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Abstract 

This paper completes the analysis of the 1/r and a/r2 Coulomb and nuclear potential functions through a 

consequent analysis of the mass-energy equivalence using the standard orbital energy formula (Kepler’s 

third law) and ensuring (physical) dimensional consistency. The function yield the desired crossing of 

potentials and the expected combined potential well function.  

Further analysis of the qe/m and gN/m charge/mass-energy ratios and the different nature of the 

singularities at the center may explain the rather enormous proton/neutron energy/mass when 

accepting a Yukawa/Schrödinger-type nuclear force and potential. 

The model has the advantage of not introducing new fundamental constants (except for the nuclear 

charge gN), respecting relativity theory (no superluminal speeds), and confirming Planck’s quantum of 

action as the fundamental unit of physical action (h) and angular momentum (ħ) in particle-field 

exchanges of energy and momentum.  
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The neutron as an electric dipole 
Introduction 
In our previous paper1, we analyzed the nuclear force between the neutron and the proton inside of the 

deuteron nucleus (D = n + p) as an electrostatic attractive force between an electric dipole field arising 

from the (neutral) neutron dipole (n = p + e) and the (positive) electric charge of the proton. Let us think 

of the dipole concept first, before we go on to think about the neutron. Figure 1 shows two opposite 

charges and the equipotential and field lines of the dipole field they create. 

 

Figure 1: Equipotential (V, solid lines) and electric field (E, dashed lines) in a dipole field 2 

The limits of this approach are immediately obvious: we have zero potential along the midperpendicular 

(line segment bisector) between the two charges, which implies no work is done when bringing a charge 

from infinity to the midpoint along this line. Other trajectories from infinity to the zero potential line 

would involve no net work but consist of positive work nullified by negative work. Such trajectories 

should be analyzed in the context of the minimum or least action principle, which tells us a charge will 

follow a trajectory which lowers its total energy (kinetic and potential) by moving along a path which 

minimizes (physical) action, which we may write as3: 

𝑆 = ∫ (KE − PE)d𝑡
𝑡2
𝑡1

. 

In plain language, a negative charge will go and sit right on top of the positive charge, while a positive 

charge will want to join the negative charge. 

The electric dipole model also remains silent on what keeps the positive and negative charge 

separate⎯not approximately but exactly. Indeed, why don’t they too just go and sit right on top on 

each other?  

 
1 The electromagnetic deuteron model, December 2020. 
2 The illustration was taken from a commercial sales site for fiber optic equipment. 
3 For a full development of the least action principle – both from a classical as well as a quantum-mechanical 
perspective – we refer to Feynman’s Lectures, Volume II, Chapter 19 (The Least Action Principle). We think its 
central place (middle of Volume II) is no coincidence. 

https://www.fiberoptics4sale.com/blogs/electromagnetic-optics/108693510-electric-dipole
https://www.fiberoptics4sale.com/blogs/electromagnetic-optics/108693510-electric-dipole
https://www.feynmanlectures.caltech.edu/II_19.html
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The nuclear dipole and the Zitterbewegung (ring current) hypothesis 
The idea is this: 

⎯ The positive and negative charge cannot be a matter-antimatter pair because otherwise they 

would annihilate each other.4 

⎯ The two charges have energy so they must be in a dance together.5 

⎯ They are, therefore, spinning and act like two wires with like currents, or two spinning charges 

with a magnetic moment that separates them magnetically.6 

⎯ Planck’s quantum of action (ħ) gives us the angular frequency and the radius of the oscillation 

(we will calculate this in a minute), and we may assume the oscillation packs one unit (ħ) of 

physical action.7  

OK. So how does that work, then?  

We may apply a ‘mass without mass’ – or, to be more precise, an electromagnetic mass – model to the 

neutron-electron so as to calculate the radius of the oscillation. The energy difference between the 

deuteron nucleus (about 1875.613 MeV) and its two constituents (neutron and proton) in their unbound 

state (939.565 MeV + 938.272 MeV = 1,877.837 MeV) is negative and equal to about 2.23 MeV. This 

shows the proton and neutron are happy to dance together and the oscillation should be of the order of 

2.23 MeV per cycle. So 2.22 MeV is the sum of the potential and kinetic energy in the oscillation, and it 

must also pack one unit of ħ, and the charges go at lightspeed, and all of the energy is the oscillation and 

we may, therefore write its equivalent mass as E/c2? Yes. The model is summarized below:  

E = m𝑐2

E = ℏω
} ⇒ m𝑐2 = ℏω

𝑐 = 𝑎ω⟺ 𝑎 =
𝑐

ω
⟺ ω =

𝑐

𝑎

} ⇒ m𝑎2ω2 = ℏω⟹ m
𝑐2

ω2
ω2 = ℏ

𝑐

𝑎
⟺ 𝑎 =

ℏ

m𝑐
 

The calculation yields this for the charge radius8: o calculate the charge radius using the electromagnetic 

mass model, we must use the mass factor in the a = ħ/mc by the (equivalent) orbital energy. We, 

therefore, get the following charge radius9: 

