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Abstract 

  

In this paper, we developed several new methods to describe a photon’s emission and propagation process: 1) To 

explain a photon that emitted from a Bohr atom from the n=3 to n=2 electron orbit transition, we added a virtual electron that 

doing RF rotation in a virtual 2D orbit with n=2.43, and it can intuitively explain the frequency and the transverse wave of 

the photon; 2) Using the newly designed {N,n} QM field theory and the non-Born probability (NBP), we described the 

photon’s emission and propagation process as a series excitation of a {N,n} QM field’s nLL QM state from low n to high n 

(e.g., from the {N,n} QM field’s ground state n=1, or |1,0,0> to the first excited state n=2, or |2,1,1>, then to the second 

excited n=3, or |3,2,2>, and then to the third excited state n=4, or |4,3,3>, …). To describe a photon (that propagated to high n 

in the {N,n} QM field) with a limited size, in the NBP density formula (of the nLL QM state in the {N,n} QM field), we used 

the multiplier n’ for the exponential index so that we can describe a photon with any appropriate size that we want; 3) We 

hypothesized that a photon has an onion-like multi-shells physical structure (a superposition of many QM states), and has a 

“standard” size of about 100x of its wavelength. We explained a photon’s wave-particle duality as that its out-shells have the 

wave character, while its inner core has the particle character. We explained a photon’s double-slit experiment as that its out-

shell wave’s interference guided its inner core’s particle motion; 4) We explored the possibility that whether the redshift 

(with Hubble’s constant ~ 70 (km/s)/Mpc) is the natural attribute of the photon propagation; 5) Alternatively, we used only 

two QM states to describe a photon’s emission and propagation: the ground state of {N,n} QM field |1,0,0> and the excited 

state of {N,n} QM field |2,1,1>, with r1 = c * t, so that the speed of the light c is incorporated into the description. 6) We 

believe that the {N,n} QM field theory can be used for other particles’ description as well. Finally, we explained the physical 

meaning of the matter wave’s wave function as the NBP 3D distribution of a particle/celestial body’s movement trajectory 

(that is described by the Schrodinger equation). 
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Introduction 

 

The SunQM study [1] ~ [16] have demonstrated that the formation of Solar system was governed by its {N,n} QM, and 

the non-Born probability (NBP) can be used to describe many macro-world’s phenomena [17] ~ [19]. The success of the SunQM 

study makes us to believe that “all mass entities (from the whole universe to a single quark) can be described by Schrodinger 

equation and solution” (see SunQM-11 section IX). Then we extend this idea to the force field, re-classified the four 

fundamental forces into three pairs: G/RFg-force, E/RFe-force and S/RFs-force, and proposed a new {N,n} QM field theory 

(i.e., all force fields can also be described by Schrodinger equation and solution [20]). In the current paper, we try to use the 

new {N,n} QM field theory and NBP to describe a photon’s emission and propagation process. Note: for {N,n} QM 

nomenclature as well as the general notes for {N,n} QM model, please see SunQM-1 section VII. Note: Microsoft Excel’s 

number format is often used in this paper, for example: x^2 = x2, 3.4E+12 = 3.4*1012, 5.6E-9 = 5.6*10-9. Note: The reading 

sequence for SunQM series papers is: SunQM-1, 1s1, 1s2, 1s3, 2, 3, 3s1, 3s2, 3s6, 3s7, 3s8, 3s3, 3s9, 3s4, 3s10, 3s11, 4, 4s1, 

4s2, 6 and 6s1. Note: for all SunQM series papers, reader should check “SunQM-9s1: Updates and Q/A for SunQM series 

papers” for the most recent updates and corrections. 
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I.   Using Bohr atom to explain a photon’s emission process 

 

 

I-a.   To explain an emitted photon’s frequency based on Bohr’s hydrogen atom model  

 

Figure 1a showed a standard Bohr hydrogen atom with n=3 orbit (with three periods of de Broglie wave), and with 

n=2 orbit (with two periods of wave). QM text books told us that an electron transition from n=3 to n=2 orbit will emit a 

photon with wavelength 656.1 nm (also see Table 1 column 12). Table 1 showed the detailed calculation that how an emitted 

photon gets its frequency (Δf) based on Bohr atom. The conception and method of the calculation has been explained before 

(although separately) in SunQM-4 and in SunQM-2’s Table 2/Table 3. Here we combine all previous (separated) 

explanations into one explanation. The baseline of the explanation is: 

a)  The wave-particle duality told us that a QM process can be described in either a particle version or a wave version;  

b)  The wave mechanics told us that a wave has group velocity and phase velocity; 

c)  QM text books [21, 22] told us that the relationship between the particle’s classical velocity and the (de Broglie) matter 

wave’s group velocity (vgr), and the phase velocity (vph) is:  

 

vclassical = vgr = 2vph           eq-1 

 

d)  Using above information, it was concluded that the particle description can be (solely) based on vclassical = vgr, and (in 

{N,n} QM) the (de Broglie) wave description can be (solely) based on vph. 

Below is the detailed explanation:  

 

1)  Bohr atom’s particle description version: 

From text books, we know that in Bohr atom model (shown in Figure 1a), the electric force Fe balanced out the centrifugal 

force Fc, and makes the electron to rotate around a proton with speed vn (as shown in Table 1 column 5). 

 

F𝑒 =
1

4πϵ0

q2

𝑟𝑛
2 , F𝑐 = m

v𝑛
2

r𝑛
 , F𝑒 = F𝑐 ,  

1
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q2

𝑟𝑛
2 =  m

v𝑛
2
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1
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r𝑛m
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The total energy (En) of this orbital rotating electron is calculated as 

 

En = Kn + Vn =
1

2
mvn

2 −
1

4πϵ0

q2

rn
=

1

2
mvn

2 − mvn
2 =

−1

2
mvn

2 ,      eq-3 

 

as shown in column 6 (it is used as a control, and named as the “particle E” because it is calculated as an electron particle). 

Notice that this vn is the electron’s true orbital velocity (or particle’s classical velocity vclassical = vgr). Here are some 

formulas that related to the electron’s group velocity: 

 

v𝑛,𝑔𝑟 =
v1,𝑔𝑟

𝑛
 , known from traditional QM,         eq-4 

𝜆𝑛 = 𝑛𝜆1 , defined from Bohr Model’s and de Broglie wave,       eq-5 

v𝑛,𝑔𝑟 ≠ 𝜆𝑛f𝑛,𝑔𝑟 , assumed, but it is WRONG! (The correct one is eq-6) 

f𝑛,𝑝ℎ =
v𝑛,𝑝ℎ

𝜆𝑛
=

v𝑛,𝑔𝑟

2𝜆𝑛
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2
 , v𝑛,𝑔𝑟 = 2v𝑛,𝑝ℎ = 2𝜆𝑛f𝑛,𝑝ℎ = 2𝜆𝑛f𝑛,𝑔𝑟

𝑛

2
= 𝑛𝜆𝑛f𝑛,𝑔𝑟 , v𝑛,𝑔𝑟 = 𝑛𝜆𝑛f𝑛,𝑔𝑟  , deduced,  eq-6 

f𝑛,𝑔𝑟 ≠ f1,𝑔𝑟/𝑛
2 , assumed, but it is WRONG! (The correct one is eq-7) 

v𝑛,𝑔𝑟 = 𝑛𝜆𝑛f𝑛,𝑔𝑟  , v1,𝑔𝑟 = 𝜆1f1,𝑔𝑟 , v𝑛,𝑔𝑟 =
v1,𝑔𝑟

𝑛
 , 𝑛𝜆𝑛f𝑛,𝑔𝑟 =

𝜆1f1,𝑔𝑟

𝑛
 , 𝑛𝑛𝜆1f𝑛,𝑔𝑟 =

𝜆1f1,𝑔𝑟

𝑛
 , f𝑛,𝑔𝑟 =

f1,𝑔𝑟

𝑛3  , deduced,  eq-7 
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Combining eq-3 and eq-4, we obtained the n to n’ transition energy (i.e., the emitted photon’s energy)   

En − En′ =
−1

2
mvn

2 −
−1

2
mvn′

2 =
−1

2
mv1

2 (
1

𝑛2 −
1

𝑛′2
) ,      eq-8 

 

 

2)  Bohr atom’s (de Broglie) matter wave description version: 

Now if we treat this orbital moving electron as (de Broglie) wave, then it has wavelength (as shown in column 7) 

λn =
2πrn

n
            eq-9 

Note: here we define the group wave and the phase wave have the same wavelength. 

λn = λn,gr = λn,ph ,           eq-10 

According to the general wave mechanics, its orbital (phase) velocity 

vn,ph = λnfn,ph .            eq-11 

Therefore, based on eq-1, its orbital (phase) frequency (as shown in column 8) is 

fn,ph =
vn,ph

λn
=

vn,gr

2λn
           eq-12 

In SunQM-2 section 1-c, we had discovered the wave version of orbital energy En formula 

En = −H𝑚fn,ph ,           eq-13 

Where m is the mass (kg) of the object doing orbital movement (not the quantum number m), H= h/m’ is the "quasi-Planck 

constant", and h is the Planck constant and m’ is a mass scaling factor with unit of kg. For an orbital moving electron, its H = 

h/me = 7.274E-4 (J.s/kg) (see the original from SunQM-2 Table 2, and now is copied here in Table 1 column 9, where me is 

the mass of electron). The calculated eq-13 is shown in column 10 of Table 1. Notice that the wave version of the orbital 

energy E (in column 10) equals to the particle version of the orbital energy E (in column 6). Here are some more formulas 

that related to the electron matter wave’s phase velocity: 

 

vn,ph = λnfn,ph = nλ1

f1,ph

n2 =
λ1f1,ph

n
=

v1,ph

n
 , vn,ph =

v1,ph

n
 , deduced,      eq-14 

fn,ph =
vn,ph

λn
=

v1,ph

n

1

nλ1
=

v1,ph

λ1

1

n2 = f1,ph/n
2 , fn,ph = f1,ph/n

2  , deduced,     eq-15 

2πfn,ph = ωn,ph , (defined in SunQM-4’s eq-27)        eq-16 

 

Combining eq-13 and eq-15, we obtained the n to n’ transition energy (i.e., the emitted photon’s energy) is  

En − En′ = −H𝑚fn,ph − H𝑚fn′,ph = −H𝑚f1,ph (
1

n2 −
1

n′2
) ,      eq-17 

∆fn→n′,ph = fn′,ph − fn,ph = f1,ph (
1

n′2
−

1

n2) , deduced,       eq-18 

 

and the n to n’ transition emitted photon’s wavelength is 

λn→n′ =
c

fn,ph−fn′,ph

=
c

f1,ph(
1

n2−
1

n′2
)
          eq-19 

 

Here are some formulas that interchange between phase velocity and group velocity of the electron matter wave: 
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vn,ph

λn
=
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2λn
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nλnfn,gr

2λn
=

n

2
fn,gr         eq-20 

f3,ph − f2,ph = f1,ph (
1
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1

22) =
−5

36
f1,ph         eq-21 

f3,ph − f2,ph = f1,ph (
1
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1

22) = f1,gr (
n

2
) (

1

32 −
1

22) = f1,gr (
1

2
) (

1

32 −
1

22)      eq-22 

 

 In Table 1, columns 7 through 10 showed the Bohr atom’s wave description by using eq-9, eq-20, and eq-13. 

Columns 11 through 13 showed the transition (or emitted photon’s) wavelength (by using eq-19), column 14 using column 8 
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to calculate ∆f𝑛→𝑛′,𝑝ℎ = 𝑓𝑛′,𝑝ℎ − 𝑓𝑛,𝑝ℎ , column 15 using column 7 to calculate ∆f𝑛→𝑛′,𝑝ℎ , column 16 using column 4 and 

column 3 to calculate electron’s classical orbit frequency 𝑓𝑛,𝑔𝑟 ,  column 17 using column 16 to calculate electron orbit’s 

(phase) frequency 𝑓𝑛,𝑝ℎ ,  and column 18 using column 17 to calculate ∆𝑓𝑛,𝑝ℎ . All these calculations confirmed that eq-1 

through eq-22 are correct.  

