity in this region be unlimited? 

We place the origin of the coordinate system 𝜑𝜂𝜁 at the point of vorticity 

maximum and direct the 𝜑 axis along the direction of the vector 𝛚 at this point. 

The coordinate system 𝜉𝜂𝜁, in which the 𝜉 axis coincides with the direction of the 

vorticity vector 𝛚, has already been considered. Now the coordinate system 𝜉𝜂𝜁 

moves together with the fluid, all the time coinciding with its origin with the 

vorticity maximum, the direction of the 𝜉 axis in this case all the time coincides 

with the direction of the vector 𝛚, i.e. the coordinate system 𝜉𝜂𝜁 can also rotate in 

space (𝑋𝑌𝑍) about some axis orthogonal to the 𝜉 axis. Let us return to the 

consideration of equation (21). Here, however, the question arises about the 

legitimacy of using the non-inertial frame of reference 𝜉𝜂𝜁 to write equation (21). 

The answer to this question is quite obvious, equation (21) does not operate with 

the concept of mass. All quantities included in this equation contain only the 

dimensions of length 𝐿 and time 𝑇 and do not contain the dimensions of mass 𝑀, 

which means that the concept of forces (inertia) cannot arise, so the question 

disappears by itself. 

Since the coordinate system 𝜉𝜂𝜁 moves with the fluid, convective terms will 

drop out of equation (21), now 𝑢𝜉 = 𝑢𝜂 = 𝑢𝜁 = 0. Since the 𝜉 axis coincides with 

the direction of the vector 𝛚, then 𝜔𝜂 = 𝜔𝜁 = 0, and the equation takes the form, 

 

In a small area of space in the vicinity of the vorticity maximum, all fluid 

particles will move along trajectories close to circular (more precisely, spiral-like). 

The appearance of such cylindrical symmetry is due to the vorticity is a vector 

quantity, it is characterized by the direction relative to which the cylindrical 

symmetry is formed. Moreover, this cylindrical symmetry will become more 

expressed, the more expressed the maximum is in comparison with the background 

vorticity values, and the faster it grows. If vorticity increases, this means that 

vorticity divergence occurs, since divergence is the only possible mechanism for 

its growth. Physically, this means that a small rotating cylinder on the axis of the 

vortex undergoes deformation of radial compression (axial tension - vortex 

stretching). The strain rate tensor of this state, if the strain rate 𝜀𝜉 is taken as a unit, 

will look like this: 𝜀𝜉 = 1, 𝜀𝜂 = −1/2, 𝜀𝜁 = −1/2, 𝛾𝑖𝑗 = 0. With this symmetry, 

the following relationships will hold: 

 

𝜕2𝜔

𝜕𝜂2 =
𝜕2𝜔

𝜕𝜁2 =
𝜕2𝜔

𝜕𝑟2 . 

𝜕(𝜔)2

𝜕𝑡
= 2𝜔2

𝜕𝑢𝜉

𝜕𝜉
+ 2ν𝜔Δ𝜔. (22) 
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Let us consider the case in which the changes in vorticity along the 𝜉 axis is 

small compared to changes along the radius (it will become clear later that this 

case is conservative), i.e. the quantities 𝜕𝜔/𝜕𝜉 and 𝜕2𝜔/𝜕𝜉2 will be small 

compared to 𝜕𝜔/𝜕𝑟 and 𝜕2𝜔/𝜕𝑟2. Then the quantity 𝜕2𝜔/𝜕𝜉2 in Δ𝜔 can be 

neglected and the equation (22) can be written as follows: 

 

Let us continue to observe the small fluid cylinder on the vortex axis 𝜉. Let 

at time 𝑡0 the initial radius of this cylinder be 𝑟0. Further, assume that the radial 

compression of the cylinder occurs at a constant velocity 𝜀, and the radius of the 

cylinder changes according to the law, 

 

𝑟 = 𝑟0 − 𝜀𝑡. 
 

Then, from the condition of incompressibility of the fluid, we can determine the 

value 𝜕𝑢𝜉/𝜕𝜉 

 

As can be seen from this formula, the value of 𝜀 controls the intensity of the 

process of vortegy divergence (the vorticity increase rate 𝜔), the values of this 

parameter will then vary within the widest range 0 ≤ 𝜀 ≤ ∞. 

