
Mathematisch-
Naturwissenschaftliche
Fakultät

Human-Computer Interaction

Bachelorarbeit

Evaluation of ML methods for online use

in the browser

Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik
Human-Computer Interaction
Hao,Liu, h.liu@uni-tuebingen.de, 2020

Bearbeitungszeitraum: von 01.08.2020 - bis

Betreuer/Gutachter: Prof. Dr. Enkelejda Kasneci
Zweitgutachter: Dr. Wolfgang Fuhl, Universität Tübingen

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und nur
mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von
Quellen als Entlehnung kenntlich gemacht worden sind. Diese Bachelorarbeit wurde
in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung
vorgelegt.

Hao,Liu (Matrikelnummer 4187178), October 30, 2020

3

Abstract

Machine learning continues to be an increasingly integral component of our lives,
whether we are applying the techniques to research or business problems. Machine
learning models ought to be able to give accurate predictions in order to create
real value for a given organization. At the same time Machine learning training by
running algorithms on the browser has gradually become a trend. As the closest
link to users in the Internet, the web front-end can also create a better experience for
our users through AI capabilities. This article will focus on how to evaluate machine
learning algorithms and deploy machine learning models in the browser. We will
use "Cars", "MNIST" and "Cifar-10" datasets to test LeNet, AlexNet, GoogLeNet
and ResNet models in the browser. On the other hand, we will also test emerging
lightweight models such as MobileNet. By trying, comparing, and comprehensively
evaluating regression and classification tasks, we can summarize some excellent
methods/models and experiences suitable for machine learning in the browser.

5

Acknowledgments

Here I would like to thank Google Cloud and Alibaba Cloud for their data support
for this article, and Dr. Wolfgang Fuhl for helping me during the creation of the
thesis.

7

Contents

1 Introduction 11
1.1 Advantages in a browser-based environment 11

2 Fundamentals 13
2.1 Framework . 14

2.1.1 Tensorflow . 14
2.1.2 Tensorflow.js . 17

2.2 Optimization Algorithm . 20
2.2.1 Three forms of gradient descent 20
2.2.2 Challenges . 23

2.3 Convolutional Neural Networks in Tensorflow.js 30
2.3.1 Convolution and Kernels . 30
2.3.2 CNN architecture . 33
2.3.3 Implementation in Tensorflow.js 33

3 Model and Evaluation 37
3.1 Model . 37

3.1.1 LeNet . 37
3.1.2 AlexNet . 38
3.1.3 GoogLeNet: . 38
3.1.4 ResNet: . 38
3.1.5 MobileNet . 39

3.2 Dataset . 39
3.2.1 Cars . 39
3.2.2 MNIST . 40
3.2.3 Cifar-10 . 40

3.3 Training task . 41
3.3.1 Regression . 41
3.3.2 Classifition . 44

3.4 Performance comparison . 48

4 Conclusion 53

9

1 Introduction

The core idea behind machine learning is to design a program so that it can learn a
certain task, rather than implementing an algorithm by hand for a fixed behavior.
Machine learning includes the definition of a variety of problems and provides many
different algorithms to solve various problems in different fields. Some examples are
the semantic segmentation [FGRK19, FRK19, FCZ+18], the classification [HCE+17]
or the regression of values [MWL16, FK19]. The fields of application are manifold,
such as human computer interaction [Fuh20], the automotive industry [XAJ+18,
AAB+17], medicine [ESF+17, EFK17, EHF+17, BFG+16], data analysis as well as eye
tracking [Fuh19] and many more. In the field of eye tracking, neural networks
are used for pupil detection [FSR+16, FKH+17, FGS+18, FGK20b, FSK17b, FEH+18,
FKS+15b, FSKK16, FTBK16], eyelid segmentation [FSG+16, FSG+17, FSK17a], eye
movement classification [FRE20, FSK+18, FCK18a, FCK18b, FK18, FRE20], gaze
vector regression [FGK20a], scanpath analysis [FBH+19, FCK+19] or for basic data
cleansing for visualizations [FKB+18, FKS+15a, GFSK17, FKSK18]. My work is a
cornerstone for a software which allows eye tracking studies via the browser. Using
the browser for machine learning has unparalleled advantages [PSL+16]. Accessing
web pages through a browser has a lower threshold and a wider spread of content.
The ability to integrate intelligent factors into web pages will give us experience a
pair of flying wings. Traditional intelligent effects are mostly implemented on the
server side due to the size of the model and the computing power of the equipment
and machines, but this requires multiple information interactions with the server on
the network, and the user experience is discounted.