 
4 At first sight, matter and antimatter differ only by spin. See my paper on issues and gaps in the ring current model 
of elementary particles. 
5 See Feynman’s explanation of the size of an atom. 
6 A positive current in one direction is equivalent to a negative current in the other direction. Assuming the charge 
has zero rest mass and, therefore, zitters around at the speed of light, assigning a magnetic or electric nature to 
the force depends on the reference frame only. 
7  (Wirkung (German) captures the essence of the force) 
8 We equate this to the radius of oscillation but, of course, the usual caveats apply: this will be an average only 
with elliptical orbitals, and the radius of effective charge-photon radius will be larger because including the 
electromagnetic field itself. 
9 The ħc factor and its dimension can easily be verified from using the 6.58210−16 eV·s value for ħ and the 

299,792,458 m/s value for c and, of course, we should not forget to convert m into fm (10−15 m): 
ℏ𝑐 = (6.582119569 × 10−16) ∙ (299,792,458) eV ∙ m 

≈ (1,973,269,804 × 10−16 eV) ∙ (1015 fm) ≈ 197.327 MeV ∙ fm 
   

https://vixra.org/abs/2003.0582
https://vixra.org/abs/2003.0582
https://www.feynmanlectures.caltech.edu/III_02.html#Ch2-S4
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𝑎 =
ℏ

m𝑐
=

ℏ

E
𝑐2
𝑐
=
ℏ𝑐

E
≈
197.327 MeV ∙ fm

2.224 MeV
≈ 88.7 fm 

About 110 times the neutron radius ! This is, clearly, an impossible value, which is why we do not believe 

the electron and the proton inside of a neutron are held together by the electromagnetic force: we must 

assume some nuclear force. At the same time, we do want to keep thinking of the neutron-proton 

combination as the electric dipole. So how does that work? Some polar structure because the electron 

blanket will oscillate back and forth between the two protons, and Schrödinger’s Platzwechsel (change 

of place) model of a deuteron nucleus is a model of the oscillation of the electron cloud?10 And we 

should think of that as a nuclear force oscillation too, somehow? And we should now invent a nuclear 

charge, isn’t it? 

Correct. We actually might have a candidate particle here: the neutrino. Could it behave like a zbw 

oscillation when at rest and becoming more photon-like when free?11 How does this work? We have the 

mass factor in the denominator of the formula for the Compton or zbw (Zitterbewegung) radius, so it 

must increase as the mass of our particle increases with speed. Conversely, the mass factor is present in 

the numerator of the zbw frequency, and this frequency must, therefore, also increase with velocity: we 

have a simple (inverse) proportionality relation here. The idea is visualized in the illustration below12: 

the radius of the circulatory motion must effectively diminish as a linear component gets added to the 

tangential component of the velocity of the pointlike zbw charge.  

 

Figure 2: The Zitterbewegung radius must decrease with increasing velocity13 

 
10 See the history section in the Wikipedia article on the Yukawa potential.  
11 Interestingly, the latest hypothesis (according to Wikipedia, at least) with regard to neutrinos is that they would 
have some non-zero rest mass and, therefore, do never quite attain the speed of light. However, it mentions that 
existing measurements for MeV to GeV neutrinos provided upper limits for deviations of approximately 10−9, or a 
few parts per billion and that, within the margin of error, this is consistent with no deviation at all. Hence, the 
question may not have been solved yet. 
12 We thank Prof. Dr. Giorgio Vassallo and his publisher to let us re-use this diagram. It originally appeared in an 
article by Francesco Celani, Giorgio Vassallo and Antonino Di Tommaso (Maxwell’s equations and Occam’s Razor, 
November 2017). 
13 The illustration assumes the plane of oscillation is perpendicular to the direction of propagation. Needless to say, 
this assumption is rather random. The reader may want to imagine that the plane of oscillation rotates or oscillates 
itself. He should not think of it of being static – unless we think of the charge moving in a magnetic field, in which 
case we should probably think of the plane of oscillation as being parallel to the direction of propagation. We will 
let the reader think through the geometric implications of this. 

https://en.wikipedia.org/wiki/Yukawa_potential
https://en.wikipedia.org/wiki/Measurements_of_neutrino_speed
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When the velocity goes to c, the circumference of the oscillation must turn into a linear wavelength in 

the process, and we have a photon-like particle!14 This rather remarkable geometric property related 

our zbw electron model with our photon model, which we will not talk about here, however.15 

All sounds nuts. Yes. Is there an alternative? I do not see one. Let us try to organize our thoughts a bit 

more precisely here. 

