Equiprobability for any non null natural integer of having
either an odd or even number of prime factor(s) counted
with multiplicity.

Nhat-Anh Phan

Abstract. Redefining the set of all non null natural integers N* as the union of infinitely
many disjoint sets, we prove the equiprobability for any integer of each said set to have either
an odd or even number of prime factor(s) counted with multiplicity. The thus established
equiprobability on N* allows us to use the standard normal distribution to establish that

L(N
lim M = 0, L(N) the summatory Liouville function. Recalling the Dirichlet series for
N—+oo /N
the Liouville function we deduce that CC((Q:)) , § = o +1it, is analytic for o > %, ¢(s) the Riemann

zeta function. Consequently the veracity of the Riemann hypothesis is being established.

Introduction

On the topic of the probability of the parity of the number of prime factor(s)
counted with multiplicity, we have not come across any article nor book that
deals directly with the matter in a fashion that is similar to that of the present
article.

Indeed by introducing a novel approach, we have been able to prove the
equiprobability for any non null natural integer of having either an odd or even
number of prime factor(s) counted with multiplicity. The equiprobability of
which does in turn have remarkable implications.

LEMMA 1. Considering an infinite number of probability spaces defined
by : Vi € N et <.Qz = Wwj UE,.FZ = {@,wi,wﬁ, QZ},R N [0, 1]>, with
P(w;) = a,a €[0,1], Pi(w;) =1 — a, w; and w; being both non-empty countable
sets while one or both being possibly infinite, be the probability space uniquely
indexed by i € N.

If Qu = Uien$2 and Vi,j € Nji # 5,02, 01 2; = ) and Vi € N,
Pi(wi) = a, then on the probability space (Qy = Ujenywi U U;jen@is Fu =
{0,Uienwis Usen @i, 20}, Py - Fu — [0, 1]) we have :

PU(Uz‘eN wi)=a
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Proof

Let t € {2y be an outcome of {2y then by definition : ¢ € J,cywi & F a
unique j € N such that ¢ € w;.

That is to say that for a given outcome t € 2, the event |, wi € Fy has
occurred iff for that same outcome t € 2y, 3 a unique j € N such that the event
wj € Fj has occurred. Given that Vi € N, Pi(w;) = a, therefore Py (lJ;cywi) =
Pj(w;) = a; then by considering the complementary event of | J;,cywi € Fu :
Py(Ujen®i) = Pj(@j) =1—a and Py(2v) = Pu(U;eywi) + Po(U;en@i) = 1.

LEMMA 2. Considering a finite number of probability spaces defined by :
Vi,V e N, Vi € [O7V], let <QZ =w; Uw;, F; = {(Z),wi,@, Ql},PZ Fi = [0, 1]>,
with P;(w;) = a,a € [0,1], Pi(w;) = 1 — a, w; and w; being both non-empty
countable sets while one or both being possibly infinite, be the probability space
uniquely indexed by i € [0,V].

If Oy = UiE[O,V] 2; and Vi, j € [0,V],i # 5,2, N 2; =0 and Vi € [0,V],
P;(w;) = a, then on the probability space (2 = Uie[o,v} w; U Uie[oy] w;, Fy =
{0, Uico,vy wis Uico v @i 2vE Py 2 Fv — [0,1]) we have :

PV(UiG[O,V] wi) =a

Proof

Let t € {2y be an outcome of {2y then by definition : ¢ € Uie[oy] w; & da
unique j € [0, V] such that ¢t € w;.

That is to say that for a given outcome t € (2, the event Uie[O,V] wj
€ Fy has occurred iff for that same outcome ¢ € 2y, 3 a unique j € [0, V]
such that the event w; € F; has occurred. Given that Vi € [0, V], P;(w;) = q,
therefore Py (UU;¢(9,ywi) = Pj(w;) = a; then by considering the complementary
event of Ucjoyywi € Fv i Pv(Uigp vy @i) = Pj(@;) = 1 —a and Py(Q2y) =
Py (Uiep,vywi) + Pv(Uigovy@i) = 1.

LEMMA 3. For any integer n drawn randomly from N* it is equiprobable
that either n € {2k + 1 : k € N} orn € {2k : k € N*}. That is, consider-
ing the probability space (2n- = N* Fy- = {0,{2k+1 : k € N}, {2k : k €
N*}, 2n-}, Py« © F= — [0,1]), then :

Py-({2k+1:k eN}) = Py.({2k : k € N*}) = L.

Proof

Let us consider the random experiment consisting in drawing randomly any
integer n from N* in order to note as the outcome whether n € {2k +1: k €
N} or n € {2k : kK € N*}. The probability space associated with the latter
random experiment is : (2y+ = N* Fy. = {0,{2k +1 : k € N}, {2k : k €
N*}, Qn«}, Py« : Fy- — [0,1]).
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Vvl € N let us now consider the random experiment consisting in drawing
randomly any integer n from the set {20+1, 2]+2} in order to note as the outcome
whether n € {2k +1: k € N} or n € {2k : k£ € N*}. The probability space
associated with the latter random experiment is : (2, = {2l + 1,2l + 2}, F; =
{0, {201+ 1}, {2142}, 21}, P, - F; — [0,1]). Given that the set {20+ 1,2+ 2} has
only 2 elements that are equally likely to be picked, it is therefore obvious that
to draw randomly any integer n from the set {21+1,2]+2} then : P,({2l+1}) =
P({20+2})=1%and () =P({2l+1}u{20+2}) = +1=1

Noting that N* = (J,cy 2 and VI,I" € N,I # 1,0y N2y = 0 and VI € N,
P,({20 +1}) = %, by applying Lemma 1 we have : Py«({2k+1:k € N}) =
P({20+1}) = 1, Py-({2k : k € N*}) = P({20 +2}) = % and Py-(02y+) =
Py-({2k+1:keN}U{2k:keN}H=L14+1=1

LEMMA 4. For any integer n drawn randomly from N, it is equiprobable
that either n € {2k +1: k € N} orn € {2k : k € N}. That is, considering the
probability space (2 = N, Fy = {0,{2k+1:k € N}, {2k : k € N}, 2y}, Py :
Fn — [0,1]), then :

Py({2k+1:keN})=Py({2k: keN}) =1

Proof

Let us consider the random experiment consisting in drawing randomly any
integer n from N in order to note as the outcome whether n € {2k +1: k € N}
orn € {2k : k € N}. The probability space associated with the latter random
experiment is : (2y = N, Fy = {0,{2k+1:k € N},{2k : k € N}, 2y}, Py :
Fn — [0,1]).

Vm € N let us now consider the random experiment consisting in drawing
randomly any integer n from the set {2m, 2m+1} in order to note as the outcome
whether n € {2k +1: k € N} or n € {2k : k € N}. The probability space
associated with the latter random experiment is : (2, = {2m,2m + 1}, F,,, =
{0,{2m}, {2m+1}, 2}, P : Fi — [0,1]). Given that the set {2m, 2m+1} has
only 2 elements that are equally likely to be picked, it is therefore obvious that
to draw randomly any integer n from the set {2m,2m + 1} then : P, ({2m}) =
Pn({2m+1}) = % and Py (2,) = Pp({2m}u{2m+1}) =32+ 1 =1

Noting that N = (J,,cy 2m and Vm,m’ € N,;m # m/, 2, 0 2 = 0 and
Ym € N, P,({2m + 1}) = %, by applying Lemma 1 we have : Py({2k + 1 :
k€ N}) = Po({2m +1}) = %, Py({2k : k € N}) = P,({2m}) = % and
Pn(28)=Pnv({2k+1:keN}U{2k:keN})=14+1=1

1/ N* as infinitely many complementary disjoint sets

VYn € N*\ {1}, by the unique prime factorization theorem, there exists a
unique sequence (P1,P2, -, Piy--+,Pm)s P1 < P2 < ... <D < ..o < Py, M € N¥|
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p; € P, the set of all the prime numbers and a unique sequence (f1, fo,..., fi,. ..
, fm), fi € N* such that n = p{l X pé’" X ... xp{i X ...x plm (the latter notation

will be used for the entirety of the article).