1.1 Advantages in a browser-based environment

Easy to share : A major motivation behind this is the ability to run ML in standard
browsers, without any additional installations, therefore the used models have to
be computationally cheap [FRM+20, FKRK20, SHZ+18]. Models and applications
through the browser are easily shared on the web, lowering the barrier to entry for
machine learning. This is particularly important for educational use cases and for
increasing the diversity of contributors to the field.
Streamline interaction : From a machine learning perspective, the interactive nature
of web browsers and versatile capabilities of Web APIs open the possibility for a
wide range of novel user-centric ML applications which can serve both education

11

Chapter 1. Introduction

and research purposes. Visualizations of neural networks such as [Ola14] and [SW]
have been popular to teach the basic concepts of machine learning.
Local device call: Lastly, standardized access to various components of device
hardware such as the web camera, microphone, and the accelerometer in the browser
allow easy integration between ML models and sensor data. An important result
of this integration is that user data can stay on-device and preserve user-privacy,
enabling applications in the medical, accessibility, and personalized ML domains.
For example, speech-impaired users can use their phones to collect audio samples to
train a personalized model in the browser. Another technology, called Federated
Learning [MMR+16], enables devices to collaboratively train a centralized model
while keeping sensitive data on device. Browsers are a natural a platform for this
type of application.
In this article, I will mainly use two ideas to implement the browser-side machine
learning algorithm.Then the two ways are compared and analyzed,at the same time
the results are obtained according to different models and different neural network
structures, and finally we evaluate these results.
Convert existing models through converters.
As the name suggests, the first method I want to introduce is to convert the existing
model through an appropriate converter, so as to convert it into a program that can
be run in a browser. Traditionally, we first need to simplify and refine the model we
want to train, and then build the corresponding neural network according to different
needs.Then according to the framework of our choice (the framework used in this
article is the open source framework "tensorflow" [ABC+16] and "tensorflow.js"
from Google) to refine and select the features and use python or C++ to implement
locally. Later we need to select and build a suitable converter to call our previous
model python so that it can be unimpeded in the javascript script. It is precisely
because we can call the training model through javascript/html scripts, which finally
allows us to implement machine learning operation and evaluation in the browser. It
is very convenient to use Python to train the model, because reading data and GPU
acceleration in the Python environment are relatively easy to implement, so we only
need to solve the problem of porting the Python trained model to the js environment.
Directly use Javascript to build a model for training.
This is another way that i also would like to introduce.Because this article will use
a tensorflow.js framework, TensorFlow.js is the JavaScript version of TensorFlow,
which supports GPU hardware acceleration, and it also can run in Node.js or
browser environments. Tensorflow.js itself comes with many tools and packages,
which makes model training directly in TensorFlow.js more convenient and intuitive.
(The specific details about Tensorflow and Tensorflow.js will be mentioned below)

12

2 Fundamentals

Fundamentally speaking, no matter what kind of method and what kind of idee,
we can never be separated from the level of machine learning. So we still have to
clarify the tasks of our machine learning and the elements needed in the process.
Successful machine learning has four elements: data, a model to transform the data,
a loss function for the size of the model, and an algorithm to adjust the weight of the
model to minimize the loss function.
Data: The more the better. In fact, data is at the core of the deep learning renaissance,
because complex nonlinear models require more data than other machine learning.
Examples of data include:
1. Picture: For example, your phone picture, which may contain cats, dogs, dinosaurs,
high school reunions or yesterday’s dinner.
2. Text: Mail, news and WeChat chat history.
3. Sound: audio books and phone records.
4. Structural data: Jupyter notebook (with text, pictures and codes), web pages, car
rental bills and electricity bills.
Model: Usually the data is far from what we ultimately want. For example, we want
to know if the person in the photo is happy, so we need to turn 10 million pixels
into a probability value of happiness. Usually we need to apply several non-linear
functions (such as neural networks) to the data.
Loss function: We need to compare the error between the output of the model and
the true value. The loss function helps us decide if Amazon stock will be worth
1,500 dollars at the end of 2020. Depending on whether we want to be short-term or
long-term, this function can be very different.
Training: Usually there are many parameters in a model. We learn these parameters
by minimizing the loss function. Unfortunately, even if we do well, there is no
guarantee that we can still do well on new, unseen data.
Training error: This is the error of the model in evaluating the data set used to train
the model. This is similar to the score we got on the mock test paper before the exam.
There is a certain direction, but the real test scores are not necessarily guaranteed.
Test error: This is the error of the model on new data that has not been seen before,
and may be different from the training error (statistically called over-fitting). This
is similar to getting high scores in the pre-exam model test, but it actually made a
mistake in the test. (One of the authors used to get high scores every time when
doing the GRE real test. I was happy to recite the red book and then I really went to
the exam. In the end, I got a low score that was just enough. Later I realized that this
was because of the red book. The book contains a lot of real questions.)