 This calculation gives the physical meaning of the emitted photon’s frequency (based on a Bohr atom): it equals to 

the difference of orbital phase frequencies ∆𝒇𝒏→𝒏′,𝒑𝒉 (as shown in eq-18), not the electron’s classical orbit frequencies’ 

difference ∆f𝑛→𝑛′,𝑔𝑟  . Eq-22 showed the f𝑛,𝑝ℎ to f𝑛,𝑔𝑟  relationship for the transition of n=3 to n=2. We can see that for n=3 

orbit (in Figure 1a), the phase wave’s wavelength 𝜆𝑛=3 =
2𝜋𝑟𝑛=3

3
 , so the electron needs to move 3 (phase) waves to finish one 

orbital circle (while the group wave only needs to finish one wave per orbital circle). So the higher the n, the relative shorter 

the 𝜆𝑛 =
2𝜋𝑟𝑛

𝑛
 will be, and electron needs to move more (=n) phase waves to finish one orbital circle. This explains where the 

“n” comes from in eq-20. The “1/2” in eq-20 comes from eq-1. This n/2 factor had also been seen in SunQM-4’s eq-40 

(where we had made a huge effort to prove that it was not wrong). 

Next, we try to see whether we can find a more intuitive physical explanation for the photon frequency 

∆f𝑛=3→𝑛=2,𝑝ℎ. In eq-23, eq-24, or eq-25, ∆f3→2,𝑝ℎ was represented as the electron movement frequency in terms of f3,𝑔𝑟  , or 

f2,𝑔𝑟  , or f1,𝑔𝑟 , and we see the absolute value of ∆f3→2,𝑝ℎ higher than that of f3,𝑔𝑟  but lower than that of f2,𝑔𝑟  . What we want 

is to find a “n” orbit so that the electron in this “n” orbit rotates in the same frequency as ∆f3→2,𝑝ℎ , or the photon’s wave 

frequency. Inspired by the Raman scattering explanation (where a virtual electron exciting energy state is created to help the 

explanation, see wiki “Raman scattering”), here we create a virtual electron orbit with a virtual quantum number “nx”, and 

this “nx” satisfy all formulas (eq-1 through eq-22), except it is not an integer. Solving eq-26, we obtained nx = 2.43. So now 

we have found the most intuitive explanation: for the n=3 to n=2 transition, the emitted photon has the same frequency as a 

electron’s true orbital rotation frequency at a virtual orbit n=2.43 (notice that the value of n=2.43 is between the start n=3 and 

end n=2)! Thus, we can use Bohr model (or a semi-classical and semi-QM theory) to (self-consistently) explain the photon 

emission. 
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2
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3
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23   
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23

33 f2,gr (
3
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33
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Define f3,ph − f2,ph = −fn,gr , use eq-7, we have  fn,gr =
f1,gr

n3  , 

f3,ph − f2,ph = f1,ph (
1

32 −
1

22) = f1,gr (
n=1

2
) (

1

32 −
1

22) = f1,gr (
1

2
) (

1

32 −
1

22) = −fn,gr = −
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n3  ,  

1

n3 = (
1

2
) (

1

22 −
1

32) , n ≈ 2.43 ,          eq-26 

 

The most important part of this work is, the SunQM series studies have demonstrated that all these equations (eq-1 

through eq-22, used for the electron orbit calculation) can be directly used to calculate the planet orbital movement in Solar 

system (see SunQM-2’s Table 1, Table 2, and Table 3), and probably even the graviton emission!  

(Note: In SunQM-2 section 1-c, eq-3 was written as En = -Hmfn , because the fn is the orbit phase frequency, so it 

should to be written as En = -Hmfn,ph . Also in SunQM-2’s Table 1, Table 2, and Table 3, all fn should be written as fn,ph . Also 

in SunQM-4 section I-c, all fn should be fn,ph, and all fj should be fj,ph). 
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Figure 1a. A Bohr atom model’s n=3 orbit (with three periods of de Broglie wave), and n=2 orbit (with two periods of wave). 

A virtual orbit at n = 2.43 is shown in pink color.  

Figure 1b. The transition of electron from n=3 to n=2 orbit emits a photon. 

Figure 1c. A propagating photon’s transvers electromagnetic wave. 

Figure 1d. During the 1st half-wave, 𝐄⃗  vector (of a virtual electron at the virtual n=2.43 orbit) rotating anti-clockwise in x-y 

plane from 0° to 90° to 180°, generates right-hand nl0 𝐁⃗⃗  vector pointing to +z (based on {N,n} QM field theory). 

Figure 1e. During the 2nd half-wave, 𝐄⃗  vector (of a virtual electron at the virtual n=2.43 orbit) rotating clockwise in x-y plane 

from 0° to -90° to -180°, generates right-hand nl0 𝐁⃗⃗  vector pointing to -z (based on {N,n} QM field theory). 

 

 

Table 1. To show how an emitted photon gets its frequency (Δf) based on Bohr atom.  

 
Note: E represents energy (not electric field vector). 

 

 

I-b.   Using a Bohr-RF model to explain an emitted photon’s transverse electromagnetic wave 

 

 From the electrodynamics text books, we see that a photon can be described as a transvers electromagnetic wave 

(which can be deduced out from the Maxwell’s equations). Here we want to know, can we use the newly designed {N,n} QM 

field theory to explain the emitted photon’s transvers electromagnetic wave (shown in Figure 1c) based on Bohr atom (shown 

in Figure 1a)? The answer is “yes”, if we use the Bohr-RF model, but not the original Bohr model. 

In our original Bohr model (Figure 1a), we have (practically) assumed that during photon emission (in +x direction) 

all n orbits are in x-y plane and rotate anti-clockwise. Looking along x-axis in opposite direction of photon’s propagation, we 

see the proton-electron electric field 𝐄⃗  vector oscillates up and down along y-axis with the oscillation frequency equals to an 

virtual electron doing orbital rotation at a virtual n=2.43 orbit (see Figure 1a and 1c), so the 𝐄⃗  part (both vector direction and 

oscillation frequency of this virtual electron) fits photon’s transverse wave well. However, according to {N,n} QM field 

hν
ν = 4.57E+14 Hz

E vector rotating anti -clockwise in 
x-y plane from 0 to 90 to 180 , 
then rotating clockwise in x-y 
plane from 0 to -90 to -180 .

Generates a photon’s E/M wave 
same as in all  text books

v

E

B
E

B

v

a b c d e

y

z

x

t0t2t3t4 t1

e-
v

z

x

y

n=3
fph=3.66E+14 Hz

n=2
fph=8.22E+14 Hz

e-
v'

p+

E

Virtual 
n=2.433
fgr=4.57E+14 Hz

ν = Δf3→2,ph = fn=2.43,gr = 4.57E+14 Hz

E vector rotating anti -clockwise in x-y 
plane from 0 to 90 to 180 , generates 
right-hand nl0 B vector pointing to +z, 
then rotating clockwise in x-y plane from 
0 to -90 to -180 , generates right-hand 
nl0 B vector pointing to -z.

particle E wave E transition Δfph photon's Δf use fgr photon's Δf

Z

orbit

n =

rn= 

n2*r1/Z

vn,gr=sqrt[

e^2*Z/(4π

ε0mrn )]

En= -1/2*

(1/4πε0)*

Ze2/rn

λn=

2πrn/n

fn,ph= 

vn,gr/2/λn H=h/m'

En = 

-Hm fn,ph

λn→n'=

c/f =hc / 

(En-En')

observed 

or Ritz 

λn→n' fn',ph -fn,ph= Δf=c/λ

fn,gr=  

vn,gr/ 2πrn

fn,ph= 

fn,gr *n/2 =

Δfn,ph = 

fn',gr *(n')/2 -  

fn,gr *(n)/2 =

unit m m/s J m 1/s J.s/kg J nm nm 1/s 1/s 1/s 1/s 1/s

e- in H atom 1 1 5.29E-11 2.19E+06 -2.18E-18 3.32E-10 3.29E+15 7.274E-04 -2.18E-18 6.58E+15 3.29E+15

e- in H atom 1 2 2.12E-10 1.09E+06 -5.45E-19 6.65E-10 8.22E+14 7.274E-04 -5.45E-19 λ2→1 = 121.50 121.57 2.47E+15 2.47E+15 8.22E+14 8.22E+14 2.47E+15

e- in H atom 1 3 4.76E-10 7.29E+05 -2.42E-19 9.97E-10 3.66E+14 7.274E-04 -2.42E-19 λ3→1 = 102.52 102.57 2.92E+15 2.92E+15 2.44E+14 3.66E+14 2.92E+15

λ3→2 = 656.12 656.28 4.57E+14 4.57E+14 4.57E+14

virtual e- 1 2.433 3.13E-10 8.99E+05 4.57E+14
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theory (in SunQM-6), the uni-directional anti-clockwise spinning 𝐄⃗  vector (in Figure 1a) will generates nl0 𝐁⃗⃗  vector pointing 

only to +z, and will never points to -z (see Figure 1c). So we have to modify the original Bohr model to accommodate this.  

The electron movement in a hydrogen atom is in complete RF (at any n orbit), so when we degenerate an electron’s 

xyz-3D RF movement into a xy-2D RF movement, we should see the electron’s orbit movement has 50% probability in anti-

clockwise and 50% probability in clockwise at any time. In the emitted photon wave explanation, it can be (and it should be) 

explained as the first half of the photon wave correlates to the anti-clockwise (n=2.43) virtual orbit moving (virtual) electron 

generated 𝐄⃗  and 𝐁⃗⃗ , and second half of the photon wave correlates to the clockwise (n=2.43) virtual orbit moving (virtual) 

electron generated 𝐄⃗  and 𝐁⃗⃗ . Therefore, we name the Bohr model in Figure 1a (with the first half circular orbit in anti-

clockwise, and the second half circular orbit in clockwise) as the Bohr-RF model, because it incorporated the 2D RF 

character. In the old days (before SunQM was discovered, and when QM was only for the micro world),  the Bohr model was 

said incorrect due to its orbital angular momentum 𝐋n=1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ℏ, while Schrodinger QM has 𝐋n=1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 (see SunQM-1 Table 1 

and SunQM-2 Table 6). Now we know that this is because in the micro world, all n QM states (of a hydrogen atom’s n orbital 

electron) are in complete RF (with ~ 100% mass occupancy in the n orbit space shell), so if we need to use a 2D orbit to 

describe, then we have to use the Bohr-RF model  because its 𝐋n=1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 (and not to use the Bohr model, because Bohr model 

correlates to <1% mass occupancy)! On the other hand, for a self-spinning macro world QM with < 1% mass occupancy (the 

3D orbit movement is degenerated in to 2D), the Bohr model is still valid. For example, Mars planet in the current Solar 

system can be described by {2,1//6} QM orbit with n=1, and the orbital angular momentum > 0. However, for a self-spinning 

macro world QM with ~100% mass occupancy (e.g., a pre-Sun ball at size of {2,1//6}), things become more complicated if 

we want to use a 2D orbit description at r = {2,1}. We probably need to use Bohr-RF model to describe the RF part of the 

pre-Sun ball at r = {2,1}, and use Bohr model to describe the self-spin of pre-Sun ball at r = {2,1}. The bring home message 

is: Bohr model is for <1% mass occupancy, so it does not contain the RF information, and Bohr-RF model is for ~100% mass 

occupancy, so it does contain the RF information. 

In this way, we have the final version of the most intuitive explanation based on Bohr-RF model  (as shown in 

Figure 1): the n=3 to n=2 transition emitted photon’s transvers electromagnetic wave (in +x direction) directly 

correlates to a virtual electron doing a RF rotation in a (xy-2D) virtual orbit with n=2.43, with its 𝐄⃗  vector spinning 

anti-clockwise from 0° to 90° to 180° that generates right-hand nl0 𝐁⃗⃗  vector pointing to +z, and followed by its 𝐄⃗  

spinning clockwise in x-y plane from 0° to -90° to -180° and generating right-hand nl0 𝐁⃗⃗  vector pointing to -z. By 

looking Figure 1c from t0 to t1 to t2, we see that the 𝐄⃗  vector looks like spinning anti-clockwise from 0° to 90° to 180°, and 

from t2 to t3 to t4, the 𝐄⃗  vector looks like spinning clockwise from 0° to -90° to -180°. This view become more obvious when 

we look at the animated photon wave propagation as shown in wiki “Electromagnetic radiation”.   