Binding energies, electromagnetic mass, and charge radii 
Of course, we do not think of the neutron as a linear structure. In fact, the charge radius of a free 

neutron (Rc) is assumed to be zero: it only has a magnetic radius (Rm), whose rms value is about 0.8 fm. 

 

Figure 3: The neutron model and the concepts of charge and magnetic radius (Rc and Rm)16 

Measuring the magnetic radius of a free neutron is difficult because a neutron is stable only inside of a 

nucleus. Indeed, we already mentioned how the instability of the neutron might be reflected in a 

positive energy difference ( 1.3 MeV) between the neutron ( 939.565 MeV) and the proton ( 938.272 

MeV). This energy range (1.3 MeV) is about 2.5 times the energy of a free electron but is only a tiny 

fraction of the energy of a π meson (139.57 MeV) or the muon-electron (105.65 MeV), which is why we 

find the reference to a π− cloud in the illustration rather misplaced. 

Before we continue, let us quickly put this energy value into perspective once more: the energy 

difference between the deuteron nucleus (about 1875.613 MeV) and its two constituents (neutron and 

proton) in their unbound state (939.565 MeV + 938.272 MeV = 1,877.837 MeV) is negative and about 

1.7 times our 1.3 MeV value binding energy of the negative charge in an n = p + e model of the neutron. 

Erwin Schrödinger, therefore, effectively proposed a Platzwechsel model for the deuteron nucleus: the 

neutron-proton and the proton-proton should continually swap spots. 

 
14 We may, therefore, think of the Compton wavelength as a circular wavelength: it is the length of a 
circumference rather than a linear feature! 
15 We may refer the reader to our paper on Relativity, Light and Photons. 
16 Illustration from Christoph Schweiger’s presentation on the electron-scattering method, and its applications to 
the structure of nuclei and nucleons (8 January 2016). Schweiger took these illustrations from Robert Hofstadter’s 
1961 Nobel Prize Lecture, which has the same title. However, we find Schweiger’s added neutron model and the Rc 
= 0 and Rm = 0.76 fm formulas very didactic.   

https://vixra.org/pdf/2001.0345v4.pdf
https://www.physi.uni-heidelberg.de/~reygers/seminars/2015/nobel_prizes_in_particle_physics/talks/schweiger_structure_of_nuclei.pdf
https://www.physi.uni-heidelberg.de/~reygers/seminars/2015/nobel_prizes_in_particle_physics/talks/schweiger_structure_of_nuclei.pdf
https://www.nobelprize.org/uploads/2018/06/hofstadter-lecture.pdf
https://www.nobelprize.org/uploads/2018/06/hofstadter-lecture.pdf
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It is probably good to detail the assumptions once more here: 

⎯ All of the energy is in (1) the oscillation of the charge (no rest mass, and orbitals can be circular 

or elliptical, with v and c as tangential velocity vectors17: E = mc2), and (2) the relativistic or 

effective mass of the charge.  

⎯ The model does not incorporate any spin angular momentum of the charge itself: all angular 

momentum is orbital. The Planck-Einstein relation then expresses the quantization of the orbital 

angular momentum and can, therefore, be written as a vector equation as well: E = ħ·ω. The 

angular velocity – for circular as well as elliptical orbitals – is given by ω = dθ/dt = v⊥/r or, in 

vector notation, ω = rv/r2.  

⎯ The radial force is the electrostatic Coulomb force and the energy in the orbital is, therefore, an 

energy per unit charge, and the energy equation for the orbital must, therefore, also be written 

in terms of E/q. For the (physical) dimensions to make sense, we must also write the (orbital) 

kinetic energy as energy per unit charge. The orbital energy equation (and its physical 

dimensions) can then be written as: 

E

q
=
KE + PE

q
=
1

2

m𝑣2

q
−
μ

𝑟
=
1

2

m𝑣2

q
−
kqe
𝑟
=
1

2

m𝑣2

q
+

qe
4πε0𝑟

 

[
E

q
] = [

1

2

m𝑣2

q
+

qe
4πε0𝑟

] =
kg
m2

s2

C
+

C

C2

Nm2m
=
N
s2

m
m2

s2

C
+
Nm2

Cm
=
Nm

C
+
Nm

C
=
Nm

C
 

We believe the energy per unit charge formula is relativistically correct because the kinetic energy uses 

the velocity v along the orbital (which is denoted as escape velocity ve
18). We may also already not the 

m/q factor, which is the inverse of Bohr’s magneton q/m. Indeed, we think of elementary particles as 

spin-1/2 particles. Hence, their gyromagnetic ratio19 is ½ because of the following identity20: 