Let us note that for the entirety of the article the adjectives odd or even
are employed in the classical definition of parity i.e. a natural integer is ”odd”
shall it be a member of {2k + 1 : k € N} and "even” shall it be a member of
{2k : k € N}. Thus 1 is the smallest odd number while 0 is the smallest even
number. Additionally let us note by Nj the set of all the odd natural integers
such that N; = {2k + 1 : k € N}, by Ny the set of all the even natural integers
such that N = {2k : k € N} and by N} the set of all the non null even natural
integers such that Nj = {2k : k € N*}.

Let us note for the entirety of the article by F', F € N, the number of prime
factor(s) counted with multiplicity of n € N* and by F’, F’ € {odd, even}, the
parity of F.

Additionally let us note for the entirety of the article by f/, i € [1,m] the
parity of each f;.

Let N* be as such :

N* = Al U AQ U UmEN,nLZQ Bm

where :

A1:{2kaEN};

As = Upep (o 10" k € N*}, P\ {2} denoting the set of all the prime
numbers excluding {2};

Ym € N7m Z QaBm = UpiG]P’,pl<p2<..‘<pi<‘“<pm(UkMGNlukaN;('"(

k E ki EmY -
UkieNlukieNg("'(ngeNlquEN;{(pll X Py XX it X Xpyr) t ok €
N*})...))...), thus Vm,m' € Nym,m’ > 2,m # m/, B, N B,y = 0.

Let us note for the entirety of the article that for infinitely many given sets
Si, © € N* | we will be using the expression ”Uz‘eNluieNg S;” in order to mean

”UEN1 S; U UieN; S i.e. UieNluieN; S; = UiENl S; U UieN; S;. Thus for infin-
itely many given sets S, ;, ¢,j € N*, we have : UjeNlujeN;(UieNluieN; Sii)
UjeNlujeN; (UieNl Sm’ U Uz‘eN; Si,j) = UjeNl(UieNl Sm’ U UieN; Si,j) U
Ujerg Uien, Sii UUieng Sig)-
Additionally, for the entirety of the article we will be using the expression
” in order to mean ” UWE[

” .,

2
UIMG]PJH<p2<...<p1‘,<..»<pm 1,m],p; €P,p1<p2<...<pi<...<pm
the latter is to say : “the union for all m prime numbers such that p; < ps <

... <p; <...<py". For instance for infinitely many given sets Sp, »,, P1,P2 €
P and for m =2 we have (U, cp . <p, Sp1.02 = Up, pocP py<ps Op1,p2 Which is the
union of all the sets S, ,, for all couples of prime numbers pi,p2 € P, p; < pa.
Thus :
AL NAy =0
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YmeNm>2 A NB, =0

vYmeN,m>2,ANB,, =0;

vYm,m' € Nym,m' >2,m #m’',B,, N B, = 0;

VD1, D2y oy Diye - sPm E Pypr < pa < oo < pi < oo < P, VDL, Dby ooy DLy
D, € PP < ph < ol < Pl < oo <P, P X P2 X oo X P X X
Pm # PLoX Py XX pi XX Py U enyurgens (- (U eny ok, eng (- €

k k kg m .
UkzeNlukzeNg{(pll X Po? X .. X Pt X Lo X phm) ko€ N} L)L 0N

k k ks
UkmeNlukmeN;("'(UkieNlukieN;<"'( Uk2€N1Uk2€N§{(p/1 PXPy? XX Pyt %

coox plhmy ik e NFY L)L) = 0.
Let us remark that 1 =20 € A,.
Let us note that Vm € N, m > 2, Vp1,p2,...,Dis---,Pm € P, p1 < p2 <
< pi < oo < Py Yoy ks ki, Vi € [2,m], k; € Ny UK, € Nj| each
of the sets {(p§' x ph? x ... x pF x ... x pkm) : ky € N*}, Ay and Ay can be
considered in a strictly increasing order that is being conferred by the original
strictly increasing order of N and N*.

2/ n belongs to A; or n belongs to Ap

a. n belongs to A;

THEOREM 1. To draw randomly any integer n from A, then the probability
that F being odd is equal to the probability that F being even which is % That is,
considering the probability space (24, ={n € Ay : F' € {odd}}U{n € Ay : F' €
{even}}, Fa, = {0,{n € Ay : F' € {odd}},{n € Ay : F' € {even}}, 24,},Pa, :
Fa, — [0,1]) then :

Po,({n €Ay : F' €{odd}}) = Pa,({n € Ay : F' € {even}}) = %

Proof

Since n € A;,A; = {2F : k € N}, it comes that the parity of F is given
by the parity of f; — let us note the special case of f; = 0 where n = 1 has 0
prime factor; 0 being considered as even, which is consistent with the Liouville
function as A\(1) = 1.

By the unique prime factorization theorem, it is clear that to any integer
n € Ay,n = 271, corresponds the unique integer f; € N, and vice versa to any
integer fi € N, corresponds the unique integer n € A;,n = 2f1. That is to say
that be a function fa, : A; — N such that for any n € A;,n = 2/1, we have
fa,(n) = f1,f1 € N, then fg4, is a bijective function from A; toward N, whose
inverse function is fgll : N — A, such that for any integer fi, f1 € N, we have

f;ll(fl):2f1 :TL,’HEAl.
Thus : A; = {2¥: ke N} = {f;! (k) : k € N}
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Thus each integer n in A ; necessarily has only but one corresponding integer
f1 that determines the parity of the number of prime factor(s) counted with
multiplicity of n, F'.

Let us now consider the random experiment consisting in drawing randomly
any integer n from A; in order to note as the outcome the parity fi of the
corresponding exponent f; given by fr, (n). The probability space associated
with the latter random experiment is (27, = {k’ : k' € {odd,even}}, Fr, =
291y Pr o Fpy — [0,1]).

Let us note by ey, € Fr, the event that f| is odd and €7, € Fr, the event
that f{ is even.

Given Lemma 4, it is equiprobable for any integer drawn randomly from
N to be either odd or even, therefore Pr, (ef,) = Pr, (€7,) = 1.

Tt is clear that the total number of possible outcomes k', card({2r,) is equal
to 2; thus Pr, (21,) = Pr, (e, Uep;) = 3 + 3 = 1 indeed.

F is odd iff f{ is odd and F is even iff f is even. Let us note by
Ap € Fr,,Ar = ey, the event that F is odd and Ap € Fr,,Ar = €, the
event that F is even. It comes that Pr, (Ap) = Pr,(Ap) = § with Pp, (2r,) =
Pr,(Ar) + Pr,(Ar) = 1 indeed.

By definition Ap € Fp, is equivalent to {n € A; : F’ € {odd}} € Fa, and

Ap € Fr, is equivalent to {n € Ay : F' € {even}} € Fa,, therefore Theorem
1 is established.

b. n belongs to A,

THEOREM 2. To draw randomly any integer n from As then the probability
that F being odd is equal to the probability that F being even which is % That is,
considering the probability space (24, ={n € Az : F' € {odd}}U{n € Ay : F' €
{even}}, Fa, = {0,{n € Ay : F' € {odd}},{n € Ay : F' € {even}}, 24,}, Pa, :
Fa, — [0,1]) then :

Pa,({n € Ay : F' € {odd}}) = Pa,({n € Ag : F' € {even}}) = %

Proof

Let p be any given prime number in P\ {2}.

When considering n € {p* : k € N*}, n = pf1. it comes that the parity of F'
is given by the parity of fi.