Alternatively, we can explain the 𝐄⃗  vector clockwise spinning from 0° to -90° to -180° (in Figure 1a) as the induced 

𝐄⃗  vector caused by an original 𝐄⃗  vector spinning from 180° to 270° to 360° (for induced 𝐄⃗  or 𝐁⃗⃗ , see Lenz’s Law in Giancoli’s 

text book “Physics for Scientists & Engineers with Modern Physics”, 4th ed. 2009, p759, Figure 29-2a).  

Notice that in the Bohr-RF model, when the virtual electron moved in a virtual orbit for 360°, its 𝐄⃗  vector spun only 

for a half circle, and after the virtual electron moved 720°, its 𝐄⃗  vector finished a complete circle. So the RF effect caused 

kind of “Mobius strip” effect. Also recall that eq-41-SunQM-3s11 ωn,ph = (
n

2
)ωn correlates to the spin quantum number s = 

n/2 (see SunQM-4 section I-c). Then, does RF (and/or ωn,ph) have something to do with Einstein’s hidden variable? 

 

 

 

II.   Using {N,n} QM field theory and non-Born probability (NBP) to describe a photon’s emission and propagation 

process 

 

 

II-a.  A general time-dependent probability density formula for Schrodinger equation’s solution 
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From the general quantum mechanics text book, we learned that a hydrogen atom’s proton-electron system can be 

described by Schrodinger equation 

 

iħ
∂

∂t
Ψ (r, θ, φ, t) =  [

−ħ2

2m
∇2 +  V (r, θ, φ, t)]  Ψ (r, θ, φ, t)      eq-27 

 

Under certain physics condition (e.g., hydrogen atom, etc.), Schrodinger equation (as a linear partial differential equation) 

can be solved by separating the variables so that we can find solutions that are simple products of 

 

Ψ(r, θ, φ, t) = R(r) Θ(θ) Φ(φ) T(t)        eq-28 

In developing {N,n} QM (as shown in the SunQM series articles [1] ~ [20]), we discovered that our Solar system can 

also be described by Schrodinger equation and solution (as shown in eq-27 and eq-28). Furthermore, we hypothesized that all 

the re-classified force fields (G/RFg-force, E/RFe-force, S/RFs-force) can also be described by Schrodinger equation and 

solution (see SunQM-6). Also, we realized the rotation diffusion (or RotaFusion, or RF, see SunQM-2 for details) in θφ-2D-

dimension, and it explained why Ψ function in θ- and φ-dimensions are usually grouped together as spherical harmonics  

 

 Θ(θ) Φ(φ) = Yθφ(𝑙, 𝑚) = Y(𝑙,𝑚)         eq-29 

 

so that the traditional time-independent probability density formula for Schrodinger equation is usually written as 

 

r2 |Ψ(r, θ, φ)|2 = r2 |Rr(n)|2 |Yθφ(𝑙, m)|2 = r2 |R(n)|2 |Y(𝑙, m)|2     eq-30 

 

In SunQM-4, we showed that the general time-dependent probability density formula for Schrodinger equation 

should be something like 

 

r2 |Ψ(r, θ, φ, t)|2 = r2 |R(r)|2 |Θ(θ)|2 |Φ(φ)|2 |T(t)|2       eq-31 

 

In the current article, we further assumed that T(t) function can be simplified as the direct production of  

 

T(t) = T(tr)T(tθ)T(tφ)          eq-32 

 

where and T(tr) is the time-dependent function of the radial wave function R(r), T(tθ) is the time-dependent function of the 

wave function Θ(θ), and T(tφ) is the time-dependent function of the wave function Φ(φ). This leads to a more simplified time-

dependent probability density formula for Schrodinger equation:  

 

r2|Ψ(r, θ, φ, t)|2 = r2|R(r, t)|2 |Θ(θ, t)|2 |Φ(φ, t)|2 = r2|R(r)|2|𝑇(𝑡𝑟)|
2 |Θ(θ)|2|𝑇(𝑡𝜃)|

2 |Φ(φ)|2|𝑇(𝑡𝜑)|
2
  

            eq-33 

 

Notice that eq-33 can be either Born probability or NBP. 

In SunQM-4, for the time-dependent orbital movement of planets around Sun, we actually studied a special case of 

eq-33 with T(tr) = T(tθ) = 1, 

 

r2|Ψ(r, θ, φ, t)|2 = r2|R(r)|2 |Θ(θ)|2 |Φ(φ, t)|2 = r2|R(r)|2 |Θ(θ, t)|2 |Φ(φ, t)|2|𝑇(𝑡𝜑)|
2
  eq-34 

 

This is because in our simplified model, a circular orbital moving planet must be in nLL QM state (meaning in |n,l,m>, l = n-

1 and m = n-1, see SunQM-3s1), and it has no time-dependency in either r-dimension or θ-dimension, and only has the time-

dependency in φ-dimension. Also, because Born probability’s conjugated-squaring calculation cancels out all φ-dimensional 
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function, and automatically degenerated a θφ-2D QM into a θ-1D QM, we cannot use Born probability to describe a planet’s 

circular orbital movement in φ-dimension. Therefore, we have to use the non-Born probability |Φ(φ)|NBP
2 |T(tφ)|NBP

2  to 

describe. Then to keep the described planet as a spherical shape, we have to use NBP for both r- and θ-dimensional 

probability calculation. Therefore, eq-34 becomes 

 

r2|Ψ(r, θ, φ, t)|NBP
2 = r2|R(r)|NBP

2  |Θ(θ)|NBP
2  |Φ(φ, t)|NBP

2 = r2|R(r)|NBP
2  |Θ(θ)|NBP

2  |Φ(φ)|NBP
2 |T(tφ)|NBP

2    

 

            eq-35 

where tφ is limited only in φ-dimension. 

 

 

II-b.  A time-dependent probability density formula for a photon’s emission and propagation 

 

In the current section, we want to use Schrodinger equation (eq-27) and solution (eq-33) to describe a photon’s 

emission and propagation process (from a hydrogen atom). We can treat a photon as a particle (or a 3D wave packet) with its 

movement trajectory determined by the electric force field and magnetic force field (or E/RFe-force field, see SunQM-6 for 

definition) of a transitional electron in a Bohr atom, and this E/RFe-force field follows the Schrodinger equation (and it was 

named as {N,n} QM field theory in SunQM-6). (Note: This is like that a planet’s movement trajectory is determined by the 

G/RFg-force field of the Solar system, and the G/RFg-force field also follows the Schrodinger equation).  

Initially, we believe that a photon’s emission (from a Bohr atom) and propagation must be in r-dimension, and there 

should be no θ- or φ-dimensional time-dependency, so T(tθ) = T(tφ) = 1 in eq-33. Then we have  

 

r2|Ψ(r, θ, φ, t)|2 = r2|R(r, t)|2 |Θ(θ)|2 |Φ(φ)|2 = r2|R(n, 𝑙, 𝑡)|2|Y(𝑙, m)|2    eq-36 

 

Comparing eq-35 to eq-36, we see the former one has the probability peak’s time variation only in φ-dimension (to describe a 

planet’s orbital movement), and the later one has the probability peak’s time variation only in r-dimension (to describe a 

photon’s r-dimensional propagation), it seems reasonable (see section V for more discussion). However, later on, we believed 

that a photon emission and propagation process should be described by eq-36 through the quantum number n increasing from 

n=1 to high number, and with 𝑟𝑛 = 𝑟1𝑛
2, so that n is the function of t, or n = n(t). Because l = 0 … n-1, and m = -l, … +l, so if 

n = n(t), then l = l(t), m = m(t), all three quantum numbers (n, l, m) are time dependent. Then, eq-36 need to be re-written as 

 

r2|Ψ(r, θ, φ, t)|2 = r2|R(r, t)|2 |Θ(θ)|2 |Φ(φ)|2 = r2|R(n(t), 𝑙(𝑡))|2|Y(𝑙(𝑡),m(t))|2   eq-37 

 

We will discuss more on eq-37 later on.  

Now, let’s first choose which direction (in θφ-2D) the photon is emitted (from a Bohr atom), because this 

determines which Y(l,m) formula and what kind of probability method we should use in eq-37. Figure 2 showed the plots of 

spherical harmonics of Y(0,0), Y(1,m(=0,±1)), Y(2,m(=0,±1, ±2)), and Y(3,m(=0,±1, ±2, ±3)). For the photon (or particle) 

emission related {N,n} QM field theory, we only interested to use either nLL or nl0 QM modes for the description (simply 

because they are relatively easy to explain and calculate).  

In section I, we have showed that a photon emitted from a Bohr-RF model can be either in x or in z direction (note: 

the y direction is equivalent to x direction for the emission). From the previous knowledge, for a standard xyz and rθφ 3D 

coordinate system (see wiki “Spherical coordinate system”, figure “Spherical coordinates (r, θ, φ) as commonly used in 

physics (ISO convention)”), we know that if choosing x direction, then we need to use nLL QM mode to describe the 

emission, and if choosing z direction, then we need to use nl0 QM mode to describe the emission. Choosing nl0 mode has a 

significant disadvantage because its Y(l,m=0) at each l number has very different formula, and we can only find Y(l,m=0) 

formula up to l = 10 (see wiki “Table of spherical harmonics”) while we need to use l >> 1 × 109. However, choosing nLL 

mode has no this kind of problem. So nLL mode is more doable than nl0 mode for this purpose. 
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For the nLL QM mode, its Born probability density formula is (see eq-34-SunQM-3s11, meaning SunQM-3s11’s 

eq-34)  

 

|Y(𝑙 = n − 1,±m = ±(n − 1))|
2
=  [sin(θ)]2(n−1)[cos(φ)]2(n−1)     eq-38 

 

The nLL QM mode’s non-Born probability (NBP) density formula has four versions (see eq-56a-SunQM-4, eq-56b-SunQM-

4, eq-56c-SunQM-4, and eq-56d-SunQM-4). After using these versions several times (in paper SunQM-4, SunQM-4s1, and 

SunQM-4s2), we realized that the version-c is our favorite one. Thus, here we used eq-56c-SunQM-4 (see SunQM-4’s 

Appendix C) and modified the formula to remove the φ-dimensional time-dependency (because that t is t(φ) only, and in our 

photon emission/propagation model, t(φ)≡0), then we obtain the final (θφ-2D) NBP density formula as 

 

|Y(𝑙 = 𝑛 − 1,m = n − 1)|NBP
2 ∝  [sin(θ)](n−1)[cos(φ )]n−1      eq-39 

 

with the limitation that 
−π

2
≤ φ ≤

π

2
, and manually set NBP=0 for both φ >

π

2
 and φ <

−π

2
 , to manually eliminate the extra 

peak of [cos(𝜑)]𝑛−1 at φ=±π.  

Here we need to add more explanation on Born probability (names as BP here) vs. NBP: in SunQM-4, for an orbital 

moving planet, it has a unidirectionally movement in φ-dimension so that we have to use NBP for φ-dimensional description. 