μ

L
= g ∙

q

m
=
1

2
∙
q

m
⟺

m ∙ μ

q ∙ L
=
1

2
 

 
17 The tangential velocity v is equal to c for circular orbits. When considering elliptical orbitals, lightspeed is 
reached only when the charge passes the center (zero potential energy: all energy is kinetic). When treating both 

rest as well as relativistic mass (m0 and m = m0) as electrostatic mass only, the Lorentz factor () can be expanded 
to yield the following series expansion of the total energy: 

m𝑐2 =
qe
2

4πε0

1

𝑟
(1 +

1

2
β2 +

3

8
β4 +⋯) 

Dimensions are easily checked when not confusing the mass symbol m (expressed in kg or N·m/s2 units) with the 
distance unit (meter): 

[m] = [
E

𝑐2
] = Nm

s2

m2
= N

s2

m
= kg = [

U(𝑟)

𝑐2
] = [

qe
2

4πε0

1

𝑟

1

𝑐2
] =

C2

C2

N ∙ m2

s2

m3
= N

s2

m
= kg 

18 See the MIT OCW reference course on central force motion. 
19 The gyromagnetic ratio is usually denoted as g but symbols become quite confusing, especially when considering 
the μ in the g = μ/L equation below is the magnetic moment (not the standard electromagnetic parameter). 
20 See our paper on a speculative but realist interpretation of quantum physics based on the ring current model. 

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec16.pdf
https://www.researchgate.net/publication/342011103_Lectures_on_Physics_Chapter_I_Quantum_Behavior
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𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛: 
me ∙ μe
qe ∙ Le

=
me ∙

qeℏ
2me

qe ∙ ℏ
=
1

2
 

𝑚𝑢𝑜𝑛: 
mμ ∙ μμ

qe ∙ Lμ
=

mμ ∙
qeℏ
2mμ

qe ∙ ℏ
=
1

2
 

𝑝𝑟𝑜𝑡𝑜𝑛: 
mp ∙ μp

qe ∙ Lp
=

mp ∙
2qeℏ
mp

qe ∙ 4ℏ
=
1

2
 

The importance thing to note here is that we can write the angular momentum L as: 

𝐿 =
1

2

q

m
⟺

m

2q
=

1

4𝐿
 

How do we reconcile this with the view that the total angular momentum of such orbitals packs one 

ħ⎯not a half-unit ħ/2!  

Hmm… That is complicated. We must assume the angular momentum captures half of the energy only – 

the kinetic energy – and that the other half must be in the electromagnetic field. Logical? You tell me. 

We will need this later, so let us write it down and see where we get:  

𝐿 =
q

m
⟺

m

2q
=

1

2𝐿
 

OK. Let us now move on the calculation, which should yield yet another radius value.   

To calculate the charge radius using the electromagnetic mass model, we must use the mass factor in 

the a = ħ/mc by the (equivalent) orbital energy. We, therefore, get the following charge radius21: 

𝑎 =
ℏ

m𝑐
=

ℏ

E
𝑐2
𝑐
=
ℏ𝑐

E
≈
197.327 MeV ∙ fm

1.293 MeV
≈ 152 fm 

About 71.716 times the deuteron charge radius ! This is, clearly, yes another impossible value, which is 

why we do not believe the electron and the proton inside of a neutron are held together by the 

electromagnetic force: we must assume some nuclear force.  

The neutron oscillation and elliptical orbitals 
The (electric) dipole field of a single charge from a binomial expansion of the terms of the potential in d, 

which is the distance between the two opposite charges +q and −q, which we will want to equate with a 

pointlike but massive proton and a Zitterbewegung (zbw) electron consisting of a pointlike negative 

charge moving in and out.  

 
21 The ħc factor and its dimension can easily be verified from using the 6.58210−16 eV·s value for ħ and the 

299,792,458 m/s value for c and, of course, we should not forget to convert m into fm (10−15 m): 
ℏ𝑐 = (6.582119569 × 10−16) ∙ (299,792,458) eV ∙ m 

≈ (1,973,269,804 × 10−16 eV) ∙ (1015 fm) ≈ 197.327 MeV ∙ fm 
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The pointlike zbw charge reaches maximum velocity (c) when passing through the center of the radial 

field and overshooting it. Its motion, therefore, combines a radial and a tangential component. The 

image of a 3D polar rose comes to mind here (Figure 4). 

 

Figure 4: Polar rose : r() = a0·cos(k0 + 0) 

The phase  = ·t is given by the (angular) frequency  = E/ħ, in which E must represent the total energy 

of the oscillation⎯kinetic + potential which, using the binomial theorem, can be written as22:  

m𝑐2 = m0𝑐
2 +

1

2
m0𝑣

2 +
3

8
m0

𝑣4

𝑐2
+⋯ = m0𝑐

2 (1 +
1

2

𝑣2

𝑐2
+
3

8

𝑣4

𝑐4
+⋯)

= m0𝑐
2 (1 +

1

2
β2 +

3

8
β4 +⋯) 