13

Chapter 2. Fundamentals

Figure 2.1
Tensorflow

2.1 Framework

The machine learning framework is like a tool to help us in deep learning. In short,
it is a library. When programming, we need to use "import".

Let us make a simple analogy, a set of machine learning framework is a set of building
blocks of this brand. Each component is a part of a certain model or algorithm. We
can design how to use the building blocks to build blocks that fit your data set. The
advantage is that we don’t have to reinvent the wheel because the model is known.
We can assemble it directly, but different assembly methods, that is, different data
sets, are up to us.
This article will focus on two machine learning frameworks that have been used:
"Tensorflow" and "Tensorflow.js".

2.1.1 Tensorflow

Tensorflow is an open source software library that uses data flow graphs for nu-
merical operations. It implements data flow graphs. Among them, "tensors" can
be processed by a series of graph-describe algorithms, and the changes of data
in the system are called "flows". Hence the name. The data stream can be coded
in C++ or Python and run on a CPU or GPU device [Dev16]. In fact, TensorFlow
provides a very rich API related to deep learning. It can be said that all the current
deep learning frameworks provide the most complete API, including basic vector
matrix calculation, various optimization algorithms, convolution neural networks
and the realization of the basic unit of cyclic neural network, and the auxiliary tools
of visualization, etc.

In this article, all models built in python are based on the tensorflow framework.

Basic use of TensorFlow
· Use graphs to represent computational tasks.

14

https://www.tensorflow.org/

2.1. Framework

· The graph is executed in a context called a session.
· Use tensor to represent data.
·Maintain the state through Variables.
· Use feed and fetch to assign values to or retrieve data from arbitrary operations.

TensorFlow overview
TensorFlow is a programming system that uses graphs to represent computing tasks.
The nodes in the graph are called op (short for operation). An op gets 0 or more
Tensors, performs calculations, and produces 0 or more Tensors. Each tensor is a
typed multidimensional array. For example, you can represent a small set of images
as a four-dimensional array of floating-point numbers. The four dimensions are
[batch, height, width, channels].

A TensorFlow graph describes the process of calculation. In order to perform cal-
culations, the graph must be started in a session. The session distributes the op of
the graph to devices such as CPU or GPU, and provides methods to execute the op.
After these methods are executed, the generated tensor is returned. In the Python
language, the returned tensor is a numpy nd-array object; in C and C++ languages,
the returned tensor is an instance.

TensorFlow calculation graph
TensorFlow programs are usually organized into a construction phase and an execu-
tion phase. In the construction phase, the execution steps of the op are described as
a graph. In the execution phase, the op in the execution graph is executed using the
session.
For example, a graph is usually created in the construction phase to represent and
train the neural network, and then the training op in the graph is repeatedly executed
in the execution phase.

TensorFlow construction graph
The first step in building a graph is to create a source op. The source op does not
require any input, such as Constant. The output of the source op is passed to other
ops for calculation.
In the Python library, the return value of the op constructor represents the output of
the constructed op, and these return values can be passed to other op constructors
as input.

The following is a simple example of matrix multiplication to illustrate how to
complete the construction graph:

1 import tensorf low as t f

15

Chapter 2. Fundamentals

2 # Create a constant op to produce a 1x2 matrix . This op i s used as a
node

3 # Add to the d e f a u l t p i c t u r e .
4
5 # The return value of the c o n s t r u c t o r r e p r e s e n t s the return value of

the constant op .
6 matrix1 = t f . constant ([[3 . , 3 .]])
7
8 # Create another constant op to generate a 2x1 matrix .
9 matrix2 = t f . constant ([[2 .] , [2 .]])