However, it has a fixed r (= rn) and θ (= π/2), that means it has +/- bi-directionally movement that is in equilibrium (or in 

standing wave) in both r- and θ-dimensions (so it is good for BP description). To produce a 3D spherical probability density 

peak, we have to choose rθφ-3D probability either all NBP or all BP. If choosing BP, then we end with eq-56d-SunQM-4 (the 

version-d of nLL QM state’s NBP formula) or eq-56b-SunQM-4 (the version-b of nLL QM state’s NBP formula).  If 

choosing NBP, then we end with eq-56c-SunQM-4 (the version-c of nLL QM state’s NBP formula) or eq-56a-SunQM-4 (the 

version-a of nLL QM state’s NBP formula). All these four formulas have the similar accuracy in describe the planet’s orbital 

movement in Solar system (see SunQM-4 Tables 1, 2, 3’s standard deviation), although different formula has different Eigen 

n’ value. We also mentioned (in SunQM-4) that the version-c is our favorite because that it directly uses the wave function as 

its NBP function, and significantly simplified the NBP calculation (see SunQM-4s2). Similarly, in the current paper, a photon 

is emitted in the fixed direction at θ = π/2 and φ = 0, that means it has +/- bi-directionally movement that is in equilibrium (or 

in standing wave) in both θ- and φ-dimension (good for using BP description), although it has a unidirectional movement in 

r-dimension (good for using NBP description). Again, to produce a 3D spherical probability density peak, we have to choose 

rθφ-3D probability either all NBP or all BP. So here we can choose either completely BP, or completely NBP to describe this 

photon. In this paper, we decided to use NBP to describe a photon’s emission and propagation process because that it is 

consistent with the (favorited) version-c of nLL QM state’s NBP formula eq-56c-SunQM-4, and it directly uses the wave 

function as its NBP function so that it significantly simplified the NBP calculation. Furthermore, in the future, to describe a 

particle or a celestial body’s movement, as long as it has one (or more) dimension among rθφ-3D that is in unidirectional 

movement, we suggest to use NBP to describe this particle or a celestial body’s movement in {N,n} QM. Therefore, in this 

paper, we decided to choose the nLL QM mode and NBP to describe a photon’s (maybe also a general particle’s) emission 

and propagation process (in +x direction).  

In SunQM-4 series articles, we have showed that for NBP, we can directly use Y(l,m) wave function to represent the 

NBP. There, NBP represents mass density, so that Y(l,m) positive wave represents NBP’s high mass density, and Y(l,m) 

negative wave represents NBP’s low mass density. In the current section, for the photon emission and propagation, the 

Y(l,m) positive wave also represents a photon’s high NBP density, and Y(l,m) negative wave represents a photon’s low NBP 

density.  

Note-1: However, in the general case, if we are dealing with a {N,n} QM field related particle emission and 

propagation, we may need to define Y(l,m) =0 as the zero mass density. Therefore, we need to define that a Y(l,m) positive 

wave related NBP peak represents a mass particle, and a Y(l,m) negative wave related NBP peak represents an anti-

mass particle. So in Figure 2 (notice that we only interesting in nLL QM mode, like |1,0,0>, |2,1,1>, |3,2,2>, |4,3,3>, etc.), 

the positive wave 3D peaks (equal or close to a spherical shape, in blue) represent the emitted mass particles, and the negative 

wave 3D peaks (also equal or close to a spherical shape, in yellow) represent the emitted anti-mass particles.  
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Note-2: Figure 2 revealed that for nLL mode, a Y(l,m=l) has l = n-1 of positive 3D (blue) peaks (may correspond to 

l = n-1 of emitted mass-particles), plus equal amount of negative 3D (yellow) peaks (may correspond to l = n-1 of anti-mass-

particles emitted in the opposite directions of the mass particles’ directions). For nl0 mode, when l is an odd number, Y(l,m) 

can be used to represent the emission of one mass particle in +z direction, and one anti-mass particle in the -z direction; and 

when l is an even number, Y(l,m) can be used to represent the emission of two (same) mass particle in opposite directions. 

Note-3: The physical meaning of the matter wave’s wave function (as Schrodinger equation’s solution) was unclear 

until Born defined its conjugated-square as the probability. However, with the discovery of NBP, we finally find the true 

physical meaning of the wave function: it is the probability itself. So the Schrodinger equation describes a particle/celestial 

body’s movement, with its movement trajectory as the (NBP) probability 3D distribution, and this NBP 3D distribution is 

composed by many 3D wave modes, and these 3D waves modes are the solution of Schrodinger equation, and we call this 

NBP 3D distribution as the wave function. 

 

 
Figure 2. Visual representations of the spherical harmonics Y(0,0), Y(1,m(=0, ±1)), Y(2,m(=0, ±1, ±2)), and Y(3,m(=0, ±1, 

±2, ±3)). (Notice that these are the original Y(l,m) wave function plot, not the Born probability plot). Blue portions represent 

regions where the function is positive, and yellow portions represent where it is negative. The distance of the surface from the 

origin indicates the absolute value of 𝑌𝑙
𝑚(𝜃, 𝜑) in angular direction (𝜃, 𝜑). Copied from wiki “Spherical harmonics”. Author: 

Inigo.quilez. Copyright: CC BY-SA 3.0. 

 

 

By now, we have decided to use NBP to describe a photon emission and propagation at +x (or at θ = π/2 and φ = 0) 

direction with {N,n} QM field’s nLL mode and with n(t) increasing from n = 2 to n >> 2. From eq-56c-SunQM-4 (and set 

t(φ)≡0), we can obtain the formula for a nLL QM mode’s (rθφ-3D dimensional) NBP as 

 

r2 |Ψ(r, θ, φ, t)|NBP
2 = r2|R(n, L)|NBP

2 |Y(L, L)|NBP
2 ∝  [ 

r

rn
e
(1−

r

rn
)
 ]

n

[sin(θ)](n−1)[cos(φ )]n−1  

            eq-40 

 

where L = n-1, and with the limitation that 
−π

2
≤ φ ≤

π

2
, and manually set NBP=0 for both φ >

π

2
 and φ <

−π

2
 , to manually 

eliminate the extra peak of [cos(𝜑)]𝑛−1 at φ=±π (Note: for photon emission only, not for the general particle emission). The 

next job is to plot out eq-40 for n = 1, 2, 3, etc., so that we can directly see how the photon emission looks like in a real 3D 

NBP density map (or even animated). However, it needs a true radial-plus-spherical 3D plotting software (in comparison, the 

MathStudio’s (http://mathstud.io/) spherical 3D plotting software only plots θφ function, no r function. Also see the 

Appendix). We don’t know whether this kind of software exist or not (if readers know, please tell me). Or even it exists, we 

(as a citizen scientist) probably are not able to afford it. So instead of 3D, here we plot eq-40 in rθ-2D at φ ≡ 0. When φ ≡ 0, 

eq-40 becomes 

 

r2|R(n, 𝐿)|𝑁𝐵𝑃
2 |Y(𝐿, 𝐿)|𝑁𝐵𝑃

2 ∝  [ 
𝑟

𝑟𝑛
𝑒

(1−
𝑟

𝑟𝑛
)
 ]

𝑛

[sin(θ)](n−1)       eq-41 
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In a Excel spread sheet, we calculated eq-41 for n = 1, 2, 3, 6, and 14, each by using r1 = 0.5, rn = r1n
2, in range of 0 ≤ θ ≤ π, 

and 0 ≤ r ≤ 127.5, and directly presented the Excel spread sheet with the color contoured NBP peaks as the rθ-2D plot (see 

Figure 3).  

 

Discussions on Figure 3: 

1)  Under {N,n} QM field’s description, we can see (intuitively) that when a photon is initially emitted at n = 2 {N,n} QM 

field state, and then it is propagated (from the left to the right) by increasing its {N,n} QM field’s n quantum number to n=3, 

4, 5, 6, etc.  

 

2)  Figure 3 only plotted eq-40 at φ = 0. Figure 2 showed at l = n-1 > 1, or n > 2, {N,n} QM field has more than one positive 

NBP peaks (in directions other than +x axis). For the Bohr-RF atom emitted photon, it started from n = 2 where there was 

only one NBP peak at +x direction, so for the later propagation we can reasonably ignore all other directions’ NBP peaks at 

high n, simply because they did not exist at the initial n = 2 {N,n} QM emission field (also see section-V for a second 

description).  

 

3)  The NBP peaks in Figure 3 appeared not in circle, because this is the distorted rθ-2D plot (where the θ spanning is 

expanded at low r and compressed at high r). In Table 2, by calculating NBP in {N,n} QM field, we checked how far (or at 

what n) an emitted and propagated photon will become a spherical shape. (Note: In eq-21- SunQM-3s11 and eq-28- SunQM-

3s11, the similar calculation method had been used for the Born probability peak’s 1% max width in r- and θ-dimension). 

Now we used NBP in eq-40 and modified them as eq-44 (for θ-dimensional peak at 10% max width) 

 

|Θ(θ)|NBP
2 ∝ sin(θ)(n−1) = 0.1         eq-42 

 

θ′ = acrcos[0.11 (n−1)⁄ ]          eq-43 

 

b(θ) = 𝑟𝑛 sin(θ′) = 𝑟𝑛 sin(acrcos[0.11 (n−1)⁄ ])       eq-44 

 

where b is the (body-size) radius of a spherical photon measured from the center of the photon to the out-surface of the 

photon (ball) at position rn. In eq-44, the b is in θ-dimension only, so in Table 2 we use b(θ) to specify. Also for the φ-

dimension’s NBP peak at 10% max width 

 

b(φ) = 𝑟𝑛 sin(φ) = 𝑟𝑛 sin(acrcos[0.11 (n−1)⁄ ])       eq-45 

 

where b(φ) is the b is in φ-dimension only. Notice that b(φ) has the same formula as that of b(θ), so they always projected in 

θφ-2D dimension as a perfect circle (as a planet always projected in θφ-2D dimension as a perfect circle). Also for the r-

dimension’s NBP peak at 10% max width 

 

r2|R(n, 𝐿)|𝑁𝐵𝑃
2 = (

rn+b

rn
e
1−

rn+b

rn )
n

= (
rn+b

rn
e

b

rn)
n

= 0.1      eq-46 

 

Notice that both b(θ) and b(φ), or eq-44 and eq-45, are analytical results, so that we can directly calculate them in Table 2. 

However, for b(r), we are not able to deduce out the analytical result. So in Table 2, we can only obtain b(r) by manually 

adjusting its value to make eq-46 to become 0.1 (or 10%).   

Using eq-44, the θ-dimensional NBP peak width b(θ) (at 10% max) is calculated for all n(s) as shown in the column 

9 of Table 2. It is naturally symmetric in θ-dimension around the peak at θ = π/2 (based on the formula). In φ-dimension, it 

should have the same result as that of the θ-dimension (see eq-40, and column 10 of Table 2), so b(θ) ≡ b(φ). Therefore, we 

can use b(θ) as the averaged value for all of b(r), b(θ) and b(φ). 
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For b(r), we manually adjust +b value to make eq-46 to become 0.1 (see Table 2 columns 5 and 6), so that we 

obtained the photon’s radius (of 10% maximum intensity) at rn + b side. Then by manually adjusting -b value to make eq-46 

to become 0.1, we obtain the photon’s radius (of the same 10% maximum intensity) at rn - b side (see Table 2 columns 7 and 

8). We see both +b(r) and -b(r) deviates from an averaged value b(θ) = b(φ). We defined that when [±b(r) / b(θ)] ≤ 1.00 

±0.01, the NBP peak is symmetric (around the peak at rn at 10% max).  So the result of Table 2’s column 11 revealed that 

when a photon is initially emitted at n = 2, its +b(r) (of 10% peak max) is 2.37x larger than that of b(θ). When this emitted 

photon propagated to n = 6^5, or about 3.2 millimeters away from the hydrogen atom, its [±b(r) / b(θ)] ≤ 1.00 ±0.01, and it is 

considered to be r-dimensional symmetric (around the peak at 10% max). If a NBP peak has the same b value (around its 

peak) in all rθφ-3D, then it is considered to be in a spherical 3D shape. So columns 5 through 12 of Table 2 showed that 

when a (hydrogen atom) emitted photon propagated to n = 6^5, or about 3 mm away, it became a spherical shape (at 10% 

peak max, under the {N,n} QM field description). Notice that this symmetry depends on what % max we used to calculate. If 

we use 50% max for calculation, then it will show a higher symmetry of NBP peak (than that of 10% max calculation). 

 

4)  In a more careful looking, we can see that in Table 2’s calculation, the origin of the coordinate is expected to be on the 

electron that starting to emit the photon (or, here the n is the {N,n} QM emission field’s n, named as nfield). In reality, it is 

impossible to do so. So we have to set the origin of the coordinate in Table 2 at the center of the hydrogen atom (or, here the 

n is the Bohr atom’s n, named as natom). Obviously, nfield ≠ natom. However, at high n value (e.g., nfield ≥ 36 and natom ≥ 36), nfield 

≈ natom. The higher the n, the more accurate they equal. So, for a Bohr atom’s n=3 to n=2 transition emitted photon, the first 

few n(s) in Table 2 is not accurate to describe this emitted photon. Only at n ≥ 36, then Table 2 has the good accuracy to 

describe the emitted photon. Therefore, we greyed out the first few rows in Table 2. 