The relativistically correct formula for kinetic energy defines kinetic energy as the difference between 

the total energy and the potential energy: KE = E − PE. The potential energy must, therefore, be given by 

the m0c2 term. This term is zero for r = 0 but non-zero because of the potential energy in the radial field 

at distances r  0. The total energy of a charge in a (static) Coulomb field is given by23: 

U(𝑟) =
qe
2

4πε0

1

𝑟
 

The potential itself is equal to V(r) = U(r)/qe:  

V(𝑟) =
U(𝑟)

qe
=

qe
4πε0

1

𝑟
 

 
22 The total energy is given by E = mc2 = m0c2 which can be expanded into a power series using the binomial 

theorem (Feynman’s Lectures, I-15-8 and I-15-9 (relativistic dynamics). He does so by first expanding m0: 

m =
m0

√1 +
𝑣2

𝑐2

= m0(1 +
1

2

𝑣2

𝑐2
+
3

8

𝑣4

𝑐4
+⋯) 

This is multiplied with c2 again to obtain the series in the text. 
23 U(r) = V(r)·qe = V(r)·qe = (ke·qe/r)·qe = ke·qe

2/r with ke  9109 N·m2/C2. Potential energy (U) is, therefore, 
expressed in joule (1 J = 1 N·m), while potential (V) is expressed in joule/Coulomb (J/C). Since the 2019 revision of 
the SI units, the electric, magnetic, and fine-structure constants have been co-defined as ε0 = 1/μ0c2 = qe

2/2αhc. 

The CODATA/NIST value for the standard error on the value ε0, μ0, and α is currently set at 1.51010 F/m, 1.51010 

H/m, and 1.51010 (mathematical dimension only), respectively.          

https://www.feynmanlectures.caltech.edu/I_15.html#Ch15-S8
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We could define the kg (mass) in terms of newton (force) and acceleration (m/s2). Can we do the same 

for the coulomb? Rewriting the energy equation as a function of the relative velocity and the radial 

distance r does the trick: 

m𝑐2 =
qe
2

4πε0

1

𝑟
(1 +

1

2
β2 +

3

8
β4 +⋯) 

We may say this defines the mass of the pointlike charge as electromagnetic mass only, which now 

consists of a kinetic and potential piece. The energy in the oscillation, therefore, defines the total mass 

m = E/c2 of the neutron electron (n = p + en). The kinetic energy is thus given by24: 

KE = m𝑐2 − U(𝑟) =
qe
2

4πε0

1

𝑟
(1 +

1

2
β2 +

3

8
β4 +⋯) −

qe
2

4πε0

1

𝑟
=

qe
2

4πε0

1

𝑟
(1 − 1 +

1

2
β2 +

3

8
β4 +⋯) 

=
qe
2

4πε0

1

𝑟
(
1

2
β2 +

3

8
β4 +⋯) 

The first term in the series gives us the non-relativistic kinetic energy 
qe
2

4πε0

β2

2

1

𝑟
. In line with the usual 

convention for measuring potential energy, we will now set the reference point for potential energy at 

zero at infinity, and the potential energy will, therefore, be defined as negative, going from 0 for r →  

to − for r → 0. This makes for a negative total energy which is in line with the concept of a negative 

ionization energy for an electron in an atomic orbital which, for a one-proton atom (hydrogen), is given 

by the Rydberg formula.  

Analogy between the gravitational radial field and the Coulomb field 
We established an analogy between gravitational masses and electromagnetic mass above. We will soon 

introduce Kepler’s third law, which gives us the cycle time of a mass of 1 kg (the mass unit) in orbital 

around a mass M25: 

T = 2π√
𝑎3

μ
= 2π√

𝑎3

GM
 

The formula uses the concept of the standard gravitational parameter μ = GM. The physical dimension 

of G and M cancel out nicely when writing the gravitational constant G as (approximately) 

6.67410−11 m3⋅kg−1⋅s−2, which is what most textbooks (and Wikipedia) do. So if we are going to 

describe a charge in orbit, we should use the electric constant k = 1/4πε0, whose physical dimension is 

equal to [k] = [1/4πε0] = N·m2/C2: N·m2 divided by the square of the charge. How comes m3/kg⋅s2 does 

not look like that? The answer is: it amounts to the same. We can relate the unit of mass (expressed in 

kg) to a force (expressed in newton) through Newton’s second law: a force of 1 N will give a mass of 1 kg 

 
24 In line with the usual convention for measuring potential energy, we will set the reference point for potential 
energy at zero at infinity. 
25 We gratefully acknowledge the MIT OCW course on central force motion for the formulas. We consider orbital 
angular momentum only and we are, therefore, essentially modelling spin-zero particles neglecting the spin 
angular momentum (S) in the (vector) spin-coupling equation J = L + S. We assume orbital angular momentum 
respects the Planck-Einstein relation: L will, therefore, be an integer multiple of Planck’s quantum of action ħ: L = 
n·ħ = n·E/ω. We note the IAEA logo shows elliptical orbitals (closed trajectories) too ! 