By the unique prime factorization theorem, it is clear that to any integer
n € {p* : k € N*},n = pfi, corresponds the unique integer f; € N*, and vice
versa to any integer f; € N*, corresponds the unique integer n € {p* : k €
N*},n = pfi. That is to say that be a function fr, : {p* : k € N*} — N* such
that for any n € {p* : k € N*},n = p/, we have fr,(n) = f1,f1 € N*, then
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fr, is a bijective function from {p* : k € N*} toward N*, whose inverse function
is fT_21 : N* — {p* : k € N*}, such that for any integer fi, fi € N*, we have
frt(fr) =p" =n,ne {pF: ke N}

Thus : {p¥: ke N*} = {fz,le(k) :k e N*}}

Thus each integer n in {p* : k € N*} necessarily has only but one corre-

sponding integer f; that determines the parity of the number of prime factor(s)
counted with multiplicity of n, F'.

Let us now consider the random experiment consisting in drawing randomly
any integer n from {p* : k € N*} in order to note as the outcome the parity f] of
the corresponding exponent f; given by fr,(n). The probability space associated
with the latter random experiment is (27, = {k’ : k' € {odd,even}}, Fr, =
2972 P, : Fr, — [0,1]).

Let us note by ey, € Fr, the event that f| is odd and €7, € Fr, the event
that f{ is even.

Given Lemma 3, it is equiprobable for any integer drawn randomly from
N* to be either odd or even, therefore Pr,(es,) = Pr,(€7,) = 1.

It is clear that the total number of possible outcomes k', card(£2r,) is equal
to 2; thus Pr, (21,) = Pr,(ey, Uey;) = 3 + 3 = 1 indeed.

F is odd iff f{ is odd and F is even iff f] is even. Let us note by
Er, € Fr,, Er, = ey, the event that F is odd and E7, € Fr,, Er, = €7, the event
that F is even. It comes that Pr,(Er,) = Pr,(ey,) = 3, Pr,(Er,) = Pr,(€f,) =
% and }DT2 (.QTQ) = PT2 (ETQ) + PT2 (Tﬂ) = 1 indeed.

* ok ok

Since Ay = UpE]P’\{Q}{qk : k € N*} and Vp,p' € P\ {2}, p # o, {p" :
keNIn{p’:keN}=0andVpeP\{2}, Pn(Ep) = 1, by applying
Lemma 1 we can deduce that : Pa,({n € Ay : F' € {odd}}) = Pr,(Ez,) = 3,
Py,({n € Ay : F' € {even}}) = Pp,(Er,) = 1 and Pa,(24,) = Pa,({n € Ay :

F’ € {odd}}) + Pa,({n € Ay : F’ € {even}}) = 5 + 1 = 1 which establishes
Theorem 2.

3/ n belongs to B,

LEMMA 5. Vpi,p2 € P, p1 < p2, to draw randomly any integer n from
Uk2eN1uk2eN; {p" x pb? . ky € N*} then the probability that F being odd is

equal to the probability that F being even which is % That is, considering the

probability space (2, = ngeNlquGN; {p’fl X p’2“2 c ke N° L Fr, = {0,{n €
Qp, : F' € {odd}},{n € 2, : F' € {even}}, 2p.}, Pr, : Fr, — [0,1]) then :
Pr,({n € 2p, : F' € {odd}}) = Pr,({n € 2., : F' € {even}}) = 3
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Proof

Let p1,p2,p1 < p2 be any 2 given prime numbers in P and let f; be any
given integer in N*.

When considering n € {pr1 X py? ik € N*} n=pit x p£2, it comes that
the parity of F' is given by the compounding by additivity of the parity of fi
and the parity of fa.

k kok

Given that ps and fo being given and fixed, by the unique prime factor-

ization theorem, it is clear that to any integer n € {p* x pJ* : ki € N*},n =

p{l X p£2, corresponds the unique integer f; € N*, and vice versa to any integer

f1 € N*, corresponds the unique integer n € {p]lcl xpy? ik € N*} n = p{l X p£2.
That is to say that be a function fr, : {p% x pl* : k; € N*} — N* such that
for any n € {pt* x pQ‘2 ik e N} n = p{l X pgz, we have fr,(n) = fi, f1 € N,
then fr, is a bijective function from {pf* x pJ*> : k; € N*} toward N*, whose
inverse function is fT_31 (N* = {p% x pl2 1 ky € N*}, such that for any integer
f1, f1 € N*, we have fT_Sl(fl) :p{1 X p£2 =n,n € {pr1 x py? k€ N}

Thus : {p" x pf* : ky e N*} = {fil(kl) tky € N*}.

Thus each integer n in {p’lcl x py* k1 € N*} necessarily has only but one

corresponding integer f; that determines the parity of the number of prime
factor(s) counted with multiplicity of n, F' (the parity f4 being given and fixed).

Let us now consider the random experiment consisting in drawing randomly
any integer n from {p¥ x pl* : k; € N*} in order to note as the outcome the
parity fi of the corresponding exponent fi given by fr,(n). The probabil-
ity space associated with the latter random experiment is (2, = {k] : k| €
{odd, even}}, Fr, = 273 Pr, : Fr, — [0,1]).

Let us note by ey, € Fr, the event that f| is odd and €7, € Fr, the event
that f] is even.

Given Lemma 3, it is equiprobable for any integer drawn randomly from
N* to be either odd or even, therefore Pr,(es,) = Pr,(€f;) = 1.

Tt is clear that the total number of possible outcomes k}, card({2r,) is equal
to 2; thus Pr,(2p,) = Pp,(ey, Uep) = 3 + 3 = 1 indeed.

* K ok

For any given fo € Ny, let us now consider the following probability space :

(2, = {p}* xpJ? 1 k1 e N}, Ff = {0,{n € 2, : F' € {odd}},{n € 027, :
F' € {even}}, Op }, P, « Fr, — [0,1]).

f2 € Ny, fo5 being given and fixed, F'is odd if f f1 is even and F is even if f
f1 is odd. Therefore we have : P}, ({n € 2, : F' € {odd}}) = Pr,(e5) = 3,
Pp ({n € 2}, : F' € {even}}) = Pp,(ey,) = 5 and P}, (2),) =3+ 3 = 1.
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Then let us consider the following probability space :

(2% = Up,en, Ap1 x pP? 1 by e N}, F5 = {0, {n € 24 : F' € {odd}},{n €
Q% F' € {even}}, 24}, Py - Fy — [0,1]).

Since 25 = Upen, {PF' x P : k1 € N*} and Vfo, ff € Ny, fo # f1,
W xpl2 ke N} N {pP x pl? ik € N*} = 0 and Vfy € Ny, Pp({n €
2, : F' € {odd}}) = 3, by applying Lemma 1 we can deduce that : Pj({n €
2 F' € {odd}}) = Py, ({n € 2, : F' € {odd}}) =1, Pi({ne 2:F ¢
{even}}) = Pr,({n € 2, : F' € {even}}) =1 and P3(93) Pi({ne 24 :F €
{odd}}) + P{({n € £25 : F’ € {even}}) = 3 + % =1.

* ok %

For any given fo € N3, let us now consider the following probability space :

(2, = {p\* xpP? k1 e N}, Ff, = {0,{n € 2, : F" € {odd}},{n € 02, :
F' € {even}}, Q7 }, Py« Fr, — [0,1]).

f2 € N3, fo being given and fixed, F'is odd ¢f f f1 is odd and F'is even if f
f1 is even. Therefore we have : Py ({n € 27, : F' € {odd}}) = Pr,(ey,) =
P} ({n € 2}, : F' € {even}}) = Pp,(ef,) = 5 and Py (2},) =3+ 5 =1.

X % X%

2

Then let us consider the following probability space :

(24 = UfzeN*{plf1 xpy? ik € N} FY ={0,{n € 2§ : F' € {odd}},{n €
Q4 . F' € {even}}, 24}, P§ - F§ — [0,1]).