Let at time 𝑡0 the vorticity value on the vortex axis 𝜔𝑚 be equal to 𝜔0, i.e. at 

𝑡 = 𝑡0 it was 𝜔𝑚 = 𝜔0. Since the value of 𝜔𝑚 is very large (and continues to 

increase) compared to the background values (at the outer edge, at 𝑟 = 𝑟0 − 𝜀𝑡 ), 

these values can be neglected. Then we can write 

 
𝜕𝜔

𝜕𝑟 𝑟=0
= 0    ;     

𝜕𝜔

𝜕𝑟 𝑟=𝑟0−𝜀𝑡
≈ −

𝜔𝑚

(𝑟0 − 𝜀𝑡)
  ; 

 

Substituting formulas (24) and (25) into equation (23), we obtain: 

 

𝑑𝜔𝑚
2

𝑑𝑡
=

4𝜀𝜔𝑚
2

(𝑟0 − 𝜀𝑡)
−

4ν𝜔𝑚
2

(𝑟0 − 𝜀𝑡)2
. 

 

The solution to this equation satisfying the initial conditions is the function, 

𝜕(𝜔)2

𝜕𝑡
= 2𝜔2

𝜕𝑢𝜉

𝜕𝜉
+ 4ν𝜔

𝜕2𝜔

𝜕𝑟2
. (23) 

𝜕𝑢𝜉

𝜕𝜉
=

2𝜀

(𝑟0 − 𝜀𝑡)
. (24) 

𝜕2𝜔

𝜕𝑟2
𝑟=0

≈ −
𝜔𝑚

(𝑟0 − 𝜀𝑡)2
. (25) 
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This formula (up to coefficients) had already been obtained by the author of this 

paper, but then the method for obtaining it did not track changes in all three 

vorticity components simultaneously. The graph of the function 𝜔𝑚(𝑡) for 

different values of the parameter ε is shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Dependence 𝜔𝑚(𝑡). 

 

 At 

 

the function 𝜔𝑚(𝑡) has a maximum 

 

If we introduce into consideration the dimensionless parameter 

 

𝑅 = 𝜀𝑟0/𝜈, 
 

𝜔𝑚 = 𝜔0𝑟0
2𝑒

2𝜈
𝜀𝑟0  

𝑒
− 

2𝜈
𝜀(𝑟0−𝜀𝑡)

(𝑟0 − 𝜀𝑡)2. 
(26) 

𝑡 = (𝑟0/𝜀 −  𝜈/𝜀2), (27) 

𝜔𝑚𝑎𝑥 = 𝜔0𝑟0
2

  𝑒((2𝜈/𝜀𝑟0)−2)

𝜈2
𝜀2 . 

(28) 
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let’s carefully call it an analogue of the Reynolds number, then formula (28) can be 

written as 

𝜔𝑚𝑎𝑥 = 𝜔0𝑒((2/𝑅)−2)𝑅2. 
 

Hence, it is clear that at 𝑅 ≤ 1 the maximum of function (26) disappears. It can be 

noted here that the solvability of the global problem considered here for small 

Reynolds numbers is proved. For large numbers 𝑅 > 1, function (26) has a 

maximum, the value of which increases rapidly with increasing number 𝑅 and is 

very sensitive to its changes. But for finite values of the number 𝑅 (for finite 

values of 𝜀), the values of the maximum 𝜔𝑚𝑎𝑥 remain finite. 

From all that has been said above, the conclusion inevitably follows that the 

process of vorticity diffusion dominates over the process of its divergence. This 

conclusion will only be reinforced if we recall the assumption that was made when 

deriving formula (23). There it was assumed that the axial vorticity gradient is 

negligible compared to the radial one, i.e. 𝜕𝜔/𝜕𝜉 ≪ 𝜕𝜔/𝜕𝑟. If we assume the 

opposite, then the intensity of the diffusion process will only increase, i.e. this 

assumption is conservative. And only in one case the vorticity divergence process 

can dominate, this is the case of an infinitely large 𝜀. However, this case is not of 

interest, since in this case an infinitely large energy of the initial state of the fluid is 

required. 