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec16.pdf
https://en.wikipedia.org/wiki/Angular_momentum_coupling
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an acceleration of 1 m/s2. Hence, 1 kg = 1 N·s2/m. Hence, a squared kg is equivalent to [1 N·s2/m]2 

Inserting this into the structure of the proportionality constants for all inverse-square force laws, and 

then converting N back to kg so as to get that we get that m3⋅kg−1⋅s−2 expression, we get a consistent 

dimensional equation: 

N ∙ m2

(kg)2
=

N ∙ m2

(N · s2/m)2
=

N ∙ m2

N2 · s4/m2
=

m4

N · s4
=

m4

kg ∙ (m/s2) · s4
=

m3

kg · s2
= m3kg−1s−2 

The formula for the cycle time then works out nicely⎯dimensionally speaking: 

[2π√
𝑎3

GM
] =

√

m3

m3

kg ∙ s2
∙ kg

= √s2 = [T] 

So how does that work out when we have electromagnetic mass? We just need to think differently 

about the force: a force is that what changes the state of motion by changing the energy of the charge. 

Hence, we just use Einstein’s mass-energy equivalence relation: m = E/c2. Hence, 1 kg is 1 J·s2/m2 = 1 N. 

Hence, we think of the inertia of the energy rather than the inertia of the mass. Putting the same 

squared mass or energy factor in the denominator of the denominator      , and just mass/energy in the 

numerator of the denominator of that square root function for the cycle time, we get: 

[T] =

√
  
  
  
  
  m3

(
Nm2

[
E
𝑐2
]
2) ∙ [

E
𝑐2
]

= √
m3

J ∙ m ∙
[𝑐2]
[E]

= √
m2 ∙

s2

m2

J ∙
1
J

= √s2 

Now, that was not too difficult, was it? The question is now: how are we going to write our standard 

electromagnetic parameter μk? Look at our formulas with the series expansion of energies: the mc2 

factor gets replaced by 
qe
2

4πε0

1

𝑟
 and that works for both kinetic and potential energy (the radial force 

changes both). Remarkably simple. Hence, we can just write μk as μk = keqe, just like we wrote μG = GM  

and that is it.26  

So let us summarize what we have so far. We substituted an energy per unit mass for an energy per unit 

charge concept.  We need the total energy, which depends both on the velocity v as well as distance r.  

We believe this formula is relativistically correct because the kinetic energy uses the velocity v along the 

orbital (which is denoted as escape velocity ve
27). The kinetic energy is, therefore, equal to KE = mve

2/2 = 

m(ωr)2/2 = mω2r2/2. So let us think about this. We use the mass concept as a measure of the inertia to a 

change of motion as per the relativistically correct expression of Newton’s second law F = dp/dt = 

d(m·v/dt for a centripetal force, whose magnitude can also be written as the following function of the 

acceleration a:  

 
26 The difference between the m for mass and the m for meter is obvious from the context. 
27 See the referenced MIT OCW reference course. 

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec16.pdf
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F =
dp

d𝑡
=
d(γm0𝑣)

d𝑡
=
d(γ)

d𝑡
m0𝑣 + γm0

d𝑣

d𝑡
= 3m0𝑎 = 2m𝑣𝑎 

But so we will think of a force as that what changes energy. We will show we need to choose our 

reference point carefully so as to make sense of μk. 

Orbital geometries 
We will now get into the promised nitty-gritty of elliptical orbitals. The general formulas for orbital 

motion in a non-zero potential assuming closed and, therefore, elliptical orbitals with negative energy (E 

< 0) and an eccentricity less than 1 (0 < e < 0), are the following28:  

𝑟 =
𝐿2/μ

1 + 𝑒 ∙ cosθ
 

𝐿 = 𝑟2θ = |𝒓 × 𝒗| = 𝑛 ∙ ℏ = 𝑛 ∙
𝐸

ω
 

μ = (
2π

T
)
2

𝑎3 = ω2𝑎3 

We should a base state for n = 1 in the E = n·ħ equation and excited states for n > 1. As for the μ =

(
2π

T
)
2
∙ 𝑎3 = ω2𝑎3 law, this is just Kepler’s third law which calculates the frequency of any orbit around 

a large mass as a function of (i) the so-called standard gravitational parameter29 μ = G·M and (ii) a, 

which is the length of the orbit's semi-major axis: 

T = 2π√
𝑎3

μG
= 2π√

𝑎3

GM
 

Hence, for an orbital assuming all mass is electromagnetic, we get 

T = 2π√
𝑎3

μk
= 2π√

𝑎3

keqe
 

We already showed the dimensional analysis of this works out OK30 so let us now use the formula. We 

should use a trick here. We have, in effect, a very useful point to evaluate potential and kinetic energy is 

at the periapsis, where the distance between the charge and the center of the radial field is closed. The 