10
11 # Create a matrix m u l t i p l i c a t i o n matmul op with ’ matrix1 ’ and ’ matrix2 ’

as input .
12 # The return value ’ product ’ r e p r e s e n t s the r e s u l t of matrix

m u l t i p l i c a t i o n .
13 product = t f . matmul (matrix1 , matrix2)

Now we default the graph has three nodes, two constant() op, and one matmul() op.
In order to actually perform the matrix multiplication operation and get the result of
the matrix multiplication, we must activate this diagram in the session.

1 # S t a r t the d e f a u l t image .
2 s e s s = t f . Sess ion ()
3
4 # Cal l the ’ run () ’ method of s e s s to perform matrix m u l t i p l i c a t i o n op ,

and pass in ’ product ’ as the method parameter .
5 # As mentioned above , ’ product ’ r e p r e s e n t s the output of matrix

m u l t i p l i c a t i o n op , passing i t in i s to i n d i c a t e to the method t h a t
we want to get i t back

6 # The output of matrix m u l t i p l i c a t i o n op .
7
8 # The return value ’ r e s u l t ’ i s a numpy ‘ ndarray ‘ o b j e c t .
9 r e s u l t = s e s s . run (product)

10 p r i n t r e s u l t
11 # ==> [[1 2 .]]
12
13 # Task completed , c l o s e the s e s s i o n .
14 s e s s . c l o s e ()

Interactive call
Here is a Python example to explain interactive calls. We use a session to start the
graph, and call the Session.run() method to perform the operation.

1 # Enter an i n t e r a c t i v e TensorFlow s e s s i o n .
2
3 import tensorf low as t f
4 s e s s = t f . I n t e r a c t i v e S e s s i o n ()
5
6 x = t f . Var iab le ([1 . 0 , 2 . 0])
7 a = t f . constant ([3 . 0 , 3 . 0])
8

16

2.1. Framework

9 # Use i n i t i a l i z e r i n i t i a l i z e r op ’ s run () method to i n i t i a l i z e ’ x ’
10
11 x . i n i t i a l i z e r . run ()
12
13 # Add a s u b t r a c t i o n sub op , s u b t r a c t ’ a ’ from ’ x ’ . Run the s u b t r a c t i o n

op , and output the r e s u l t .
14
15 sub = t f . sub (x , a)
16 p r i n t sub . eval ()
17 # ==> [−2. −1.]

In order to adapt to the Python interactive environment, we can use Interactive
Session instead of the Session class, and use the Tensor.eval() and Operation.run()
methods instead of Session.run(). This avoids using a variable to hold the session.

Tensor
TensorFlow program uses the tensor data structure to represent all data. In the
calculation graph, the data passed between operations are all tensors. We can think
of TensorFlow tensor as an n-dimensional array or list. A tensor contains a static
type rank and a shape.
The above content introduces the basic use of the Tensorflow framework in this article

2.1.2 Tensorflow.js

The second framework that this article focuses on is Tensorflow.js. TensorFlow.js is
the JavaScript version of TensorFlow, supports GPU hardware acceleration, and can
run in Node.js or browser environments. It not only supports developing, training,
and deploying models from scratch based entirely on JavaScript, but also can be
used to run existing Python version TensorFlow models, or continue training based
on existing models. This undoubtedly gives us a lot of support and help in the
development of the web.

Use TensorFlow.js in the browser
The most convenient way to load TensorFlow.js in the browser is to directly quote the
installed JavaScript code in the NPM package released by TensorFlow.js in the HTML.

1 <html>
2 <head>
3 < s c r i p t s r c=" ht tp : / / unpkg . com / @tensorflow / t f j s / d i s t / t f . min . j s ">
4 </ s c r i p t >

If we need to use it on the server side, we need to ensure that the latest version of
Node.js is installed.

17

Chapter 2. Fundamentals

1 # I n i t i a l i z e the p r o j e c t management f i l e package . j son
2 $ npm i n i t −y
3
4 # I n s t a l l t f j s l i b r a r y , pure J a v a S c r i p t vers ion
5 $ npm i n s t a l l @tensorflow / t f j s
6
7 # I n s t a l l t f j s −node l i b r a r y , C Binding vers ion
8 $ npm i n s t a l l @tensorflow / t f j s −node
9

10 # I n s t a l l t f j s −node−gpu l i b r a r y to support CUDA GPU a c c e l e r a t i o n
11 $ npm i n s t a l l @tensorflow / t f j s −node−gpu

Load the Python model in the browser
Generally, TensorFlow models will be stored in SavedModel format. This is also the
best way for us to save models in python programs. The SavedModel format can
be converted to a format that can be directly loaded by TensorFlow.js through the
tensorflowjs-converter, so that it can be used in the JavaScript language.
Below we take a “Mobilenet” as an example to see how to convert model files, and
store the model files that can be loaded by TensorFlow.js in the /mobilenet/t f js_model
directory.