Since 2 = Upen: {pl" x pf* : k1 € N'} and Vfo, f € N3, fo # f4,
PV x b ki e N} x pff i ki € N} = 0 and V2 € N3, P ({n €
2, « F' € {odd}}) = 3, by applying Lemma 1 we can deduce that : P§'({n €
QF 2 F' € {odd}}) = Pi.({n € 2, : F' € {odd}}) =1, P{({ne ) :F ¢
{even}}) = Pf,({n € 2, : F' € {even}}) = 3 and P”(Q”) =P{({n e 24 :
F' € {odd}}) + P{({n € 2 : F' € {even}}) =+ + $ = 1.

* ok %

Then we can consider the following probability space :

(25 = UfzeNl{pl x p2 k€ NtU UfzeN*{pll X p2 k€ N}, Fg =
{0,{n € 25 : F' € {odd}},{n € 25 : F' € {even}}, 23}, P3 : F3 — [0,1]).

Since 23 = 25U 24 and 25N 24§ = 0 and Ps({n € 2 : F' € {odd}})
= P{({n € 24 : F' € {odd}}) = %, by applying Lemma 2 we can deduce that
Ps({n € 25: F' € {odd}}) = Pi({n € 2% : F' € {odd}}) = P{({n € 2y : F' €
{odd}}) = %, Ps({n € 23 : F' € {even}}) = Pi({n € 25 : F' € {even}}) =
PY({n € 24 : F' € {even}}) = 5 and P3(£23) = P3s({n € 23 : F' € {odd}}) +
Ps({n € 25 : F' € {even}}) = % i=1
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% Xk
Having shown for any 2 given prime numbers pi,ps € P, p; < po, that
Ps({n € 25 : F' € {odd}}) = Ps({n € 23 : F' € {even}}) = L and given
that by definition LJ,CTEMU,CQ@%{p’lCl X pi? ik € N*} = Uf2eN1{p’f1 X py? o
ki € N} UUp,en; {p x pJ> : k1 € N*} we can immediately deduce that :
Pr,({n € 21, : F' € {odd}}) = P3s({n € 25 : F' € {odd}}) = %, Pr,({n €
Qn, « F' € {even}}) = Ps({n € 25 : F' € {even}}) = % and P, (2,) =

Pr,({n € 2p, : F' € {odd}}) + Pr,({n € 2, : F' € {even}}) = 3+ 1 =1;
which establishes Lemma 5.

THEOREM 3. To draw randomly any integer n from By then the probability
that F being odd is equal to the probability that F being even which is % That is,
considering the probability space (2, ={n € By : F’ € {odd}}U{n € By : F' €
{even}}, Fp, = {0,{n € By : F' € {odd}},{n € By : F' € {even}},2p,},Pg, :
Fp, — [0,1]) then :

Pp,({n € By : F' € {odd}}) = Pp,({n € By : F' € {even}}) = %

Proof
Let us consider the probability space :

(2, ={n €By: F' € {odd}}U{n € By : F' € {even}}, Fp, = {0,{n €
By : F' € {odd}},{n € By : F' € {even}}, 25,}, Pr, : Fp, — [0,1]).

. k k *
Since BQ = Upl,pzelP’,p1<p2(Uk2€N1Uk2€N§({pll X p22 : kl €N }>) and

k
Vp1,p2 € P,p1 < p2,Vpi,py € P,pi <P, pr X p2 # Py X Py Upyem,unpeny ({1 %

P5 ki € NN Upyen upaens (1™ % 95+ by € N*}) = 0 and given Lemma

5, Vp1,p2 € Pyp1 < pa, P3s({n € 25 : F € {odd}}) = %, by applying Lemma 1
we can deduce that Pg,({n € By : F’ € {odd}}) = Ps({n € 23 : F' € {odd}}) =
1, Pp,({n € By : F' € {even}}) = Ps({n € 25 : F' € {even}}) = % and
Pp,(2p,) = Pp,({n € By : F' € {odd}}) + Pp,({n € By : F/ € {even}}) =

% + % = 1; which establishes Theorem 3.

4/ n belongs to B,,,m € Nym > 2

LEMMA 6. Vm € N, m > 2, Vpi,p2,--,Di,---»Pm € P, p1 <

p2 < ... < pi < ... < pm to draw randomly any integer n from
k k ks

UkmeNlukmeN;("'(UkieNlukieNg('"(Uk2eN1ngeN; {p1" x pa® x ...ox it x

phm o ky € N*})...))...) then the probability that F being odd is equal to the

probability that F being even which s % That 1is, considering the probability

k k
space (Prs = Uk, enyuknen (- (Ukenyumeens - (Ury ey ukoeng 1P17 X P5° X
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X pR o pE ke € NFY) L)) L), Fry = {0, {n € 21, - F' € {odd}}, {n €
Qp, : F' € {even}}, 21}, Prg : Fre — [0,1]) then :

Prs({n € 2p, : F' € {odd}}) = Pr,({n € 2, : F' € {even}}) = %

Proof
Let us prove by mathematical induction Lemma 6.
Lemma 5 means that Lemma 6 is true for m = 2.
Let m € N, m > 2 be any given integer in N* and let us assume that
Lemma 6 is true for m. Let us now prove that Lemma 6 is true for m + 1.
* % ok

Letp17p2~~-7pia"'7pm+17p1 <p2<...<p;<... <pm+1 be aﬂym-l-l
given prime numbers in P and let f,,+1 be any given integer in N*.

When considering n € UkmeNlukmeN; (... (UkieNlukieN; (... (ngeNlukzeNg

{phrxphe . .xpfi X plm xp,{lmfll k1 eNH L)) ), n= p{l ><p£2><. . .xp{ix

- X p%" X pfmm_:’f, it comes that the parity of F' is given by the compounding by
additivity of the parity of the sum (f; + fa + ...+ fi + ... + fmm) and the parity
of frnt1.

* % %
Given that pmny1 and  fr,y1  being given and fixed, by the
unique prime factorization theorem, it is clear that to any integer
noe UkmeNlukmeN;(' - (UkieNlukieN; (- (UkzeNIUkﬁN; {p’f1 X p’;“ X ... X

Pl x pkm xpszff S ke N*D) L)) )m = plt xoplr <X plt x
fm,-f—l

- plmox Py > corresponds the unique sequence (fi, fa,..., fi,..., fm) €
UfmeNlufmeN;(' v (UfieNlufieNg(' e (UfgeNlufzeN;{(flv f2, R fi> SR fm)
fi € N*})..))...), and vice versa to any sequence (fi, fo,..., fi,..., fm) €

UmeNlumeN; ( o (UfiENlUfiENE ( o (Uf2€N1Uf2€N§ {(f17 f2a EEER fi7 R fm)
fi € N*})...))...), corresponds the unique integer n €

UkmeNlukmeN;("'(UkieNlukieNg("'(UlmeNlquENg{pllﬁ X ph X ..ox
pix e xophr oxopln s ko€ NT)L)) ) = pft x pf x
X pf X oooox pimox pf,;'ff. That is to say that be a func-
tion  fr, : UkaNlukmeNg("'(UkiENlukiGNz('"(UkQGNlukgeN;{plfl x
PR x ox pRios x phm pfi’i’ff ke NBHL)).) =
UfmGNlUfmGN;("'(UfieNlufieN;("'(UfgeNlquGN;{(fhny-'-7fiw--afm)
fi € N*})...)...) such that for any n €
UkmeNlukmeN;(-~-(UmeNlukieN;(~-~(UkzeN1ukzeN;{p’fl X ph X ..ox
pf‘ x phm x pf,;'ff ke N'HLL)) .. )n = p{l X pg2 X ...0X
fi Smt1

m

pi X X p7frybn X pm+17 we have fT4(n) = (f17f27"'7f’ia"'af’m)



12 NHAT-ANH PHAN

UmeNlLmeENg("'(UfiEN1Uf1,€N§("'(UfgeNlufgeNz{(fbe’"'7fi7""fm)
fi € N*})...))...), then fr, is a Dbijective function from

k k
UkmeNlukmeN; (.- (UkieNlukieN; (e (Uk2eN1uk2€N; {ry" X 2y X
X pFox ox phmox o plmil o B € NT})..))...)  toward

