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Abstract 

The textbook analysis of vacuum energy density (VED) in flat spacetime follows from Pauli’s lectures of 

1951, in which quantum vacuum is modeled as a reservoir of free harmonic oscillators. In his lectures, Pauli 

shows that deriving a nearly vanishing VED is contingent upon fulfilling three corollary conditions called 

polynomial-in-mass-constraints. The goal of this work is to evaluate Pauli’s constraints against the 

Standard Model parameters and the Higgs mechanism of spontaneous symmetry breaking. 
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1. Pauli’s VED model and its constraints 

According to [1-2], the vacuum energy density (VED) of a relativistic quantum field 

theory (QFT) on flat spacetime may be computed from 
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In this model, VED is considered a reservoir of free quantum harmonic oscillators and (1) 

is the integral of the zero-point energy carried over all momenta. While the bosonic terms 
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in (1) are positive, the fermion terms are negative, hinting to a mutual cancellation of the 

overall VED.  The coefficient in front of the integral is given by   

 2
( 1) nS

n nc g   (2) 

where n  represents the number of particle species with a spin-dependent degeneracy 

factor 
n

g     

 2 1n ng S   (3) 

in which nS  denotes the spin of massive particles. All massless particles are defined 

instead by  2
n

g  . The degeneracy factor includes an additional factor of 2  accounting 

for distinct particle-antiparticle states and an additional factor of 3  accounting for color.  

Pauli shows that, using the relativistic dispersion relation   

 2 2( )n nk m k    (4) 

the total VED vanishes identically upon imposing three so-called polynomial-in-mass 

constraints presented as [2] 
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along with a fourth logarithmic-in-mass condition  
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in which   stands for the Renormalization Group (RG) scale. 

We close this section by noting that the VED model (1)-(5) may be generalized to a 

framework where the set (5) is tied to the finiteness and Lorentz invariance of the VED 

stress-energy tensor [2].   

2. Pauli’s analysis versus Standard Model requirements  

As Pauli already remarks in [1], simultaneously enforcing (5a)-(5c) boils down to a highly-

improbable cancellation of terms including weighted powers of particle masses. Years 

after Pauli’s lectures of 1951, one can trivially check that (5a)-(5c) fail to hold when 

applied to the Standard Model (SM) masses evaluated near the electroweak (EW) scale. 

The goal of this section is to look deeper into this mismatch and its implications for the 

cosmological constant problem.     

Spontaneous symmetry breaking in the EW sector connects particle masses with the 

vacuum expectation value of the Higgs boson ( v 246 GeV ) via [3]  

 2 vHm   (6a)               
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where 1 2,g g  is the pair of gauge charges of the EW model,   is the quartic interaction 

coupling of the Higgs boson and fy  the Yukawa coupling of fermions. 

Direct substitution of (6) in (5) turns the Pauli’s constraints into conditions written in 

terms of interaction couplings. This brings us to the observation that interaction 

couplings are not independent parameters. In particular, 

a) Near the EW scale set by v , the so-called “sum-of-squares” requirement amounts 

to the relationship [4] 
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 b)  Away from the EW scale, all couplings flow with  . The flow can be either 

perturbative or non-perturbative and is prone to amplify deviations from Pauli’s 

constraints (5).  

Regarding point b), it is fair to state that the one of the least understood aspect of RG 

equations lies within the Higgs sector and is rooted in the so-called gauge-hierarchy 

problem of the SM [Appendix A]. Close to this problem is the issue of whether the 

Standard Model remains valid all the way up to the Planck scale ( )PlM . This question is 

non-trivial because it hinges on how   behaves at high energies. Competing trends are at 

work here, namely [7]: 

1) Radiative corrections from top quarks drop λ at higher scales, while those from the 

self-interacting Higgs grow λ at higher scales. 
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2) If ( )EWM is too large, the Higgs loops dominate and λ diverges at some 

intermediate scale called the Landau pole. However, if ( )EWM is too small, the top 

loops dominate, λ runs negative at some intermediate scale which, in turn, makes 

the potential unbounded from below and destabilizes the vacuum. 

To further reinforce the idea that the SM couplings are mutually dependent observables, 

consider next the RG flow of Pauli’s constraints. It is described by the equations [2] 
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in which 
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and where the mass renormalization factor is given by  
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By (6), one arrives at 
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with the generic SM coupling symbolically written as  1 2 3 ,, , , ,n f ng g g g y , in which 
3g  

denotes the strong interaction charge ( 3 QCDg g ). The RG equations defining the flow of 

ng  can be perturbatively represented as [6] 
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Each term of the series (12) may be factorized in the form 
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According to [6], the one-loop expressions for the beta functions of (13)-(15) are given by  
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Inserting (12)-(18) into (8) shows that the flow of Pauli’s constraints represents a multi-

dimensional system of coupled nonlinear differential equations, whose long-run 

evolution is prone to end on an aperiodic attractor. This is consistent with the 

observation that multidimensional RG flows do not typically settle on fixed points, but 
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rather on limit cycles, quasiperiodic tori or strange attractors [8-10].  The key point here 

is that the fixed points of truly conformally invariant theories only describe massless 

particles. By contrast, the SM is a nonlinearly interacting theory of massive particles, 

substantially deviating from the simplistic picture of harmonic oscillators radiating freely 

in empty space.  