 

5) As the result, we can say that before the photon emission, the pre-photon’s {N,n} QM field (of this electron) is at ground 

state n=1, or |1,0,0>. During the photon emission, the photon’s {N,n} QM field (of this electron) is transitioned from the 

ground state |1,0,0> to the 1st excited state n=2, or |2,1,1>. During the photon propagation, the photon’s {N,n} QM field (of 

this electron) is further transitioned from the 1st excited state |2,1,1> to the higher excited states n=3, n=4, or |3,2,2>, |4,3,3>, 

…, one-by-one. On the contrary, a photon’s absorption (by a Bohr atom) process can be explained as a photon’s {N,n} QM 

field (of a Bohr atom’s electron) from high excited nLL QM state to the lowest excited state |2,1,1>, then to the ground state 

|1,0,0>. 

 

 
Figure 3. Calculation and plot of eq-41 by using Excel spread sheet to show a photon’s emission and propagation process in 

rθ-2D. From top to bottom:  n = 1, 2, 3, 6, and 14. The NBP value is presented as the color contour with: red > 0.9, orange > 

0.4, grey < -0.4, and blue < -0.9. 

 

 

Table 2. Check how far (or at what n) an emitted photon will become a spherical shape (using NBP and {N,n//6} QM field 

theory) 
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Note: WolframAlpha was used for the blue cells’ calculation, because those values are too large for Excel. Note: for the 

extreme large values (N > 12), Excel calculation gives big error, so they were omitted in the table. Note: after n = 6^6, or r > 

0.1 meter, rn=6 / rn=1 = 14.7, and rn=10 / rn=1 = 31.6 (calculations not shown here). 

 

 

II-c.  The initial inflation of the emitted photon during the early propagation, and the ending of inflation at the later 

propagation 

 

The{N,n} QM emission field description revealed that the emitted photon keeps increasing its size as long as the  

propagation keeps going (e.g., see columns 5, 9, and 10 in Table 2). We know that a photon’s size should not grow forever. 

But can we get some rough idea (from Table 2’s calculation) that when the size growing stops? For a Bohr atom’s n=3 to n=2 

transition emitted photon (λ= 656 nm), let’s assume that it (as a spherical NBP peak) has the radius (b in Table 2) of around 

100x of the wavelength, or, b ≈ 6.56E-5 meter. Then check Table 2, we found that at n = 6^5 =7776, or at ~3 mm away from 

the Bohr atom, the emitted photon will grow its size to about (7.78E-5 / 656E-9 =) 119x of its wavelength. Thus, we can 

make the simplest assumption that a Bohr atom’s n=3 to n=2 transition emitted photon (λ= 656 nm) will have the initial 

inflation of its size to ~ 112x of the wavelength within the first 3 mm propagation, and then it will slow-down or even stop 

the size growing (at n > 6^5). (Note: this is only one kind of description, and it does not mean that a 656 nm photon has a 

measurable size of 656 * 119 nm = 7.78E-5 meters). 

Then, how to use {N,n} QM field theory to describe a propagating photon that has a fixed size? In eq-40, we know 

that the exponent index n (or n-1) determines the NBP peak width. The higher the n, the narrower the peak. In SunQM-3s11’s 

eq-47 through eq-54, and SunQM-4’s eq-66 through eq-73, we used the multiplier n’ to describe all eight planet’s sizes while 

using the base n to describe their orbits’ rn. Here we can use the same trick to fix the size of a photon while it is still 

propagating. According to eq-65-SunQM-4, we modified eq-40 as  

 

r2 |Ψ(r, θ, φ, t)|𝑁𝐵𝑃
2 = r2|R(n, 𝐿)|𝑁𝐵𝑃

2 |Y(𝐿, 𝐿)|𝑁𝐵𝑃
2 ∝  [ 

𝑟

𝑟𝑛
𝑒

(1−
𝑟

𝑟𝑛
)
 ]

𝑛′

[sin(θ)](n′−1)[cos(φ )]n′−1  eq-47 

 

or, 

b(θ) = 𝑟𝑛 sin(θ′) = 𝑟𝑛 sin(acrcos[0.11 (n′−1)⁄ ])       eq-48 

 

b(φ) = 𝑟𝑛 sin(φ) = 𝑟𝑛 sin(acrcos[0.11 (n′−1)⁄ ])       eq-49 

 

check for the spherical shape of an emitted photon fix the size of an emitted photon after n=6^5

b(r) fit to 10% max b(r) fit to 10% max

r1 = 5.29E-11 meter [(1 + b / rn) * exp( - b / rn)]^n = 0.1 [(1 + b / rn) * exp( - b / rn)]^n' = 0.1

b(θ) = rn * sin(θ') = rn * sin( arccos{0.1^[1/(n-1)]}) b(θ) = rn * sin(θ') = rn * sin( arccos{0.1^[1/(n'-1)]})

b(φ) = rn * sin(φ) = rn * sin( arccos{0.1^[1/(n-1)]}) b(φ) = rn * sin(φ) = rn * sin( arccos{0.1^[1/(n'-1)]})

N= n= rn= r1 n2 rn +b(r)= %= -b(r)= %=

b(θ) = rn * 

sin(θ')

b(φ) = rn * 

sin(φ)

[+b(r)] / 

b(θ)

[-b(r)] / 

b(θ) N'= n'= +b(r)= %=

b(θ) = rn * 

sin(θ')

b(φ) = rn * 

sin(φ)

m ly m m m m m/m m/m m m m

0 1 5.29E-11 2.06E-10 10.0% -5.09E-11 9.9% 0 1 2.06E-10 10.0%

0 2 2.12E-10 5.00E-10 10.0% -1.84E-10 10.0% 2.11E-10 2.11E-10 2.37 -0.87 0 2 5.00E-10 10.0% 2.11E-10 2.11E-10

0 3 4.76E-10 8.55E-10 10.0% -3.76E-10 9.9% 4.52E-10 4.52E-10 1.89 -0.83 0 3 8.55E-10 10.0% 4.52E-10 4.52E-10

0 4 8.46E-10 1.26E-09 10.1% -6.17E-10 10.0% 7.50E-10 7.50E-10 1.67 -0.82 0 4 1.26E-09 10.1% 7.50E-10 7.50E-10

0 5 1.32E-09 1.71E-09 10.0% -9.00E-10 10.0% 1.09E-09 1.09E-09 1.56 -0.82 0 5 1.71E-09 10.0% 1.09E-09 1.09E-09

1 6 1.90E-09 2.19E-09 10.0% -1.22E-09 10.1% 1.48E-09 1.48E-09 1.48 -0.83 1 6 2.19E-09 10.0% 1.48E-09 1.48E-09

2 36 6.86E-08 2.75E-08 10.0% -2.17E-08 10.0% 2.41E-08 2.41E-08 1.14 -0.90 2 36 2.75E-08 10.0% 2.41E-08 2.41E-08

3 216 2.47E-06 3.78E-07 10.0% -3.43E-07 10.0% 3.59E-07 3.59E-07 1.05 -0.95 3 216 3.78E-07 10.0% 3.59E-07 3.59E-07

4 1296 8.89E-05 5.40E-06 10.0% -5.20E-06 9.9% 5.29E-06 5.29E-06 1.02 -0.98 4 1296 5.40E-06 10.0% 5.29E-06 5.29E-06

5 7776 3.20E-03 7.85E-05 10.0% -7.72E-05 10.0% 7.78E-05 7.78E-05 1.01 -0.99 5 7776 7.85E-05 10.0% 7.78E-05 7.78E-05

6 46656 1.15E-01 1.2E-17 1.15E-03 9.9% -1.14E-03 10.0% 1.14E-03 1.14E-03 1.01 -1.00 9 1.01E+07 7.85E-05 9.6% 7.78E-05 7.78E-05

7 2.80E+05 4.15E+00 4.4E-16 1.68E-02 10.1% -1.68E-02 10.0% 1.68E-02 1.68E-02 1.00 -1.00 13 1.31E+10 7.85E-05 9.6% 7.78E-05 7.78E-05

8 1.68E+06 1.49E+02 1.6E-14 2.47E-01 10.0% -2.47E-01 10.0% 2.47E-01 2.47E-01 1.00 -1.00 17 1.69E+13 7.85E-05 9.6% 7.78E-05 7.78E-05

12 2.18E+09 2.51E+08 2.6E-08 1.15E+04 10.0% -1.15E+04 10.0% 1.15E+04 1.15E+04 1.00 -1.00

18 1.02E+14 5.46E+17 5.8E+01 1.16E+11 10.1% -1.16E+11 10.1% 1.16E+11 1.16E+11

24 4.74E+18 1.19E+27 1.3E+11 1.17E+18 10.0% -1.17E+18 10.0%
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r2|R(n, 𝐿)|𝑁𝐵𝑃
2 = (

rn+b

rn
e
1−

rn+b

rn )
n′

= (
rn+b

rn
e

b

rn)
n′

= 0.1      eq-50 

 

where rn uses the base n, the n’ is the multiplier n’. Then, in Table 2 columns 13 through 18, we used eq-47 through eq-50 

(and using N’) to calculate the expected (or the fixed) photon size (in comparison with that in Table 2 columns 1 through 12, 

where we used eq-40 through eq-45 and N to calculate the inflating photon size). The result showed that with eq-40, when N 

(in column 1) increasing from 1 to 2, … 5, 6, 7, …, the photon size b (in column 9) increased from 1.48E-9 meters, to 2.41E-

8 meters, … 7.78E-5 meters, 1.14E-3 meters, 1.68E-2 meters, … . However, we expect at N > 5, or n > 6^5, the photon size b 

will keep as that at N=5, or b= 7.78E-5 meters. So using eq-47, we fixed b= 7.78E-5 meters (see columns 15-18) at N > 5, 

and we can do that by adjusting  N’ to = 9 for N=6, N’ = 13 for N=7, and N’ = 17 for N=8, etc. (see column 13 and 

column1). So, by using the eq-40, we can describe an inflating photon size at the early stage of photon emission and 

propagation, and by using the eq-47 and the appropriate multiplier n’, we can describe a matured photon (with a fixed size) at 

its later stage of propagation. 

 

 

 

III.   A hypothesized physical structure of a photon based on the {N,n} QM, and the origin of the wave-particle duality  

 

In section-II, we used a Bohr atom (or, more accurately, an electron in the Bohr atom that is transiting from n=3 to 

n=2)’s single nLL QM field state to describe an emitted and propagated photon, with a single n quantum number at any time 

(notice that this n approximately equals to Bohr atom’s n only at n >> 2), and this n is increasing with time (during 

propagation). However, because that the superposition of many QM states at any time is one of many natural attributes of 

QM, here we should also describe an emitted and propagating photon by using a collection of (or the superposition of) many 

QM states 

∑ 𝑎𝑛𝑙𝑚

∞

𝑛=1,𝑙,𝑚

|𝑛, 𝑙, 𝑚⟩ 

            Eq-51 

 

(where l = 0, … n-1; m = -l, … +l). Note: In eq-1-SunQM-6, we also used this superposition formula to describe both 𝐄⃗  

electric force field and 𝐁⃗⃗  magnetic force (or E/RFe-force) field simultaneously. Note: In {N,n//q} QM, the r1 (of n = 1) can 

be moved inward to n = 1/q^j (which equivalent to {N=-j,n=1//q}, where both q and j are positive integers). If apply this to 

eq-51, then the SUM of n (in eq-51) should be from n = 1/q^j (at j → ∞, or n → 0) to n → ∞.  

We hypothesis that eq-51 may describe the actual physical structure of a photon. In the following description, the 

origin of the coordinate can be either at the center of a Bohr atom that the photon is emitted (see section III-a). or at the center 

of photon itself (see section III-b).  

 

 

III-a.   The (hypothesized) physical structure of a photon based on {N,n//6} QM field description with the coordinate 

center at Bohr atom 

 

In a Bohr atom centered photon description, a photon is a nLL QM state (or a 3D wave packet) of a Bohr atom’s 

{N,n} QM field (which means it has the < 1% mass occupancy character) that emitted out of the Bohr atom and propagating 

away from the Bohr atom. It has a 3D spherical NBP probability peak (not a Born probability), and it has an onion-like 

structure (see Figure 4a, and we call it the “physical structure” of a photon), that means it is a superposition of many QM 

states, or many sizes.  