UfmeNlufmeN;("'(UfieNlufieN;("‘(UfgeNlquGN;{(fhny-~-afiw--afm)
fi € N*})...))...), whose inverse function is fil
UfmeNlufmeN;("'(UfieNluf,:eN;("'(UfzeNlquEN;{(fbf?a“'vfi"'-afm)
freN}) . 0) ) = Unemukmens G- (Urienyureens - - (Urpeny uraeng {p}* x
PR x ox P x e x phe X pImit s ke NT))LL)) L),
such that for any sequence (f1sfas oy fiveros fm) €
Usemusmen: G- Upemugens (- (Upenyupeng {01 2500 fisooo fim)
fl € N*}))))v we have fil((flaf%'"afia"'vfm))

plt ox pP ox ox plt x o x plm x pzquf = nn €

Uk, emyukmens (- (Uksenyur,en G+ - (Unyeny Uk en {Ph > P52 x X pfiee %
phr X plmil ke e NTY) L)L),

Thus : UkmeNlukmeN;("'(UkieNlukieNg('"(ngeNlquGNz{plfl X ph? X

Cx PR x phm pfy’l'jf ko€ N*H..))..) = UfmeNlufmeN;(

---(UfieNlufieN;(~--(UfzeNlufgeN;{fil((flaf2,-~-,fiwuafm)) o f S

N})..))...).

Thus each integer nin J,, | €Ny Uk €N (... (UkieNlukieNg (... (Uk2€N1Uk2€N’2‘{

PR xphr . oxpl o xplmoxplmit Dk € N*)).L L)) ) necessarily has only but

one corresponding sequence (fi, fa,..., fi,..., fm) that determines the parity
of the number of prime factor(s) counted with multiplicity of n, F' (the parity
frui1 being given and fixed).

m

Let us now consider the random experiment consisting in drawing randomly
any integer n from Uy enumens (- (Upeny upsen -« (U ey onpens (91
PE2 xR phm o plmEl s k€ N*Y)LL) L) in order to note as the
outcome the parity of the sum (f1 + fo+...4+ fi+...+ fim) of the corresponding
sequence of exponents (f1, fa,..., fi,-.., fm) given by fr. (n) (let us note by
S!. the latter parity). The probability space associated with the latter random
experiment is (27, = {S! :S! € {odd,even}}, Fr, = 277 Pr, : Fr, — [0,1]).

Let us note by es: € Fr, the event that S;, is odd and e, € Fr, the
event that S), is even.

Given that we have initially assumed that Lemma 5 is true for m, it comes
that Pr,(es; ) = Pr,(€s;) = 3.

Tt is clear that the total number of possible outcomes S;,, card(f2r,) is equal
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to 2; thus Pr,(21,) = Pr,(es;, Ues;) = 5 + 3 =1 indeed.
* ok ok

For any given f,,+1 € Nj, let us now consider the following probability

space :
ki k

(f27, = UkmeNlukmeN; (- (UkieNlukieN; (- (UkzeNlukzeN; {p1' xp3®x...x
pre - xplmoxplmil k€ NTY) L)L), F = {0, {n € 2, - F' € {odd}}, {n €
2, F' € {even}}, 2 }, Pr, o Fr, — [0,1]).

fm+1 € Ny, fimi1 being given and fixed, F' is odd iff S, is even and F
is even if f S, is odd. Therefore we have : Pp ({n € 2}, : F' € {odd}}) =
Pr,(es;) = %, Ph({n € Qh : F' € {even}}) = Pr,(es: ) = % and Pﬁ(g/ﬂ) =
1 + 1_1
27T 32 :

Then let us consider the following probability space :

k

(02, = Ufm+16N1 (UkmeN1ukmeN§ (- (UkieNlukieNE (. (UszNlukzeNZ {py" %
P2 ox pli o plm s plm ke e NFY) L)) ), P = {0, {ne 2y F e
{odd}}, {n € £2) : F' € {even}}, £2)}, Py« Fy — [0,1]).

Since »Qi = Ufm+1€N1 (UkmENlLkaENE ( c (Uk,jENlukieN; ( t (UkQENlquENE{
P xph2 . oxpli o oxph xpil"jf tkyeN*}) L)L) and Vg, £ € Ny,

frms1 # g UkaNlukmeNg('"(UkieNlukieN;("'(ngeNlukzeN;{pllﬁ X
PR ox o oox phios x phe o x pfi;'ff : ko€ NH.))..) N
UkmeNlukmeN;("'(UkieNlukieN;('"(ngeNlukzeN;{pIP X pgz X X
PR x phm s pImH L k€ NPLL)).) = 0 and Vfny € Ny

P;({n € 2}, : F' € {odd}}) = 3, by applying Lemma 1 we can de-
duce that : P{({n € 2} : F' € {odd}}) = P}, ({n € 2}, : F' € {odd}}) = 3,

Pi({n € 2} : ' € {even}}) = Pp ({n € 02, : ' € {even}}) = % and
Pi($2)) = P{({n € 2 : F' € {odd}})+ Pi({n € 2} : F' € {even}}) =1+ =1.

* ok ok
For any given f,,11 € N3, let us now consider the following probability
space :

ki k
(027, = Ukmemurmen G-+ (U emyurseng - (Unyeny ukperg (P17 X2 XX

PR xplmoxplmi ke NTY) L)) L), FR = {0, {n € 24, : F' € {0dd}}, {n €
Q7, + F' € {even}}, 27 }, Py« Ff, — [0,1]).

fm+1 € N§, fii1 being given and fixed, F is odd iff S/, is odd and F
is even if f S}, is even. Therefore we have : P ({n € 27, : F' € {odd}}) =
Pr,(es: ) = %, Pf ({n € 027, : F' € {even}}) = Pr,(€s7,) = % and Pf, (92},) =
i+l=1



14 NHAT-ANH PHAN

% Xk
Then let us consider the following probability space :
(f = Ufm+1EN3 (UkmeNlukmeNg (- (UkiENlukieN; (- (ngeNlukgeNg{
P X oph2 o x pli o x phe xpil"ff sk e N D)D) FY = {0,{n €
Q) F' € {odd}},{n € 2} : F' € {even}}, 2/}, Py : F) — [0,1]).
Since 2 = UmeeN; (UkmeNlukmeN; (- (UkieNlu/ﬂeNg (- (UerwlukzeN;{
PR xphe s oxpheoxplm xplmil k€ N*Y) L)L) and Vg, £ € N,

k
fm+1 # fogrs UkmeNlukmeN; (e (UkieNlukieN; (. (UkzeNlukgeN; {p1" %

pEE x oox o pli o phe o x pImt s ke NfD)LL))) N
k k
UkmeNlukmeN;("'(UkieNlukiEN’z‘('"(UkQGNlukgeN;{pll X pyt X ... X
i f?"rlL * *
Pi X phmox il s k€ N'})LL))..) = 0 and Ve € N3,

Pl ({n € 2}, : F' € {odd}}) = 3, by applying Lemma 1 we can de-
duce that : P{({n € 2} : F' € {odd}}) = P}, ({n € 2, : F' € {odd}}) = 3,

P/({n € 2f : F' € {even}}) = Pﬁ({n € ()ﬁ : F' € {even}}) = % and
P/ (2))=P/({ne€ 2] : F €{odd}})+P/({n € 2} : F' € {even}}) = %—i—% =

1.
* % %

Then we can consider the following probability space :

k
(a=Us, \em (UkmewlukmeN; (- (UkiewlukieN; (- (UkzeNlqueNg {pi" x
k ks . fm+1 .
PhE XX plt o pkm xplmtl sk € ND ) NDUUy,ews Uk, eng i ens (

k k ks - Ft1
(UkieNlukieN;( "'(ngeNlukgeN; {1 X po? X X Pt X Pl X Pt

ki € N*}) .. ). )),Fa = {0.{n € 24 : F' € {odd}},{n € 24 : F' €
{even}}, 24}, Py : Fy — [0,1]).