We first need to convert the SavedModel: convert /mobilenet/saved_model to /mobilenet/t f js_model.

1 t e n s o r f l o w j s _ c o n v e r t e r \
2 −−input_format=tf_saved_model \
3 −−output_node_names= ’ Mobilenet / P r e d i c t i o n s / Reshape_1 ’ \
4 −−saved_model_tags=serve \
5 / mobilenet / saved_model \
6 / mobilenet / t f j s_model

The converted model is saved as two types of files:

model. json: model architecture

group1− shard ∗ o f ∗: model parameters

For example, the files we converted for MobileNet are as follows:

/mobilenet/t f js_model/model. json/mobilenet/t f js_model/group1− shard1o f 5
/mobilenet/t f js_model/group1− shard2o f 5
...
/mobilenet/t f jsmodel/group1− shard5o f 5

18

2.1. Framework

And next in order to load the converted model file, we need to install the t f js− converter
and @tensor f low/t f js_modules

1 $ npm i n s t a l l @tensorflow / t f j s :

Finally, we can load the TensorFlow model through JavaScript.

1 import * as t f from ’ @tensorflow / t f j s ’
2
3 const MODEL_URL = ’ / mobilenet / t f j s_model / model . j son ’
4
5 const model = await t f . loadGraphModel (MODEL_URL)
6
7 const c a t = document . getElementById (’ c a t ’)
8 model . execute (t f . browser . f romPixels (c a t))

Build the model directly through TensorFlow.js
Based on the comprehensive functions and configuration of tensorflow.js, we can
bulid a simple HTML page to call TensorFlow.js and its trained model, so that in
our user’s browser, we can directly perform browser online learning.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta c h a r s e t=" utf −8">
5 <meta http−equiv="X−UA−Compatible " content=" IE=edge ">
6 <meta name=" viewport "
7 content=" width=device−width , � i n i t i a l −s c a l e =1.0 ">
8 < t i t l e >TensorFlow . j s Example </ t i t l e >
9

10 <!−− Import TensorFlow . j s −−>
11 < s c r i p t
12 s r c=" h t tps : / / cdn . j s d e l i v r . net /npm / @tensorflow / t f j s @ 1 . 0 . 0 / d i s t

/ t f . min . j s " ></ s c r i p t >
13 <!−− Import t f j s −v i s −−>
14 < s c r i p t
15 s r c=" h t tps : / / cdn . j s d e l i v r . net /npm / @tensorflow / t f j s −vis@1 . 0 . 2 /

d i s t / t f j s −v i s .umd. min . j s " ></ s c r i p t >
16
17 <!−− Import the data f i l e −−>
18 < s c r i p t s r c=" data . j s " type=" module " ></ s c r i p t >
19
20 <!−− Import the main s c r i p t f i l e −−>
21 < s c r i p t s r c=" s c r i p t . j s " type=" module " ></ s c r i p t >
22
23 </head>
24
25 <body>
26 </body>
27 </html>

19

Chapter 2. Fundamentals

In this html file, the script. js file is the training model we built using tensorflow.js
through javascript, and the data. js file is the data we want to use and process. One
thing to note here, the two files need to be placed in the same folder as the above
HTML file.
TensorFlow.js Model library
In addition to the above loading and construction functions, TensorFlow.js also
provides a series of pre-trained models to facilitate us to quickly introduce artificial
intelligence capabilities to the program.
The model classification includes image recognition, speech recognition, human
gesture recognition, object recognition, text classification and so on.(Google Cloud)

Figure 2.2
Tensorflow.js

2.2 Optimization Algorithm

When constructing a neural network model and training in browser, the best
optimizer is selected so as to quickly converge and learn correctly, while adjusting
internal parameters to minimize the loss function to the greatest extent.In order to
better simplify the neural network and improve efficiency, so that our model can be
called in the browser, it is necessary to choose Mini-batch Gradient Descent and
Adam optimization algorithm.