Formula (27) explains another well-known fact: small vortices are more 

susceptible to dissipation than large ones. This formula determines the time 𝑡 that 

passes from the initial state of the vortex, characterized by the radius 𝑟0, until the 

vortex reaches the vorticity maximum. If we put 𝑡 = 0 in (27) and express 𝑟0, the 

minimum size of vortices will be obtained, 

 

for vortices of this size, further vorticity growth is impossible (𝑡 = 0!). The 

evolution of such vortices passes into the stage of their degradation - a smooth 

decrease in vorticity to the level of the surrounding background. Consequently, in 

the cascade scheme of vortex development, with the decay of vortices along a 

chain from large to small, there is a lower limit on the size of vortices. Upon 

reaching this limiting size, the cascade breaks off, the existence of smaller vortices 

is impossible. This result is in full agreement with the phenomenological model of 

turbulence known as the "spectrum law -5/3". In this model, the development of a 

vortex cascade also ends with the smallest possible vortex scale - the Kolmogorov 

scale. This scale is characterized by a velocity scale 𝑢, a size scale 𝜂, and a time 

scale 𝜏, and 

𝑢 = (𝜈𝜖)1/4;                 𝜂 = (
𝜈3

𝜖
)

1/4

;                 𝜏 = (
𝜈

𝜖
)

1/2

, 

 

𝑟𝑚𝑖𝑛 = 𝜈/𝜀, (29) 
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where 𝜖 is the rate of energy dissipation (dissipated energy per unit mass and unit 

time). From the first and second formulas, by eliminating the quantity 𝜖, the 

follows formula, 

 

completely equivalent to formula (29). The only question is how the quantities 𝜀  

and 𝑢 in formulas (29) and (30) are related to the quantity 𝑢0, where 𝑢0 =
sup|𝐮(𝑥, 0))|𝑥∈ℝ3  - the maximum value of the velocity in its initial distribution in 

the Cauchy problem. However, only the Cauchy problem with an arbitrarily large 

but finite energy of the initial state 𝐸0 is of interest, which means that the values 𝜀 

and 𝑢 are finite, then there is a minimum vortex size 𝑟𝑚𝑖𝑛. In this case, formula 

(29) fully explains the supercriticality paradox of the Navier-Stokes equations, 

since it is described in [1], in terms of the energy 𝐸. The concentration of energy 

on scales less than 𝑟𝑚𝑖𝑛 (29) becomes impossible since it is impossible to scale 

solutions to scales less than 𝑟𝑚𝑖𝑛. This means that a blowup scenario of the 

evolution of these solutions becomes impossible. Moreover, this restriction arises 

from the Navier-Stokes equations themselves, or rather the Stokes viscous fluid 

model, which is embedded in their basis. 

If formula (29) is applied to an inviscid fluid (𝜈 = 0), then there is no 

restriction on the minimum size of vortices. In this case, the supercriticality of the 

Euler equations will manifest itself in full force and blowup scenario of the 

evolution of an initially smooth solution is inevitable. The same conclusion can be 

reached from other considerations. In an inviscid fluid, the vorticity diffusion 

mechanism does not work, but the mechanism of its divergence does. Since these 

two mechanisms are always oppositely directed, the divergence mechanism will be 

unbalanced, which will inevitably lead to an unlimited increase in vorticity. It is 

possible to estimate the time τ over which singularities appear in the initially 

smooth vorticity field, 

𝜏 ~ 𝑟0𝑚/𝑢0, 
 

where 𝑟0𝑚 is the minimum vortex size in the initial velocity distribution. 

As a result of the analysis, the following preliminary conclusions can be 

drawn: 

 

- the vorticity field in the solutions of the 3D Navier-Stokes equations for the 

Cauchy problem can have extremely large and sharp maxima, but it always 

remains smooth. 

 

- the derivatives 𝜕ω𝑖/𝜕𝑥𝑗 always exist everywhere and are continuous functions of 

coordinates, therefore the velocity and pressure fields will have the same 

properties. 

 

 

𝜂 = 𝜈/𝑢, (30) 
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