To build a (superposition) photon based on eq-51 (with the center at Bohr atom), we still use eq-47 (or eq-48 

through eq-50). In Table 3, columns 1 through 18 are copied from Table 2, with columns 5 through 12 showed an always 

inflating photon, and columns 13 through 18 showed an initial inflating photon but stopped inflation at N=5, or 3.2 mm away 
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from the Bohr atom. Now, let's (randomly) choose a photon that propagated to N=7, or n=6^7, or rn = 4.15 meters away, with 

a fixed size (rphoton-surface = b = 7.78E-5 meters), and let's build a detailed physical structure for this photon based on {N,n//6} 

QM field description with the coordinate center at Bohr atom (see columns 19 through 27 in table 3). Notice that for columns 

19 through 27’s calculation, we replaced n’ by n” in eq-47 through eq-50, because n’ has been used for columns 13 through 

18’s calculation. First, we started from a N=7, or n=6^7, or rn = 4.15 meters away, with a fixed size (rphoton-surface = b = 7.78E-5 

meters, or N’=13) photon (see the yellow row in columns 19 through 27). Then we try to describe the same photon with the 

size of one level smaller (rphoton-surface = b = 5.29E-6 meters, or N=4 (see column 10), notice that the fix-sized N=7 photon has 

an actual size of N=5). We found that after adjusting N” to =16 (in column 22), or n” = 2.82E+12 (in eq-47, with rn = 4.15 

meters), then we can describe the same (N=7) photon (with N=5 originally fixed size) with a one-level smaller size (rphoton-

surface = b = 5.30E-6 meters, see columns 19 through 27 and one row above the yellow row). Next, we found that by adjusting 

N” to =19, we can describe the same (N=7) photon (with N=5 originally fixed size) with a two-level smaller size (rphoton-surface 

= b = 3.60E-7 meters, see columns 19 through 27 and two rows above the yellow row), and so on so forth. In Table 3 

columns 19 through 27, we have showed the calculations of the same photon with different sizes down to rphoton-surface = b = 

7.72E-12 meters, and up to rphoton-surface = b = 3.22E+00 meters.  

Notice that when N” decreased to =0 (or < 0), n" = 1, and n" - 1 = 0, so eq-48 no longer work due to the 

denominator = 0. In that case, we changed the exponent index n"-1 into n" so that we can still estimate the photon size (see 

the pink colored cells in Table 3). It resulted that the maximum bmax = 4.15 meters = rn, that means the maximum size of an 

emitted photon can’t be larger than the propagated distance rn, and it does make sense. (Note: it means that when this photon 

(propagated to N=7 with rn = 4.15 meters) further propagated to N=8 with rn = 149 meters, its maximum size will increase to 

rphoton-surface,max = bmax = rn = 149 meters, and this property will be used in section IV ’s explanation).  

The same calculations can be applied to a photon that propagated not only to N=7, but also to any N number. In this 

way, we are able to describe the physical structure of a (emitted) photon based on {N,n//6} QM field with the coordinate 

centered at Bohr atom. With the assumption that a 656 nm photon has a fixed size at around rphoton-surface = b ≈ 656 * 100 nm, 

for the (onion-like physical structural) shells larger than that, we call them the “out-shells” of the 656 nm photon, and for the 

(onion-like physical structural) shells smaller than that, we call them the “inner-shells and core” of the 656 nm photon. We 

can see that the “out-shells” will have the extremely low value of NBP (<< 10% of NBP peak).  

 

 

Table 3. Check the physical structure of a photon based on {N,n//6} QM description with the coordinate center at Bohr atom 

 
Note: for the blue cells, WolframAlpha was used for calculation, because the values are too large for Excel.  

Note: for pink cells, due to n" <= 0, the exponent index (n"-1) is replaced by n" for the (approximate) calculation of eq-47. 

 

check for the spherical shape of an emitted photon fix the size of an emitted photon after n=6^5 a photon propagated to n=6^7 with a superposition of many QM states and sizes

b(r) fit to 10% max b(r) fit to 10% max b(r) fit to 10% max

r1 = 5.29E-11 meter [(1 + b / rn) * exp( - b / rn)]^n = 0.1 [(1 + b / rn) * exp( - b / rn)]^n' = 0.1 [(1 + b / rn) * exp( - b / rn)]^n" = 0.1

b(θ) = rn * sin(θ') = rn * sin( arccos{0.1^[1/(n-1)]}) b(θ) = rn * sin(θ') = rn * sin( arccos{0.1^[1/(n'-1)]}) b(θ) = rn * sin(θ') = rn * sin( arccos{0.1^[1/(n"-1)]})

b(φ) = rn * sin(φ) = rn * sin( arccos{0.1^[1/(n-1)]}) b(φ) = rn * sin(φ) = rn * sin( arccos{0.1^[1/(n'-1)]}) b(φ) = rn * sin(φ) = rn * sin( arccos{0.1^[1/(n"-1)]})

N= n= rn= r1 n2 rn +b(r)= %= -b(r)= %=

b(θ) = rn * 

sin(θ')

b(φ) = rn * 

sin(φ)

[+b(r)] / 

b(θ)

[-b(r)] / 

b(θ) N'= n'= +b(r)= %=

b(θ) = rn * 

sin(θ')

b(φ) = rn * 

sin(φ) N= n= rn= r1 n2 N"= n"= +b(r)= %=

b(θ) = rn * 

sin(θ')

b(φ) = rn * 

sin(φ)

m ly m m m m m/m m/m m m m m m m m

0 1 5.29E-11 2.06E-10 10.0% -5.09E-11 9.9% 0 1 2.06E-10 10.0%

1 6 1.90E-09 2.19E-09 10.0% -1.22E-09 10.1% 1.48E-09 1.48E-09 1.48 -0.83 1 6 2.19E-09 10.0% 1.48E-09 1.48E-09

2 36 6.86E-08 2.75E-08 10.0% -2.17E-08 10.0% 2.41E-08 2.41E-08 1.14 -0.90 2 36 2.75E-08 10.0% 2.41E-08 2.41E-08

3 216 2.47E-06 3.78E-07 10.0% -3.43E-07 10.0% 3.59E-07 3.59E-07 1.05 -0.95 3 216 3.78E-07 10.0% 3.59E-07 3.59E-07

4 1296 8.89E-05 5.40E-06 10.0% -5.20E-06 9.9% 5.29E-06 5.29E-06 1.02 -0.98 4 1296 5.40E-06 10.0% 5.29E-06 5.29E-06

5 7776 3.20E-03 7.85E-05 10.0% -7.72E-05 10.0% 7.78E-05 7.78E-05 1.01 -0.99 5 7776 7.85E-05 10.0% 7.78E-05 7.78E-05

6 46656 1.15E-01 1.2E-17 1.15E-03 9.9% -1.14E-03 10.0% 1.14E-03 1.14E-03 1.01 -1.00 9 1.01E+07 7.85E-05 9.6% 7.78E-05 7.78E-05

7 2.80E+05 4.15E+00 31 1.33E+24 7.72E-12 10.0% 7.72E-12 7.72E-12

7 2.80E+05 4.15E+00 28 6.14E+21 1.13E-10 10.3% 1.34E-10 1.34E-10

7 2.80E+05 4.15E+00 25 2.84E+19 1.78E-09 10.2% 1.67E-09 1.67E-09

7 2.80E+05 4.15E+00 22 1.32E+17 2.45E-08 10.0% 2.45E-08 2.45E-08

7 2.80E+05 4.15E+00 21 2.19E+16 6.18E-08 8.8% 6.18E-08 6.18E-08

7 2.80E+05 4.15E+00 19 6.09E+14 3.60E-07 10.0% 3.60E-07 3.60E-07

7 2.80E+05 4.15E+00 16 2.82E+12 5.30E-06 10.0% 5.30E-06 5.30E-06

7 2.80E+05 4.15E+00 4.4E-16 1.68E-02 10.1% -1.68E-02 10.0% 1.68E-02 1.68E-02 1.00 -1.00 13 1.31E+10 7.85E-05 9.6% 7.78E-05 7.78E-05 7 2.80E+05 4.15E+00 13 1.31E+10 7.78E-05 10.0% 7.78E-05 7.78E-05

7 2.80E+05 4.15E+00 9 1.01E+07 2.80E-03 10.0% 2.80E-03 2.80E-03

7 2.80E+05 4.15E+00 5 7.78E+03 1.01E-01 10.4% 1.01E-01 1.01E-01

7 2.80E+05 4.15E+00 1 6.00E+00 4.76E+00 10.0% 3.22E+00 3.22E+00

7 2.80E+05 4.15E+00 0 1.00E+00 4.13E+00 4.13E+00

7 2.80E+05 4.15E+00 -1 1.67E-01 4.15E+00 4.15E+00

7 2.80E+05 4.15E+00 -2 2.78E-02 4.15E+00 4.15E+00

8 1.68E+06 1.49E+02 1.6E-14 2.47E-01 10.0% -2.47E-01 10.0% 2.47E-01 2.47E-01 1.00 -1.00 17 1.69E+13 7.85E-05 9.6% 7.78E-05 7.78E-05
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Figure 4a (left). Illustration of the physical structure of a photon based on {N,n//q} QM field description with the coordinate 

center at Bohr atom. The r-dimension is drawn on an arbitrary scale. 

Figure 4b (right). Illustration of the physical structure of a photon based on {N,n//q} QM field description with the coordinate 

center at photon’s center. The r-dimension is drawn on an arbitrary scale. 

 

 

III-b.   The (hypothesized) physical structure of a photon based on {N,n//6} QM field description with the coordinate 

center at photon’s center 

 

In a self-centered photon physical structure description, a photon is a |n,l,m> QM field state (where l = 0, … n-1; m 

= -l, … +l, which means it has the ~ 100% mass occupancy character). It can be described by either a 3D spherical Born 

probability peak or a NBP peak, and it has an onion-like structure (see Figure 4b), that means it is a superposition of many 

QM states (or many sizes). If using Born probability, then we can use the famous Bohr formula 𝑟𝑛 = 𝑟1𝑛
2 to describe the size 

of the photon (see Table 4’ columns 1 through 3), except that the true size of the photon at QM state n is 𝑟𝑛+1 = 𝑟1(𝑛 + 1)2. 

This is because for a ~ 100% mass occupancy QM state, there is a rule says “all mass between rn and rn+1 belongs to orbit n “ 

(see paper SunQM-3s2, although here we need to use NBP probability rather than mass). However, if using Born probability 

for description, it will always have a zero probability at the very center, while if using NBP for description, then it may not 

have this problem (see QM text book, Prob. ~ r plot, John S. Townsed, A Modern Approach to Quantum Mechanics, 2nd ed., 

2012. p357, Figure 10.5). 

 

 

Table 4. The physical structure of a photon based on {N,n//q} QM with the coordinate center at photon’s center. 

 
 

 

III-c.  Should we use {N,n//6} QM or {N,n//2} QM to describe a photon’s physical structure? 

 

{N,n//6} QM is valid for the description from a quark{-17, 1//6} to the Virgo Super Cluster {10,1//6}, (see SunQM-

1s2’s Table 1). Therefore, {N,n//6} QM is the best choice for the photon description. However,{N,n//2} QM is valid for the 

z

x

-y

z

x

-y

Bohr 
atom

r1 = 5.29E-11 m

N(q=6) n = 6^N rn= r1 n2 N'(q=2) n' = 2^N' rn= r1 n'2

m m

-5 1.29E-04 8.75E-19 -16 1.53E-05 1.23E-20

-4 7.72E-04 3.15E-17 -8 3.91E-03 8.07E-16

-3 4.63E-03 1.13E-15 -4 0.0625 2.07E-13

-2 0.027778 4.08E-14 -2 0.25 3.31E-12

-1 0.166667 1.47E-12 -1 0.5 1.32E-11

0 1 5.29E-11 0 1 5.29E-11

0 2 2.12E-10 1 2 2.12E-10

0 3 4.76E-10 2 4 8.46E-10

0 4 8.46E-10 3 8 3.39E-09

0 5 1.32E-09 4 16 1.35E-08

1 6 1.90E-09 5 32 5.42E-08

2 36 6.86E-08 6 64 2.17E-07

3 216 2.47E-06 7 128 8.67E-07

4 1296 8.89E-05 8 256 3.47E-06

5 7776 3.20E-03 12 4096 8.88E-04

6 46656 1.15E-01 16 65536 2.27E-01

7 2.80E+05 4.15E+00 20 1.05E+06 5.82E+01

8 1.68E+06 1.49E+02 24 1.68E+07 1.49E+04
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description all eight planet’s structures in Solar system (see SunQM-3s6’s Table 2), and a planet (which has a {N,n//2} 

structure) is a small accessory of a star (which has a {N,n//6} structure). Because an emitted photon is a small accessory of a 

Bohr atom (or a Bohr atom’s electron), it may be possible that a photon’s physical structure should be described by a 

{N,n//2} QM (see Table 4’s columns 4 through 6). 