2.2.1 Three forms of gradient descent

In general, mini-batch gradient descent algorithm is a variant of gradient descent
algorithm. Gradient descent Algorithm is the most commonly used optimization
algorithm in machine learning. It has three different forms: "batch gradient descent",
"stochastic gradient descent", "mini-batch gradient descent". Among them, the
mini-batch gradient descent algorithm also often carries out model training in deep
learning. Next, we will understand these three different gradient descent methode

20

https://www.tensorflow.org/js /

2.2. Optimization Algorithm

and explain why we choose mini-bach gradient Algorithm.

Batch Gradient Descent(BGD)

Optimization algorithms that use the entire training set are called batch or determin-
istic gradient algorithms because they process all samples simultaneously in a large
batch.
The batch gradient descent method is the most primitive form, which refers to using
all samples to update the gradient at each iteration.

The loss function for all samples is:

J(θ) = J(θ0,θ1,θ2......θi) =
1

2m

m∑
i=1

(hθ(xi)− yi)

The parameter update is as follows:

θj← θj−η �∇J(θ)

θ is an n-dimensional weight vector
J(θ) is the loss function.
∇J(θ) is the gradient of the parameter.
The step η is also called the learning rate.

Advantages:
� During the training process, it use a fixed learning rate without worrying about the
decline of the learning rate.
� The direction determined by the full data set can better represent the sample
population, so as to be more accurate toward the direction of the extreme value.
When the objective function is a convex function, it must converge to the global
minimum, and if the objective function is not convex, it will converge to the local
minimum.
� Its estimation of the gradient is unbiased. The more samples, the lower the standard
deviation.

Disadvantages:
�Although vectorization calculation is used in the calculation process, it still takes a
lot of time to traverse all samples, especially when the data set is very large (millions
or even hundreds of millions), it is a bit powerless.

21

Chapter 2. Fundamentals

� Each update occurs after traversing all the samples. Only then will some examples
be found to be redundant and have little effect on the parameter update.
� Sometimes unbalanced data sets are also problematic.

Stochastic Gradient Descent(SGD)

Stochastic gradient descent is different from batch gradient descent. Stochastic
gradient descent uses only one sample to update the parameters at each iteration
(mini-batch size = 1).

The loss function for one samples (xi, yi) is:

J(θ;xi;yi) = J(θ0,θ1,θ2......θi) =
1
2

(hθ(xi)− yi)

The parameter update is as follows:

θj← θj−η �∇J(θ;xi;yi)

Advantages:
� Since it is not a loss function on all training data, but in each iteration, the loss
function on a certain training data is randomly optimized, so that the update speed
of each round of parameters is greatly accelerated.

Disadvantages:
�A single sample does not represent the trend of all samples.
� When encountering a local minimum or saddle point, SGD will get stuck at a
gradient of zero.Because randomness will also cause convergences becoming com-
plex, even when it reaches the minimum, SGD will over-optimize, which makes the
process full with fluctuation and overfitting.

Mini-batch Gradient Descen(MBGD)

Most gradient descent algorithms for deep learning are using more than one but not
all training samples. These will be referred to as mini-batch or mini-batch stochastic
methods, but now they are usually simply referred to as stochastic methods. For the
deep learning model, what people call "stochastic gradient descent, SGD" is actually

22

2.2. Optimization Algorithm

a random batch based on mini-batch.

Specifically: At each step of the algorithm, we randomly draw a mini-batch sample
X = (x1,x2.....xm′) from the training set with m samples (the order of the samples has
been shuffled). The number of small batches m′ is usually a relatively small number
(from 1 to several hundred). Importantly, as the training set size m grows, [formula]
is usually fixed. When fitting billions of samples, we may use only a few hundred
samples for each update calculation (Sebastian Rruder,2016).

The loss function for m′ samples X = (x1,x2.....xm′) is:

J(θ;xi:m′ ;yi:m′) = J(θ0,θ1,θ2......θi) =
1

2m′

m′∑
i=1

(hθ(xi)− yi)

The parameter update is as follows:

θj← θj−η �∇J(θ;xi:m′ ;yi:m′)

Advantages:
� The speed is faster than Batch Gradient Descent, because the update can be per-
formed only by traversing part of the samples.
� Randomly selecting samples is helpful to avoid repeating redundant samples and
samples that contribute less to parameter updates.
� Using only one batch at a time can greatly reduce the number of iterations those
required for convergence, and at the same time can make the convergence result
closer to the effect of gradient descent.

Disadvantages:
� Improper selection of batch-size may cause some problems. Just like maybe there
will be more oscillations in the learning process. Or maybe sometimes Stuck at the
local minimum.