Since 24 = 2, U 2Y and 2, N2 = 0 and Pi({n € 2} : F' € {odd}})
= P/({n € 2} : F' € {odd}}) = %, by applying Lemma 2 we can deduce that
Pi({ne€ y: F' €{odd}}) = Pi({n € 2, : F' € {odd}}) = P/({n € 2} : F' €
{odd}}) = L, Py({n € 24 : F' € {even}}) = Pi({n € 2, : F' € {even}}) =
P/({n € 2 : F' € {even}}) = } and Py(£24) = Ps({n € 24 : F' € {odd}}) +
Pi({n € 24: F' € {even}}) =+ 5 =1.

* ok %

Having shown for any m + 1 given prime numbers p1,p2, ..., Di, -+, Pm+t1 €
P,pr <p2 < ...<pi<...<pmt1, that Pu({n € 24 : F' € {odd}}) =
Pi({fn € 4 : F' € {even}}) = 1 and given that by definition

k
Ukyr ettt eng (Un, emukgens (- (Ukiemoriens - Urpemy urpems 117 %
) Ko
Ph X X phie ) phmoox prmt 0 k€ NFP)LL))LL)) =

X

k k
Ufm+leN1(UkmeN1Ukm€N’2‘<'"(UkieNlukieN;("'(UkzeNlukzeN;{pll X Py’
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ki m fm .
- X Pyt X an X pm—:ll t k€ N*})..)).. ) U Ufm+1€N§ (UkmeNlukmeN;(
k k ki m fm .
-~-(UkieNlukieN;(~-~(Uk2eN1uk2€N;{p11 X Py? X oo X gt X ph X Pt

k1 € N*})...))...)) we can immediately deduce that : Pr,({n € 21, : F' €
{odd}}) = Py({n € 24 : F' € {odd}}) = §, Pr,({n € 2p, : F' € {even}}) =
Pi({n € 24 : F' € {even}}) = § and P (21,) = Pr,({n € 2, : F' €
{odd}}) + Pry({n € 2, : F' € {even}}) = 1 + 1 = 1; which means that
Lemma 6 is true for m + 1.
* %k
Having shown that Lemma 6 is true for m + 1, we have completed the

proof by mathematical induction and we can therefore deduce that Lemma 6
is true Vm € N*, m > 2; which establishes Lemma 6.

THEOREM 4. Vm € N*, m > 2, to draw randomly any integer n from B,,
then the probability that F being odd is equal to the probability that F being even
which s % That is, considering the probability space (2p, = {n € B, : F' €
{odd}} U{n € B, : F' € {even}}, Fp, ={0,{n €B,, : F' € {odd}},{n € B, :
F' € {even}}, 2p, }, Pp,, : Fp,, — [0,1]) then :

Pp, ({n €B,,: F' € {odd}}) = Pp,, ({n € By, : F’ € {even}}) = %

m

Proof
Let m € N*, m > 2 be any given integer in N*.
Let us consider the probability space :

(2p, ={n€By: F' €{odd}} U{n € B, : F' € {even}}, Fg,

={0.{n €
B, : F' € {odd}},{n € B, : F' € {even}}, 25, }, Pg,, : Fp, — [0,1]).

Since By, = UpieIP,p1<p2<...<pi<.,.<pm(UkmeNlukmeN;(~-~(UkieNlukieN;(
o (Unyemyumens L0 X ph? xox it x Loxoplhm) 1 ko€ N*}) L)L)
2
and vp17p27"'7pi7"'apm S Papl < P2 <...< Di < ... < pmavpllapéa"'vp;a
P €EPDL < ph < o< Pl < oo < Pl DL X D2 X oo XD XX
Pm # Py X Py X oo X pp X oo X P, UkmeNlukmeNg("'(UkieNlukieN;("‘(
Uk2eN1uk2€N*{(plfl X phr ox ox pltox L x pEm) s k€ NED) L)) LLON
2

1k 1k 1k,
Uk, eny0kens - (Uksenyorien G- - (Ui enuraeng 1017 XD X xpit XX

plkm) ik € N*})..)))...) = 0 and given Lemma 6, ¥p1,pa2,..,Di,---,Pm €
Popr <po<...<pi<...<pm, Pa({n € 24 : F' € {odd}}) = 3, by apply-
ing Lemma 1 we can deduce that Pp, ({n € B,, : F' € {odd}}) = Ps({n €
24 F' € {odd}}) = 1, Pp, ({n € By, : F' € {even}}) = Py({n € 24 : F' €
{even}}) = 1 and Pg,,(25,,) = Pg,,({n € B, : F' € {odd}}) + Pg,,({n € B, :
F’ € {even}}) = § + = 1. Having shown for any m € N*, m > 2, Theorem
4 immediately follows.
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5/ n belongs to N*

THEOREM 5. To draw randomly any integer n from N* then the proba-
bility that F being odd is equal to the probability that F being even which is %
That 1is, considering the probability space (2o = N*, Fo = {0,{n e N* : F/ €
{odd}},{n € N*: F’ € {even}}, 20}, Po : Fo — [0,1]) then :

Po({n e N*: F' € {odd}}) = Po({n e N* : F/ € {even}}) = %

Proof

Since N* = A U Ay U UmeN,m>2 B,, and At N Ay = 0, Vm € N,m >
20 NB,, =0, Vm € Nym > 2,As N B, = 0, Ym,m' € N,m,m’ > 2,m
m/,B,, N B,,, = ) and given Theorem 1,Theorem 2 and Theorem 4, by
applying Lemma 1, we can deduce that Po({n € N*: F’ € {odd}}) = Po({n €
N*: F' € {even}}) = 5 and Po(2) = Po({n € N* : F' € {odd}}) + Po({n €
N*: F’" € {even}}) = § 4+ 4 = 1; which establishes Theorem 5.

6/ The limit of the summatory Liouville function divided by VN

THEOREM 6. Let L(N) = A1)+ A(2)+...+A@) +...+A(N), A>4) being
the Liouville function applied to i € N*, be the summatory Livouille function up
to N € N* then :

Proof

Let us consider (X1, Xo,...,X;,...,Xn), N € N* a sequence of N inde-
pendent and identically distributed random variables X;, where X; is defined
as the random variable consisting in drawing randomly any integer n € N* in
order to note as the outcome the value given by the Liouville function such that
X;(n) = A(n). That is to say that Vi € N* by considering the probability space
(2 =N"F ={0,{n e N*: I’ € {odd}},{n € N* : I/ € {even}}, 2}, P({n €
N* : F’ € {odd}}) = %) - given Theorem 5 — and the measurable space
(B ={-1,1} ,& = 27), X, is defined as the random variable X; : 2 — FE such
that Vw € {n € N*: F' € {odd}}, X;(w) = AMw) = -1l and Vw € {n e N*: F' €
{even}}, X;(w) = A(w) =1 with P(X; = -1) = P({w € 2| X;(w) = —1}) =
and P(X; =1) = P{w € 2| X;(w) =1}) = 3.

By noting E[X;] the mean of X; and Var[X,] the variance of X;, we then
have E[X;] =0 and Var[X;] = 1.

Let +N.Sy be the random variable such that +N.Sy =

X1+ X0+ . 4+ Xi+..+ XN
~ .

(Lindeberg-Lévy central limit theorem), it comes that as N tends to infinity,

By applying the classical central limit theorem
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the series of random variables v/1.S1,v/2.Ss,...,vV/N.Sy,..., converges in
distribution to the random variable X with X ~ A(0,1). That is to say that :

VN.Sy —L s X ~ N(0,1)
N—+oo

where the random variable X follows the standard normal distribution
N(0,1).
L(N)

L(N) being the summatory Liouville function up to N, N is a spe-

cific value that the random variable v/N.Sy takes for the specific outcome
L(N)
VN

that the random variable X takes for the specific outcome sequence where
Vi € N*, X, (i) = A(3).