θ angle is there set at 0, which allows us to define r = 0 and v = c as complementary limits:  

 
28 We refer, once again, to the MIT OCW course on central force motion for the formulas. We consider orbital 
angular momentum only and we are, therefore, essentially modelling spin-zero particles neglecting the spin 
angular momentum (S) in the (vector) spin-coupling equation J = L + S. We assume orbital angular momentum 
respects the Planck-Einstein relation: L will, therefore, be an integer multiple of Planck’s quantum of action ħ: L = 
n·ħ = n·E/ω. We note the IAEA logo shows elliptical orbitals (closed trajectories) too ! 
29 When googling this, you will find plenty of references, but the Wikipedia article on elliptical orbits is OK. 

30 [2π√
𝑎3

GM
] = √

m3

m3

kg∙s2
∙kg
= √s2 = [T] 

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec16.pdf
https://en.wikipedia.org/wiki/Angular_momentum_coupling
https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes
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lim
𝑟π→0

𝑣π = 𝑐 

lim
𝑣π→𝑐

𝑟π = 0 

However, to avoid the division by zero, non-limit values for rπ and rπ are used, which we can obtain from 

the general orbital formulas: 

𝑟π =
𝐿2/μ

1 + 𝑒 ∙ cos (θ = 0)
=

𝐿2

μ(1 + 𝑒)
 

𝐿 = 𝑟2θ = |𝒓𝛑 × 𝒗𝛑| = 𝑟π𝑣π sin(θ = 0) = 𝑟π𝑣π 

⇔ 𝑣π
2 =

𝐿2

𝑟π
2
⇔ 𝑣π

2 =
𝐿2μ(1 + 𝑒)

𝑟π𝐿
2

=
μ(1 + 𝑒)

𝑟π
=
μ(1 + 𝑒)

𝑟π
=
μ2(1 + 𝑒)2

𝐿2
 

Using the L = m/q formula, we can then do calculate the eccentricity e from the orbital energy formula31: 

E

m
=
𝑣2

2
−
μ

𝑟
=
𝑣π
2

2
−
μqe
m𝑟π

=
μ2(1 + 𝑒)2

𝐿2
−
μ2(1 + 𝑒)

𝐿3
=
μ2(1 + 𝑒)2

𝐿2
−
μ(1 + 𝑒)

𝐿3
 

=
𝐿μ2(1 + 𝑒)2 − μ(1 + 𝑒)

𝐿3
 

This differs rather substantially from the formula for the orbital energy in a gravitational field32: 

E

m
=
𝑣π
2

2
−
μG
𝑟π
=
μG
2(1 + 𝑒)2

2𝐿2
−
μG
2(1 + 𝑒)

𝐿2
=
μG
2(1 + 2𝑒 + 𝑒2 − 2 − 2𝑒)

2𝐿2
=
μG
2(𝑒2 − 1)

2𝐿2
 

Why are these so formulas so different? Not sure, but the use of the E/q and E/m factors in these orbital 

equations makes a difference. While it complicates the structure of the formulas, it is obvious that this 

mass/charge ratio must, therefore, come into play somehow. Also, the structure of the two radial forces 

(gravitational and electrostatic) are not same. The electromagnetic force is two-dimensional, as the 

electrostatic (time-independent) field and magnetic (time-dependent) field always go hand-in-hand.  

We believe this formula establishes an equivalence between gravitational and electromagnetic mass 

through the mass-energy equivalence relation, which we will write as c2 = E/m in the next section. 

 
31 The eccentricity e will be smaller than 1 (0 < e < 1) for a closed trajectory and we, therefore, prefer to write 1 − 

e2 rather than e2 − 1. The expression only makes sense if the total energy is negative, which is the assumption (or 
convention, we should say) that we started out with. 
32 See the referenced MIT OCW reference course. 

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec16.pdf
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The nuclear force field and potential 
The mass as inertia and the energy per unit mass hold the key to writing the orbital energy per unit mass 

as follows for the three forces and charges we have been considering⎯gravitational, electrostatic, and 

nuclear: 

1. Gravitational force, with the masses (M and m) as charge and G as physical proportionality constant: 

E

m
= 𝑐2 =

𝑣2

2
−
GMm

m𝑟
 

One can easily the dimensions work out to the required m2/s2 dimension: 

[
𝑣2

2
−
GMm

m𝑟
] =

m2

s2
−

Nm2

kg2
kg2

kg ∙ m
=
m2

s2
−

Nm2

kg2
kg2

N
s2

mm
=
m2

s2
 

2. Coulomb force, with the electric charges (qe) as charge and ke as physical proportionality constant: 

E

m
= 𝑐2 =

𝑣2

2
−
keqe

2

m𝑟
 

We can check the physical dimensions once more: 