2.2.2 Challenges

Although we have learned about the three variants of the gradient descent algorithm,
when we do machine learning in the browser, the situation is often a lot more
complicated because it cannot guarantee good convergence. The following proposes
some things we need to solve challenge:
(1) Choosing a proper learning rate can be difficult. A learning rate that is too small

23

Chapter 2. Fundamentals

Figure 2.3
Convergence of three gradient descent algorithms

leads to painfully slow convergence, while a learning rate that is too large can hinder
convergence and cause the loss function to fluctuate around the minimum or even
to diverge.
(2)Additionally, the same learning rate applies to all parameter updates. If our data is
sparse and our features have very different frequencies, we might not want to update
all of them to the same extent, but perform a larger update for rarely occurring
features.
(3)Another key challenge of minimizing highly non-convex error functions common
for neural networks is avoiding getting trapped in their numerous suboptimal local
minima.That the difficulty arises in fact not from local minima but from saddle
points, i.e. points where one dimension slopes up and another slopes down. These
saddle points are usually surrounded by a plateau of the same error, which makes it
notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.
In the following, I will explain some of the algorithms widely used in the deep
learning community, and explain the reasons for finally using adam to solve the
above challenges.

Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more
steeply in one dimension than in another [Sut86],.which are common around local
optima. In these scenarios, SGD oscillates across the slopes of the ravine while only
making hesitant progress along the bottom towards the local optimum as in Figure
3.

Momentum [Qia] is a method that helps accelerate SGD in the relevant direction
and dampens oscillations as can be seen in the Figure 3. It does this by adding a
fraction γ of the update vector of the past time step to the current update vector:

24

https://ruder.io/optimizing-gradient-descent/index.htmlfn4

2.2. Optimization Algorithm

Figure 2.4: SGD without momentum and SGD with momentum [Rru16]

vt← γvt−1 +η �∇J(θ)

θj← θj−vt

Note: Some implementations exchange the signs in the equations. The momentum
term γ is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball accumulates
momentum as it rolls downhill, becoming faster and faster on the way (until it
reaches its terminal velocity if there is air resistance, i.e. γ < 1) The same thing
happens to our parameter updates: The momentum term increases for dimensions
whose gradients point in the same directions and reduces updates for dimensions
whose gradients change directions. As a result, we gain faster convergence and
reduced oscillation [Rru16].

Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatis-
factory. We’d like to have a smarter ball, a ball that has a notion of where it is going
so that it knows to slow down before the hill slopes up again.

Nesterov accelerated gradient (NAG) [Nes83]is a way to give our momentum term
this kind of prescience. We know that we will use our momentum term γvt−1 to
move the parameters θ.Computing θ−γvt−1 thus gives us an approximation of
the next position of the parameters (the gradient is missing for the full update),
a rough idea where our parameters are going to be. We can now effectively look
ahead by calculating the gradient not w.r.t. to our current parameters θ but w.r.t. the
approximate future position of our parameters:

25

Chapter 2. Fundamentals

Figure 2.5: While Momentum first computes the current gradient (small blue vector)
and then takes a big jump in the direction of the updated accumulated
gradient (big blue vector),NAG first makes a big jump in the direction of
the previous accumulated gradient (brown vector), measures the gradient
and then makes a correction (red vector), which results in the complete
NAG update (green vector).

vt← γvt−1 +η �∇J(θ−γvt−1)

θj← θj−vt

Again, we set the momentum term γ to a value of around 0.9. And we could take a
look at the following example:
This anticipatory update prevents us from going too fast and results in increased
responsiveness, which has significantly increased the performance of RNNs on a
number of tasks[BBLP12].

Adagrad

Adagrad[Duc11]is an algorithm for gradient-based optimization that does just this:
It adapts the learning rate to the parameters, performing smaller updates (i.e. low
learning rates) for parameters associated with frequently occurring features, and
larger updates (i.e. high learning rates) for parameters associated with infrequent
features.

Previously, we performed an update for all parameters θ at once as every parameter
θi used the same learning rate η. As Adagrad uses a different learning rate for every
parameter θi at every time step t, we first show Adagrad’s per-parameter update,
which we then vectorize. For brevity, we use gt to denote the gradient at time step t.
gt,i is then the partial derivative of the objective function w.r.t. to the parameter θi at
time step t:

gt,i←∇J(θt,i)

26

2.2. Optimization Algorithm

Figure 2.6: This figure shows the performance comparison between Adagrad and
ordinary gradient descent in n-dimensional parameters. It is obvious that
Adagrad curve drops slowly and converges better.