By definition the equiprobability over N* given by Theorem 5 means that
the probability to draw randomly either {—1} or {1} from the outcome sequence
(A1), A(2),...,A(),...,\(N)) as N tends to infinity is equiprobable. That is
to say that by definition : if one considers the random experiment consisting in
drawing randomly any element from the sequence (A(1), A(2),..., A(?), ..., A(V))
as N tends to infinity then the probability space associated to the latter random
experiment is (25 = ;e {A(@)}, Fs = {0, {\(7) : A(@) = —1,4 € N*}, {A(0) :
Ai) = 1,i € N*}, 25}, Ps : Fg — [0,1]) with {n € N* : I’ € {odd}} € Fn &
{neN": F €{odd}} € F< {Al): A(i) = —1,i € N*} € Fg and Pp({n €

N*: F' € {odd}}) = P(X; = —1) = Ps({\(i) : A(i) = —1,i € N*}) = L.

sequence where Vi € [1,N],X;(i) = A(¢) and lim is a specific value
N —+oco

L(N
Thus, by noting [ = lim M, [ corresponds to the mode of X ~ N(0,1)
N—+4oo /N

by definition. Indeed the standard normal distribution of X ~ A(0,1) gives us

1>06P(X <I)> L= P(X;=-1)> Ps({A() : A@) = —1,i € N*}) (a)

That is : [ > 0 is equivalent to P(X <) > % which means that it is strictly
more probable to have outcomes of X that are lesser or equal to [ than to have
outcomes of X that are strictly greater than [. Thereafter, given that it is strictly
more probable to have outcome sequences of X in which the events {X; = —1}
have occurred more than the events {A(7) : A(¢) = —1,i € N*} have occurred in
the outcome sequence of [, than to have outcome sequences of X in which the
events {X; = —1} have occurred less than the events {A(¢) : A\(i) = —1,i € N*}
have occurred in the outcome sequence of I, therefore P(X; = —1) > Ps({A(¢) :
A(i) = —1,i € N*}) which establishes (a).

I<0ePX <)< % = P(X; =—-1) < Ps({\(¢) : A(i) = —1,i € N*}) (b)

That is : [ < 0 is equivalent to P(X <) < % which means that it is strictly

less probable to have outcomes of X that are lesser or equal to [ than to have
outcomes of X that are strictly greater than [. Thereafter, given that it is strictly



18 NHAT-ANH PHAN

less probable to have outcome sequences of X in which the events {X; = —1}
have occurred more than the events {A(7) : A(¢) = —1,7 € N*} have occurred in
the outcome sequence of [, than to have outcome sequences of X in which the
events {X; = —1} have occurred less than the events {A() : A(7) = —1,7 € N*}
have occurred in the outcome sequence of [, therefore P(X; = —1) < Pg({\(¢) :
A7) = —1,7 € N*}) which establishes (b).

Additionally given (a) and (b) :

(I is not well-defined) = [ #0 < (I >0)U(l < 0) = (P(X; = —1) >
Ps({A() : M(i) = —1,i € N*}))U(P(X; = —1) < Ps({A(%) : A\(¢) = —1,i € N*}))
(c)

That is : if [ is not well-defined then by definition I # 0 which is equivalent to
(I > 0)U(l < 0) which given (a) and (b) implies that (P(X; = —1) > Pg({A(?) :
Ai) = —1,i e N*})) U (P(X; = —1) < Ps({\(%) : A(4) = —1,i € N*})) which
establishes (c).

It follows that by taking the contraposition of (c) :

—((P(Xi = =1) > Ps({A(@) = A() = —1,i € N*}) U (P(X; = —1) <
Ps({\(3) : A(i) = =1,i e N*}))) & ((P(X; = =1) < Ps({\(¥) : A\(i) = —1,i €
N}) N (P(X; = =1) = Ps({A(i) : A(i) = —1,i € N}))) & P(X; = —1) =
Ps({\@) : A1) = -1,i e N*} ) = =((I>0)U(l <0) < (I =0) = —( is not
well-defined) < (I is well-defined)

Said otherwise : P(X; = —1) = Ps({\(i) : A(i) = —1,i e N*}) = [ =0

Given that by definition : P(X; = —1) = Ps({A\(i) : A(1) = —1,i € N*}) =
%, therefore [ = 0. Thus Theorem 6 is established.

7/ The Riemann hypothesis

THEOREM 7. By the Riemann hypothesis it is understood the hypothesis
according to which all the complex numbers s € C, 0 < R(s) < 1, such that
C(s) = 0, ¢ being the Riemann zeta function (B. Riemann, 1859, in [1]), are

located on the abscissa % of the complex plane then :

Theorem 6 implies the veracity of the Riemann hypothesis.

Proof

The Dirichlet series for the Liouville function for s = o + it , where R(s) =
0,0 € RT™ 3(s) = it,t € R, gives us the following relation (E. Landau, 1909,
n[2]) foro >1:

<(2s -

n=1

furthermore given that A(0) = L(0) = 0 as A(1) = L(1) = 1 — similarly to
E. Landau, 1909, in [3] - :
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then — similarly to P. Turdn, 1948, in [4] — as L(z) remaining constant for
re€nn+1:

EZam T L)
Z :s'/ms-{—ldz‘

(Let us remark that P. Turdn, 1948, in [4] has exposed a very similar equa-
tion where the summatory Liouville function is being substituted by a different
step function that remains constant on [m, m + 1[,m € N; namely the function
9 — A(v) »

X % X%

Theorem 6 implies that for ¢ € R**, ¢ arbitrarily small, 3IM € R**, M >
1, such that Vo € RT™, 2z > M we have :

0< Lf) <e
2
then for § € RT* :
L(x)
O<‘ S+1+s < :c16+5

which implies that — as L(z) belng a step-function with changes only at

each strictly positive integer and being a function that is differentiable

1+1+6
on [1,4o00[ —
Foo +oo
L 1
M T M

so that clearly — as the integral on the right side exists, is convergent and

too
non null - 3C € R™*, C ==. f 1+5 dp =M= 5 a constant such that :

de < C

0<I‘L(w

Li1+s

Now considering for ¢ > 0 that :
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L(x)
PEES!

L(x)
ToFT

dzr

L(x)
o1

L(z)
T CES!

T

M
de = [

1

“+oo
de = [

1

4+ o0 +oo
Il de + [
1 M

Then for o > 0, given that Vz € [1, M],0 < |L(z)| < M by definition and
Va € [1, M],z # 0, it comes that 3C" € R**, C” a constant such that :

M
0< [ jfﬁ dz < C'
1
Thus for ¢ > §,0 = § 4+ 0,6 € R
“+oo
0< [ |29 de <C+C
1

+oo
Consequently s. [ i(fz dx is absolutely convergent for o > %
1

X %k X%

Let us note by f the complex function of the complex number s, from the

L) da.