3. Concluding remarks  

The unavoidable conclusion of our analysis is that, insofar the SM is concerned, Pauli’s 

model breaks Lorentz invariance of the VED stress-energy tensor put forward in [2]. 

Together with the considerations of Appendix B, these findings suggest that basing the 

cosmological constant problem on Pauli’s model is likely to point in the wrong direction.       

Appendix A  

The gauge hierarchy problem 

The EW symmetry of the SM is broken by a scalar field having the following doublet 

structure [7] : 

 01 [( v) ]
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Here, G  and 0G  represent the charged and neutral Goldstone bosons arisen from 

spontaneous symmetry breaking, H is the SM Higgs boson, v ≈ ( ) 246EWO M GeV is the 

Higgs vacuum expectation value and EWM  the Fermi scale. Symmetry breaking is caused 
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by the Higgs potential, whose form satisfies the requirements of renormalizability and 

gauge-invariance: 

 2 2( )HV         (A.2) 

with  ≈ O(1) and 2

H ≈ 2( )EWO M . A vanishing quartic coupling ( 0  ) represents the 

critical value that separates the ordinary EW phase from an unphysical phase where the 

Higgs field assumes unbounded values. Likewise, the coefficient 2

H  plays the role of an 

order parameter whose sign describes the transition between a symmetric phase and a 

broken phase. Minimizing the Higgs potential yields a vacuum expectation value given 

by:  
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where the physical mass of the Higgs is:  

 2 2 22 v 2H Hm      (A.4) 

The renormalized mass squared of the Higgs scalar contains two contributions: 

 2 2 2

H b H      (A.5) 

in which 2

b  represents the ultraviolet (bare) value. This mass parameter picks up 

quantum corrections 2

H  that depend quadratically on the ultraviolet cutoff   of the 

theory. Consider, for example the contribution of radiative corrections to 2

H  from top 

quarks. The complete one-loop calculation of this contribution reads: 
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in which t  and tM  are the Yukawa coupling and mass of the top quark.  If the bare Higgs 

mass is set near the cutoff 2 2 2( ) ( )b PlO O M    , then 2

H ≈ 3510 GeV. This large 

correction must precisely cancel against 2

b  to protect the EW scale. This is the root cause 

of the fine-tuning (or the gauge hierarchy) problem, which boils down to the implausible 

requirement that 2

b  and 2

H  should offset each other to an unnaturally large number of 

decimal places.    

Appendix B 

Pauli’s constraints and the cosmological constant problem 

A cursory glance at (4) reveals that, for large momenta nk m , the oscillator frequency 

may be approximated as ( )n k k  , in which case the integral (1) diverges. To isolate the 

effect of high-energy contributions in the computation of VED, Pauli inserts an ultraviolet 

(UV) cutoff   in the integral of (1), whose expansion yields  
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It is apparent that (B1) is quartically divergent as the UV cutoff approaches the Planck 

region of scales ( ( )Pl nO M m   ). To regularize (B1) one follows the general 

renormalization prescription of QFT, according to which one starts with a bare 

Lagrangian and a cutoff dependent bare VED in the form 
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 ( )b b    (B2) 

As a result, the renormalized or effective VED is given by [5] 

 4

,v ( )eff b c      (B3) 

where c  stands for some numerical constant. Astrophysical observations from type I 

supernovae and from the cosmic microwave background (CMB) radiation show that  

 1 4 3

,v 2 10 eVeff    (B4) 

Since experiments have confirmed that SM is valid at least up to an energy scale of  

12(1TeV 10 eV)O  , one may reasonably assume that the UV cutoff can be placed around 

this scale ( 12(10 eV)O  ). Combined use of (B3) and (B4) leads to 

 3 4 12 4(2 10 eV) ( ) (10 eV)b c     (B5) 

Thus, the bare value of the cosmological constant evaluated at the cutoff must be chosen 

so that it cancels out a contribution on the order of 48 410 eV  and leaves a contribution on 

the order of 12 410 eV . This requires an unnatural fine-tuning of the cosmological constant 

on the order of 60 decimal places, which lies at the heart of the cosmological constant 

problem. 
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