 

 

 

III-d.  The origin of the wave-particle duality, and the explanation of the Double-slit experiment  

 

QM text books taught us that a photon has the wave-particle duality. After the physical structure of a photon is 

described as a NBP 3D peak with all kinds of sizes simultaneously, now we can explain the origin of the wave-particle 

duality easily. We can explain the large size of NBP 3D spherical peak (the out-shells, with extremely low NBP density) as 

photon’s wave property, and the small size of NBP 3D spherical peak (the core, with very high NBP density) as the same 

photon’s particle property. For example, for a Bohr atom’s electron transition from n=3 to n=2 emitted photon (with 

wavelength 656 nm) that propagated to 4.15 meters away (with N=7), we can use N”=31 and rphoton-surface = b = 7.72E-12 

meter (see Table 3 row 15) to describe this photon’s particle property, and meanwhile use N”=1 and rphoton-surface = b = 3.22 

meters (see Table 3 row 25) to describe this photon’s wave property. 

With this, we can explain double-slit experiment as: a propagating photon uses its large size (but low density) NBP 

3D peak (e.g., rphoton-surface = b = 3.22 meters) to detect the obstacle in the front of propagation. After this wave-front passing 

through a double-slit, this large size NBP 3D peak (wave) will interfere to make a new NBP peak (interfered) pattern, and 

this new NBP peak (interfered) pattern will guide the core part (or the particle part) of the photon to pass through one of the 

two slits, and to end on a screen as an interference pattern (based on the NBP probability). Does this explanation favor de 

Broglie’s “pilot wave theory” (see wiki “Wave–particle duality” section “de Broglie–Bohm theory”)?  

This explanation also supports the Simultaneous-Multi-Eigen-Description (SMED) theory (shown in SunQM-4 

section-V, and in SunQM-7). 

 

 

 

IV.   Is it possible that the redshift is a nature attribute of photon’s propagation? 

 

Here we discuss one type of (a hypothetic) photon redshift mechanism that is caused by the QM’s uncertainty 

principle σxσp ≥
ℏ

2
 (where σx is the standard deviation in the propagation distance x, and σp is the standard deviation in the 

momentum p). From QM text books, we learned that a propagating photon will increase its position uncertainty by increasing 

σx (see wiki “Quantum mechanics”, “… the wave packet will also spread out as time progresses, which means that the 

position becomes more uncertain with time”). By using Figure 4a and Table 3, we translate this increasing of σx as increasing 

the size of the photon’s out-shells (by increasing rphoton-surface,max = bmax = rn, and by keeping N” =1) during propagation (by 

increasing rn, or by increasing N, see Table 3’s explanation). However, we don’t expect the maximum size of a photon’s out-

shells can grow forever. For example, in Table 2, an emitted photon propagated to N=18, or rn = 5.46E+17 meters, or 58 light 

years away, its maximum size of out-shell is unlikely to grow to rphoton-surface,max = 58 lys. Now let’s make a hypothesis that 

when the rphoton-surface,max bigger than a certain size, this photon’s outmost shell will be rip-off (or spit-out, to become a new 

photon with very low energy or frequency, named as “low-f photon”), the rest shells and core will become the entire (main) 

photon with limited size (and with the slightly lower energy than that of the original photon, or it is redshifted). In Table 5, 

we try to search for that at what distance during the propagation a 656 nm photon will spit-out a low-f photon, and at what 

frequency this low-f photon will be.  

In Table 5 columns 1 through 4, we listed all possible N(s), n(s), total n(s), and the rn(s) for a propagating photon 

that emitted from a Bohr atom (up to N=16). From Table 3 (see pink cells)’s result, we learned that a photon (emitted from a 

Bohr atom to distance rn away) will have the maximum size of out-shell with rphoton-surface,max = bmax = rn. We assume that this 

outmost shell of the photon (described under {N,n} QM field theory) will be ripped-off if it gets too big. Then, we assume 
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that the ripped-off outer shell will become a new low-f photon, with rphoton-surface,max = bmax equals to 100x of the wavelength of 

this newly created low-f photon. Thus, in Table 5 column 5, we have the wavelength for the low-f photon at each rn (if it is 

spit-out at this rn). Column 6 is the calculated frequency of this low-f photon. Column 7 is the low-f photon’s energy in Joule. 

Columns 8 through 11 showed the emitted photon λ(em) = 656 nm (from a Bohr atom’s n=3 to n=2 transition), its energy (J), 

the after-redshift energy (after spit-off the E(low-f)), and the observed (redshifted) photon wavelength λ(ob). Columns 13 and 

14 calculated the redshift z from formula z+1 = λ(ob) / λ(em). Column 15 calculated the radial velocity of a galaxy that is 

determined from the redshift z as Vr = cz (where c is the light speed, according to 

http://zebu.uoregon.edu/2000/ph123/hub1.html). Column 17 calculated the value of Vr/(rn-rn-1) and changed the unit to 

(km/s)/Mpc, so that it can be directly compared with the Hubble constant. Thus, the whole Table 5 is designed to search at 

what rn, a propagating photon (656 nm) will spit-out a low-f photon and cause a redshift that matches the Hubble constant 

(~70 (km/s)/Mpc). The search result is: a propagating (656 nm) photon's max-size of out-shell is p{N,n//6} = p{13,3//6}, or 

bmax = rn = 8.12E+10 meters (see Table 5 row 19. Notice p{N,n} means this {N,n} is centered at the photon, not at Bohr 

atom, see definition in SunQM-1’s section-VII item 14). When it propagates further to n+1, or {13,4//6} (see Table 5 row 20 

in yellow), or rn+1 - rn = 1.44E+11 - 8.12E+10 = 6.32E+10 meters away (see column 16, a distance similar as from Sun to 

Mercury), with increased max-size of out-shell to p{13,4//6}, or bmax = rn = 1.44E+11 meters, it will spit-out its outmost shell 

as a 0.2 Hz photon, and redshifted to 656 + 2.98E-13 nm that equivalent to 67 (km/s)/Mpc (and comparable to Hubble 

constant ~70  (km/s)/Mpc). After ripping-off the outmost shell, the (main) photon’s out-shell size goes back to p{13,3//6}, or 

bmax = rn = 8.12E+10 meters. Then, after propagating another Δr = 1.44E+11 - 8.12E+10 = 6.32E+10 meters away, the main 

photon’s out-shell size will increase to p{13,4//6}, or bmax = rn = 1.44E+11 meters again, so it will spit-out its outmost shell as 

a 0.2 Hz photon again, and redshifted to 656 + 2* 2.98E-13 nm, and so on so forth. In this way, this main photon will spit-out 

a 0.2 Hz low-f photon for every 6.32E+10 meters it propagated, and causing a redshift equivalent to the Hubble constant. If 

this hypothesis is correct, then the redshift is the natural attribute of a photon, and the cosmological redshift can be explained 

by it (see the discussion of the “rhodopsin-type universe model” in SunQM-6 section-V). In other words, if this hypothesis is 

correct, then those low-f photons are equivalent to the “dark energy”. 

 

Discussions of section IV: 

1)  If this hypothesis is correct, then there must have many 0.2 Hz low-f photons (λ ≈ 1E+9 meters, ~ 1E-11 K°, from 656 nm 

photon’s propagation only) in the space (like CMB, although CMB’s peak is at 160 ~ 282 GHz, λ ≈ 1 mm, ~ 2.7 K°). Can we 

detect these low-f photons (not only from 656 nm, but also from all other wavelength of photons’ propagation)? 

2)  The process of ripping-off and forming a new 0.2 Hz low-f photon could be either a spontaneous emission, or a stimulated 

emission (see David J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., 2015. Figure 9.4). In the later case it could be 

bumped-off by another pre-existing 0.2 Hz low-f photon. 

3)  This is a programmed (not a random) spit-out. All 656 nm photons will get the same redshift after propagated 6.32E+10 

meters distance. So it should not (significantly) blur the images of distant objects. In comparison, the random inelastic 

scattering caused redshift will blur the images of distant objects (see wiki “Tired light”). 

4)  Those 0.2 Hz low-f photons in the space can be re-absorbed by matter (atoms, electrons) at any time. 

5)  If both universe expansion and low-f rip-off contribute to the redshift, then the low-f (rip-off) photon may have much 

lower frequency. 

 

 

Table 5. To search for the frequency and the distance of the newly formed low-f photon that spit-out (or ripped-off) from a 

propagating photon. 
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Note: Blue cells were calculated by using WolframAlpha. For example, for N=13, n=4,  Vr * Mpc / (rn -rn-1) = 300000000 * 

(1/(1/(656E-9)-1/(5.29E-11*(4*6^13)^2/100)) / (656E-9) -1) * 3.09E+19 / (5.29E-11*(4*6^13)^2 - 5.29E-11*(3*6^13)^2) = 

67 (km/s)/Mpc. We should point out that this calculation has very low resolution. If we assume that rphoton-surface,max = bmax 

equals to 110x (instead of 100x) of the wavelength of the newly created low-f photon, then the calculated Vr * Mpc / (rn -rn-1) 

= 73 (km/s)/Mpc. 

Note: Grey cells are calculated by Excel but lack of the enough precision. 

 

 

 

V.   A second method to describe a photon’s propagation 

 

There is a second way to describe a photon’s propagation by using the {N,n} QM field theory. In this way, we only 

use the ground state |1,0,0> and the excited state |2,1,1> to describe the {N,n} QM field state (see Figure 2’s Y(0,0) and 

Y(1,1) plot), with a variable r1 = c * t (where c is the light speed) to describe a photon’s propagation from r1 = 0 to r1 = ∞. 