“+oo
half-plane R(s) > 4 to C such that f(s) =s. [
1

Let sp be any complex number in the half-plane R(s) > % and s; be a
complex number in the half-plane R(s) > % and in the neighborhood of sq.
“+oo
Given that s. [ f(ﬁ dz is obviously non-constant and analytic for ¢ > 1, it
1

comes that for the complex number (so 4+ 3) in the half-plane R(s + 3) > 1
and the complex number (s; + 3) in the half-plane R(s + 3) > 1 and in the
neighborhood of (so + 3) there exists a series (ax) of complex coefficients such
that :

flor+1) = gak«sl +1) — (so+ L)JF

+oo
s. [ f(ﬂ dz being absolutely convergent for o > 1, 3zy € C such that :
1

oo
f(s1) = f(s1+3) + 20 = X ar[(s1+3) — (s0+ 5)]" + 20
k=0
By posing Ay = ag + 29 and Vk € N*, Ay, = a; we then have :
+oo
f(s1) = 3 Ap(s1 = s0)*
k=0
This demonstrates that for any complex number sq in the half-plane R(s) >
1 if one is to consider a complex number s; in the half-plane R(s) > 1 and in
the neighborhood of sy then one can write f(s1) as a convergent power series;
+oo

which means that s. f fs(ﬁ dz is analytic for o > %

1




EQUIPROBABILITY OF THE PARITY OF THE NUMBER OF PRIME FACTOR(S) 21

It follows that by analytic continuation to the half-plane R(s) > 3, @) g

¢(s)
s. +f00 TLS(_H dx
analytic for o > % (and so is ﬁ = IC(T for o > % given that {(2s) is by

definition analytic and never null for ¢ > ). Said otherwise Cc((is)) is holomorphic

on the half-plane R(s) > % and has a single zero for s = 1 which corresponds to
the simple pole of ((s) in the the half-plane R(s) > 1.

The fact that 44((25) is holomorphic for o > % implies that {(s) can never be
null for o > 1 : indeed if 32 € C, R(z) > 3, {(z) = 0 then necessarily ((2z) = 0,
R(2z) > 1, — in that if CC((QZZ)) is not a pole of CC((Q;)) in the half-plane R(s) > 1
then necessarily ¢(2z) = 0, #(2z) > 1 — which is a contradiction given that by

definition {(2s) is absolutely convergent and never null for ¢ > £. That is to say
that ¢(s) has no non-trivial zeros — i.e. zeros in the strip [0, 1] of the complex
plane — whenever o > %

(Let us remark that — as stated above — the holomorphism of

¢(2s) 1
) for o > 5

can constitute an alternate proof of the results of J. Hadamard, 1896, in [5] and
Ch. J. de la Vallée Poussin, 1896, in [6] according to which there cannot be zeros
of ¢(s) on the abscissa R(s) = 1).

It follows that by the symmetry of the non-trivial zeros of {(s) with regard
to the abscissa 1 in the complex plane (E. Landau, 1909, in [7]), there are no non-
trivial zeros of ((s) whenever o # % Consequently Theorem 7 is established.

* % X%

Additionally one can note that :

THEOREM 8. Let L(N) = A1)+ A2)+...+A@) +...+ A(N), A>4) being
the Liouville function applied to i € N*, be the summatory Livouille function up
to N € N* then Vp € ]07%] :

lim
N — 400

Proof

Following the exact same steps of the reasoning previously exposed in this
section we have :

L(N)
Nz—F

34 € RT™, lim

N —+oco

‘ < A, pG]O, ;}
L(z)

1
xr2—P

S 3ABeRM™ ITcR™* T >1Ve e R™ 2>T:0< < B
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L 1
= s. / (ﬂ dz is absolutely convergent for o > = — p
s 2
1

+oo

L 1
= s. / (fz dz is analytic for 0 > = — p
s 2

1

¢(25)
=)

L C(22) = 0,R(22) = 1 for 2 € C, R(2) = % () =

1
is holomorphic on the half-plane R(s) > 5P

= ((4z) = 0,R(4z) = 2 for 2z € C,R(22) = 1,{(22) =0,

with ((4z) = 0,R(4z) = 2, being a contradiction.
L(N)

That is to say that : if 34 € R™*, lim . p‘ < A, p €]0,%], then

No+oo | N2

AB e R™, 3T ¢ RT*, T > 1 such that Ve e RT™,2 > T, 0 <

L) )

T2

f 5+1 ) du is absolutely convergent for o > —p, then s. f >+1 ) dz is analytic
1

for o > % — p, then by analytic continuation Cc(és)) is analytic or equivalently

holomorphic in the half-plane R(s) > % —p as s. f Lb(fl dz is obviously non-

constant and analytic in the the half-plane R(s + 3 4+ p) > 1, then ((2z) = 0,
R(2z) =1, for z € C, R(z) = 1, ((2) = 0, the existence of which can be admitted

given the result of J. P. Gram, 1903, in [8], — in that if CC((QZ)) is not a pole of

CC((QSS)) in the half-plane R(s) > 3 — p then necessarily ((2z) = 0, R(2z2) = 1 -

, then ((4z) = 0, R(4z) = 2, for 2z € C, R(22) = 1, ((22) = 0, — in that

1f 2%2 g is not a pole of CC(( s)) in the half-plane R(s) > % — p then necessarily

¢(4z) = 0, R(4z) = 2, — which is a contradiction given that by definition {(4z)
is absolutely convergent and never null for R(4z) > 1; which establishes that

L(N)
Nz,

Using big © Landau notation : Theorem 6 means that L(N) € o(v/N)
while Theorem 8 means that L(N) ¢ O(Nz2~°),p e 10,1].

lim
N —+oc0

=400, p € ]O 7] and therefore Theorem 8.

X %k ok ok ok

Besides, let us remark that L. Menici, 2012, in [9] has briefly mentioned

as a theorem (1.4.2) the equivalence between the Riemann hypothesis and the
L(N

limit lim (1 ) = 0,e > 0, and further commented that ”RH is equivalent to
N—+oo N§+E
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the statement that a natural integer n has equal probability of having an odd
or even number of distinct prime factors (counted with multiplicity).”

However L. Menici has not provided any specific reference nor further infor-
mation on how such results can be obtained. It was therefore unknown how the
said equiprobability could have been possible. Furthermore, given Theorem 6
one can note that the comment by L. Menici in [9] is in fact not totally cor-
rect in that the equiprobability that any non null natural integer has an odd or
even number of primes factor(s) counted with multiplicity actually implies that

L(N L(N
lim ( 1) = 0 precisely and not lim # = 0,e > 0. Nonetheless, it was
No+too N3 N—+oo N32T€

in L. Menici’s writing that the present author has encountered for the first time
the mentioning of a relation between probability and the Riemann hypothesis.

Last but not least, let us remark that the proofs of Theorem 5 and The-
orem 6 are self-standing and elementary in that the proofs do only rely on :
enumerations performed on probability spaces defined in accordance with the ax-
ioms of probability, the Lemma 1, the Lemma 2, the Lemma 3, the Lemma
4, the classical central limit theorem and the standard normal distribution. In
this regard, it is very much remarkable that Theorem 5 and Theorem 6 be-
ing self-standing and elementary, do actually imply the veracity of the Riemann
hypothesis.
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APPENDIX

A posteriori, let us remark that the expression ”outcome sequences of X in
which the events {X; = —1} have occurred more than the events {A(i) : A\(i) =
—1,4 € N*} have occurred in the outcome sequence of [” on the page 16 of the
present article, can be reformulated more formally.

Let O € RU {+00} U {—0o0} be a given outcome of the random variable
X. Let us note by to(N) the function that counts the number of occurrences
of {—1} in the outcome sequence of O up to N, including N, N € N*, and by
t;(N) the function that counts the number of occurrences of {—1} in the outcome
sequence of [ up to IV, including N, N € N*.

For O <[ we then have :

O <1, by definition,
. [N —=to(N)] —to(N) .
< Jim JN = N
[N —to(N)] —to(N)] — [[N — ti(N)] — ti(N)]
N oo \/N
i 2tolV) +24(N) _
< Jim N Pl \ﬁ
o lim [~240(N) + 2.(N)] <0

N —+o00
& lim to(N) > lim tl(N)
N—+oco N—+oc0

Thus more formally : a given outcome O of X "in which the events
{X; = —1} have occurred more than the events {A(i) : A(i) = —1,7 € N*} have
occurred in the outcome sequence of I” is an outcome such that NlirJrrl to(N) >
i)

Similarly, a given outcome O of X ”in which the events {X; = —1} have
occurred less than the events {A(¢) : A(i) = —1,i € N*} have occurred in the
outcome sequence of [” is an outcome such that lim to(N) < Nl_l)r_{l ti(N).

N—+oo
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