[
𝑣2

2
−
GMm

m𝑟
] =

m2

s2
−

Nm2

C2
C2

kg ∙ m
=
m2

s2
−

Nm2

C2
C2

N
s2

m
m

=
m2

s2
 

3. Nuclear force, with the nuclear charges (gN) as charge and kN as physical proportionality constant and 

a as the range parameter to ensure dimensional consistency: 

E

m
= 𝑐2 =

𝑣2

2
−
kNgN

2

m𝑟𝑛
∙ 𝑎𝑛−1 =

𝑣2

2
−
kNgN

2

m𝑟
∙
𝑎𝑛

𝑟𝑛
=
𝑣2

2
−
kNgN

2

m𝑟
∙ (
𝑟

𝑎
)
−𝑛)

 

One can easily ascertain a nuclear range or distance scale parameter (aN) has to be introduced so as to 

ensure the physical dimensions come out OK: 

[
𝑣2

2
−
kNgN

2

m𝑟𝑛+1
∙ 𝑎𝑛] =

m2

s2
−

Nm2

C2
C2𝑎𝑛

kg ∙ 𝑟𝑛+1
=
m2

s2
−

Nm2 ∙ m𝑛

N
s2

m ∙ m𝑛+1

=
m2

s2
 

For n = 1, we get a nuclear force field based on a Yukawa-like nuclear potential:  

FN =
kNgN

2

m
∙
𝑎

𝑟3
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If we give the same numerical value to both qe and gN – about 1.610−19 C and Y respectively33 – we  , we 

might say the nuclear permittivity or standard nuclear parameter is determined by the scaling 

parameter a.  

Combining the 1/r and a/r2 potentials, we now get the desired crossing of potentials and the expected 

combined potential well function34: 

U(𝑟) = UC(𝑟) − UN(𝑟) =
1

𝑟
−
𝑎

𝑟2
 

 

An inverse-cube law for a force implies the potential in 3D cannot be symmetric, which is fine as we are 

modeling plane- or disc-like orbitals/oscillations. Further analysis may usefully focus on: 

⎯ An analysis of the qe/m and gN/m charge/mass-energy ratios. 

 
33 For a new force, one should propose a new charge and a new unit to measure it. We suggest the Dirac, which we 
abbreviate as Y so as to honor Yukawa. 
34 We leave it to the reader to play with the sign conventions. 
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⎯ An analysis of the different nature of the singularities at the center: limits (r → 0) for 1/r and 

a/r2 functions yield infinity () but these two infinities are, clearly, not of the same nature. 

Indeed, the different type of singularity one gets at the center from an a/r2 function (a more 

‘massive’ infinite potential energy, so to speak) may explain the different (Coulomb versus 

nuclear) charge/mass ratios and the rather enormous proton/neutron energies/masses. 

⎯ Linking our simplified model with the interesting work analyzing non-integer or higher-powers 

of distance functions and effective nuclear field theory, which all rely heavily on expansion into 

power series, taking into account the energy conservation law must put geometric constraints 

on them. 

⎯ Developing the associated vector potential functions (AC and AN) using the electromagnetic 

Lorentz gauge: 

∇ ∙ 𝑨 = −
1

𝑐2
∂ϕ

𝜕𝑡
 

For a time-independent scalar potential, which is what we have been modeling, the Lorentz gauge is 

(·A = 0) because the time derivative is zero: φ/t = 0  ·A = 0.35 The magnetic field, therefore, 

vanishes. The time-dependent magnetic field should absorb half the energy in accordance with relativity 

theory36 and it should then be easy to develop the equivalent of Maxwell’s equations for the nuclear 

force field using the theorems of Gauss and Stokes. 

The model has the advantage of not introducing new fundamental constants (except for the nuclear 

charge gN), respecting relativity theory (no superluminal speeds), and confirming Planck’s quantum of 

action as the fundamental unit of physical action (h) and angular momentum (ħ) in particle-field 

exchanges of energy and momentum.  

Brussels, 14 January 2021 

 

 

 
35 The Lorentz gauge does not refer to the Dutch physicist H.A. Lorentz but to the Danish physicist Ludvig Valentin 
Lorenz. The reader should not think we have a choice here: the Lorentz gauge is one and the same for time-
dependent and time-independent fields, but it vanishes with time-independent fields (electromagnetostatics). . 
See our remarks on the vector potential and the Lorentz gauge in our paper on the electromagnetic deuteron 
model. 
36 When using natural units (c = 1), the relativity of electric and magnetic fields becomes more obvious.  

https://en.wikipedia.org/wiki/Ludvig_Lorenz
https://en.wikipedia.org/wiki/Ludvig_Lorenz
https://www.researchgate.net/publication/347949217_An_electromagnetic_deuteron_model
https://www.researchgate.net/publication/347949217_An_electromagnetic_deuteron_model