Notice that when the photon propagated to r1 = ∞ (along x-axis), the whole x > 0 space would be filled with this photon’s 

|2,1,1> QM field (the NBP of the positive wave) if uncontrolled. Then, to control this photon’s size within a limitation, we 

need to move r1 inward to become r1’ (notice that this is allowed in {N,n//q} QM theory), and also increase the multiplier n’ 

to very high, so that we can use eq-47 through eq-50 to decrease the size of a photon to whatever size we want. The 

advantage of this method is: 1) It only uses two QM states (the ground state and the excited state) to describe the photon’s 

{N,n} QM force field; 2) It directly uses speed of light to describe the photon propagation. Now let’s give an example (by 

using the data we have generated in Table 3). For a Bohr atom’s n=3 to n=2 transition emitted (656 nm) photon that is 

propagated in +x direction, we use a (single) |2,1,1> QM field state with r1 = c * t to describe its propagation. When this 

photon propagated to 4.15 meters away from the Bohr atom, the size of its |2,1,1> QM field is increased with the r1 = 4.15 

meters. When this photon propagated to 149 meters away from the Bohr atom, the size of its |2,1,1> QM field is increased 

again with the r1 = 149 meters. Now we want to describe this 656 nm photon (4.15 meters away from the Bohr atom) with a 

size of ~ 100x times of its wavelength (or rphoton-surface = b ≈ 6.56E-5 meters). To do that, we can move r1 inward from 4.15 

meters to r1’ = 5.29E-11 meters (by a factor of 1/(6^7)^2), then use N’=13, n’ = 6^13 = 1.31E+10, and use eq-47 through eq-

50, to obtain a rphoton-surface = b = 7.78E-5 meters (see columns 13 through 18 in Table 3). In this way, we used speed of light 

(by using r1 = c * t) to describe the photon propagation under a single excited QM state |2,1,1>. On the contrary, the photon 

absorption process (by a Bohr atom) is photon’s {N,n} QM field (of a Bohr atom’s electron) from the excited QM state 

|2,1,1> to the ground QM state |1,0,0>. 

r1 = 5.29E-11

N(q=6) n=

total n = 

6^N rn= r1 n2
λ=rn/100

low-f 

photon 

f=c/λ

E(low-f) = 

hf

λ(em) 

656

656nm 

photon's 

E=hf=hc/λ

redshifted 

E = E(656)-

E(low-f)

λ(ob): λ= 

hc/[E(656)-

E(low-f)]

λ(ob) - 

λ(em)

z+1=λ(ob

)/λ(em) z= Vr = cz rn-rn-1 = 

Vr /(rn-rn-1) * 

(Mpc/Mpc) = Vr 

*Mpc/(rn -rn-1)

m m Hz, 1/s J nm J J nm nm nm/nm km/s (km/s)/Mpc

0 1 1 5.29E-11 5.29E-13 5.67E+20 3.76E-13 656 3.03E-19 -3.76E-13 -5.29E-04 -6.56E+02 -8.06E-07 -1.00E+00 -3.00E+05

1 1 6 1.90E-09 1.90E-11 1.58E+19 1.04E-14 656 3.03E-19 -1.04E-14 -1.90E-02 -6.56E+02 -2.90E-05 -1.00E+00 -3.00E+05 -5.01E+36

2 1 36 6.86E-08 6.86E-10 4.38E+17 2.90E-16 656 3.03E-19 -2.90E-16 -6.86E-01 -6.57E+02 -1.05E-03 -1.00E+00 -3.00E+05 -1.39E+35

3 1 216 2.47E-06 2.47E-08 1.22E+16 8.05E-18 656 3.03E-19 -7.75E-18 -2.56E+01 -6.82E+02 -3.91E-02 -1.04E+00 -3.12E+05 -4.01E+33

4 1 1296 8.89E-05 8.89E-07 3.38E+14 2.24E-19 656 3.03E-19 7.93E-20 2.51E+03 1.85E+03 3.82E+00 2.82E+00 8.46E+05 3.03E+32

5 1 7776 3.20E-03 3.20E-05 9.38E+12 6.21E-21 656 3.03E-19 2.97E-19 6.70E+02 1.37E+01 1.02E+00 2.09E-02 6.28E+03 6.24E+28

6 1 46656 1.15E-01 1.15E-03 2.61E+11 1.73E-22 656 3.03E-19 3.03E-19 6.56E+02 3.74E-01 1.00E+00 5.70E-04 1.71E+02 4.72E+25

7 1 279936 4.15E+00 4.15E-02 7.24E+09 4.80E-24 656 3.03E-19 3.03E-19 6.56E+02 1.04E-02 1.00E+00 1.58E-05 4.75E+00 3.64E+22

8 1 1.68E+06 1.49E+02 1.49E+00 2.01E+08 1.33E-25 656 3.03E-19 3.03E-19 6.56E+02 2.88E-04 1.00E+00 4.40E-07 1.32E-01 2.81E+19

9 1 1.01E+07 5.37E+03 5.37E+01 5.58E+06 3.70E-27 656 3.03E-19 3.03E-19 6.56E+02 8.01E-06 1.00E+00 1.22E-08 3.66E-03 2.17E+16

10 1 6.05E+07 1.93E+05 1.93E+03 1.55E+05 1.03E-28 656 3.03E-19 3.03E-19 6.56E+02 2.22E-07 1.00E+00 3.39E-10 1.02E-04 1.67E+13

11 1 3.63E+08 6.96E+06 6.96E+04 4.31E+03 2.85E-30 656 3.03E-19 3.03E-19 6.56E+02 6.18E-09 1.00E+00 9.42E-12 2.83E-06 1.29E+10

12 1 2.18E+09 2.51E+08 2.51E+06 1.20E+02 7.93E-32 656 3.03E-19 3.03E-19 6.56E+02 1.72E-10 1.00E+00 2.62E-13 7.85E-08 9.96E+06

13 1 1.31E+10 9.02E+09 9.02E+07 3.32E+00 2.20E-33 656 3.03E-19 3.03E-19 6.56E+02 4.77E-12 1.00E+00 7.33E-15 2.20E-09 7.74E+03

13 2 2.61E+10 3.61E+10 3.61E+08 8.31E-01 5.51E-34 656 3.03E-19 3.03E-19 6.56E+02 1.19E-12 1.00E+00 1.82E-15 5.46E-10 2.71E+10 622

13 3 3.92E+10 8.12E+10 8.12E+08 3.69E-01 2.45E-34 656 3.03E-19 3.03E-19 6.56E+02 5.30E-13 1.00E+00 8.08E-16 2.42E-10 4.51E+10 166

13 4 5.22E+10 1.44E+11 1.44E+09 2.08E-01 1.38E-34 656 3.03E-19 3.03E-19 6.56E+02 2.98E-13 1.00E+00 4.54E-16 1.36E-10 6.32E+10 67

13 5 6.53E+10 2.26E+11 2.26E+09 1.33E-01 8.81E-35 656 3.03E-19 3.03E-19 6.56E+02 1.19E-13 1.00E+00 2.91E-16 8.73E-11 8.12E+10 33

14 1 7.84E+10 3.25E+11 3.25E+09 9.23E-02 6.12E-35 656 3.03E-19 3.03E-19 6.56E+02 1.32E-13 1.00E+00 2.02E-16 6.06E-11 9.93E+10 18.9

15 1 4.70E+11 1.17E+13 1.17E+11 2.57E-03 1.70E-36 656 3.03E-19 3.03E-19 6.56E+02 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00

16 1 2.82E+12 4.21E+14 4.21E+12 7.13E-05 4.72E-38 656 3.03E-19 3.03E-19 6.56E+02 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00



Yi Cao, SunQM-6s1: Using Bohr atom, {N,n} QM field theory, and non-Born probability to describe a photon’s emission and propagation     20 
 

 

 

 

VI.   Explanation of a spinning and moving charge’s |n,l,m> mode in {N,n} QM field theory. 

 

(Note: this section should be put in SunQM-6). In the {N,n} QM field theory (see SunQM-6), for a positive point 

charge produced 𝐁⃗⃗  field’s |n,l,m> QM mode, we know that a +z direction (translational) moving 𝐄⃗  vector of a positive charge 

produces a 𝐁⃗⃗  vector field in nLL QM mode (see Figure 5a), a spinning (in +z direction) 𝐄⃗  vector of a positive charge 

produces a 𝐁⃗⃗  vector field in nl0 QM mode (see Figure 5b). In general, it is very difficult to determine the 𝐁⃗⃗  vector field’s 

|n,l,m> QM mode if the 𝐄⃗  vector of a positive charge is doing both translation and spin simultaneously.  

In one special case, when the 𝐄⃗  vector is moving and spinning both in +z direction simultaneously (see Figure 5c), 

we can build its 𝐁⃗⃗  vector field first based on nl0 QM mode (at 𝐬  > 0 and 𝐯⃗  = 0, as shown in Figure 5b), and then slowly 

increase 𝐯𝒛⃗⃗  ⃗ so that its field shape compressed in z dimension to the center (as shown in Figure 5c). This shape change can be 

described by a |n,l,m> QM mode start with m = 0, then increase the m to 1, 2, … up to l - 1, depends on how fast the velocity 

𝐯𝒛⃗⃗  ⃗ vector is. For example, if we initially use |4,3,0> to describe a z-spinning and v = 0 charge’s 𝐁⃗⃗  vector field, then as 𝐯𝒛⃗⃗  ⃗ 

increased to > 0, its 𝐁⃗⃗  vector field should be described by |4,3,1>, or by |Y(3,1)|^2, and then as 𝐯𝒛⃗⃗  ⃗ further increased to >> 0, 

its 𝐁⃗⃗  vector field should be described by |4,3,2>, or by |Y(3,2)|^2, etc. (see the shape of  |Y(3,0)|^2, |Y(3,1)|^2,  |Y(3,2)|^2 in 

Figure 6). 

Here we can also use the nLL and nl0 inter-changeable QM mode property (mentioned in SunQM-6’s section I-d) to 

explain. A higher 𝐯𝒛⃗⃗  ⃗ (of the 𝐄⃗  vector translational movement) produces more purer nLL QM mode (meaning the m quantum 

number value become more larger, or in SunQM-6’s Table 2, it contains more of m = n-1 components) of the 𝐁⃗⃗  vector field. 

After this 𝐄⃗  vector topologically changed from the 𝐯𝒛⃗⃗  ⃗ translational movement into the spin movement (see SunQM-6’s figure 

5a), the 𝐯𝒛⃗⃗  ⃗ speed become the spin speed, so that its 𝐁⃗⃗  vector field topologically changed from nLL mode to nl0 mode, and the 

higher the original 𝐯𝒛⃗⃗  ⃗, now means the higher spin speed, it translated into the lower m quantum number (or m becomes more 

closer to zero, or in SunQM-6’s Table 2, it contains more of m = 0 components). 

However, when the 𝐄⃗  vector spins in the z direction and simultaneously translates in the x direction, we really have 

no idea what its 𝐁⃗⃗  field’s |n,l,m> QM mode should be.  

 

 

Figure 5a. A (+z) translational moving 𝐄⃗  vector of a positive charge produces a 𝐁⃗⃗  vector field in nLL QM mode. 

Figure 5b. A spinning (in +z direction) 𝐄⃗  vector of a positive charge produces a 𝐁⃗⃗  vector field in nl0 QM mode. 

Figure 5c. A positive point charge spinning and moving in the same direction (+z) is guessed to have its 𝐁⃗⃗  vector field lines 

spread more away from z-axis than that in Figure 5b. 
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Figure 6. Plots of |Y(3,0)|^2, |Y(3,1)|^2,  |Y(3,2)|^2, and |Y(3,3)|^2 by using MathStudio (http://mathstud.io/) software. Note: 

Here we use Born probability, and not use non-Born probability (NBP), because we only need to display 𝐁⃗⃗  field’s θ-

dimensional info, and omit φ-dimension’s info. Note: the size and orientation of each plot is readjusted by the author due to 

the technical limitation. (Also see John S. Townsed, A Modern Approach to Quantum Mechanics, 2nd ed., 2012. Page 335, 

Figure 9.11). 

 

 

VII.   Can we use {N,n} QM field theory for other particles? 

 

During last ~ 100 years, the modern QM field theory has successfully built up the particle physics. We believe that 

the particle physics can also be described by the {N,n} QM field theory as well, just like QM can be described by either the 

wave mechanics or the matrix mechanics, or, both thermodynamics and statistical physics explain the same thing. 

For example, section III can be used directly to explain the double-slit experiment for the electron (and other 

particles). In the case of the pair production (a photon disappears and produces an electron and a positron, see Giancoli, 

Physics for Scientists & Engineers with Modern Physics, 4th ed. 2009. Figure 37-9), we may be able to use the |2,1,1> QM 

field state in Figure 2 (and Figure 3) to describe, with the 3D positive wave (NBP) peak (in blue, see Figure 2) represents the 

electron, and the 3D negative wave (NBP) peak (in yellow) represents the positron, and with the coordinate origin at the 

reduced mass center of electron-positron pair. 

 

 

Conclusion 

 

The equations used to calculate the photon frequency (emitted from a Bohr atom) can be used directly to calculate 

planet’s orbit movement in the Solar system. {N,n} QM field theory is able to describe a photon’s emission and propagation 

from a Bohr atom. The onion-like physical structure of a photon makes us able to explain not only the origin of wave-particle 

duality, but also the double-slit experiment. There is a (small) possibility that the redshift is a nature attribute of the photon’s 

propagation. 
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Appendix 

A request from the user to the Spherical 3D plot software providers: we need a true rθφ 3D plot software that can plot: 

1) a spherical NBP peak at rn (see Figure 4a, based on eq-40) in a true rθφ 3D plot; 

2) a (donut shaped) NBP ring at rn (based on eq-41) in a true rθφ 3D plot. 