AdaGrad update

The SGD update for every parameter θi at each time step t then becomes:

θt+1,i← θt,i−ηgt,i

In its update rule, Adagrad modifies the general learning rate η at each time step t
for every parameter θi based on the past gradients that have been computed for θi :

θt+1,i← θt,i−
η

√
Gt,ii+ε

gt,i

Gt ∈Rdxdhere is a diagonal matrix where each diagonal element i, i is the sum of
the squares of the gradients w.r.t. θiup to time step t, while ε is a smoothing term
that avoids division by zero. Interestingly, without the square root operation, the
algorithm performs much worse.

One of Adagrad’s main benefits is that it eliminates the need to manually tune the
learning rate. Most implementations use a default value of 0.01 and leave it at that.
Adagrad’s main weakness is its accumulation of the squared gradients in the de-
nominator: Since every added term is positive, the accumulated sum keeps growing
during training. This in turn causes the learning rate to shrink and eventually
become infinitesimally small, at which point the algorithm is no longer able to
acquire additional knowledge.

27

https://zhuanlan.zhihu.com/p/31630368

Chapter 2. Fundamentals

RMSprop

RMSprop is an extension of Adagrad that seeks to reduce its aggressive, monotoni-
cally decreasing learning rate. Instead of accumulating all past squared gradients,
RMSprop restricts the window of accumulated past gradients to some fixed size w.
Instead of inefficiently storing w previous squared gradients, the sum of gradients is
recursively defined as a decaying average of all past squared gradients. The running
average E[g2]t at time step t then depends (as a fraction γ similarly to the Momentum
term) only on the previous average and the current gradient:

E[g2]t = γE[g2]t−1 + (1−γ)E[g2]t

We now simply replace the diagonal matrix Gt ∈Rdxd with the decaying average

28

2.2. Optimization Algorithm

over past squared gradients E[g2]t:

θt+1,i = θt,i−
η

√
E[g2]t+ε

gt,i

We set γ to a similar value as the momentum term, around 0.9,while a good default
value for the learning rate η is 0.001.

Adam

Adaptive Moment Estimation (Adam) is another method that computes adaptive
learning rates for each parameter. In addition to storing an exponentially decaying
average of past squared gradients vt like Adadelta and RMSprop, Adam also keeps an
exponentially decaying average of past gradients mt ,similar to momentum [Kin15].
Where as momentum can be seen as a ball running down a slope, Adam behaves
like a heavy ball with friction, which thus prefers flat minima in the error surface
[Heu17]. We compute the decaying averages of past and past squared gradients mt
and vt respectively as follows:

mt = β1mt−1 + (1−β1)gt

vt = β2vt−1 + (1−β2)g2
t

mt and vt are estimates of the first moment (the mean) and the second moment (the
not centered variance) of the gradients respectively, hence the name of the method.
As mt and vt are initialized as vectors of 0’s, the authors of Adam observe that they
are biased towards zero, especially during the initial time steps, and especially when
the decay rates are small (i.e. β1 and β2are close to 1).
They counteract these biases by computing bias-corrected first and second moment
estimates:

m̂t = mt
1−βt

1

v̂t = vt
1−βt

2

They then use these to update the parameters just as we have seen in RMSprop,
which yields the Adam update rule:

θt+1,i = θt,i−
η
√

v̂t+ε
m̂t

We propose default values of 0.9 for β1 , 0.999 for β2 and 10−8 for ε.
That shows empirically that Adam works well in practice and compares favorably
to other adaptive learning-method algorithms.

29

Chapter 2. Fundamentals

2.3 Convolutional Neural Networks in Tensorflow.js

As we all know, Neural Network is the foundation of deep learning, and it is no
exception when we perform machine learning in the browser. The basic concepts
include: neurons, layers, back propagation and so on. If I go into detail, I guess there
are no five to ten articles, then it will be endless. Simply put, it simulates the way
brain neurons work, using a model that combines multiple neurons into a network
structure to classify data.
When we use a browser for machine learning, it is unavoidable that we will be
exposed to a lot of time series data (which can be considered as a one-dimensional
grid formed by regular sampling on the time axis) and image data (which can be
seen as two Dimensional pixel grid), then the best way to process these data is to use
a convolution neural network. Because it is a neural network designed to process
data with a similar grid structure. So let’s specifically consider how to use tensorflow
to build a CNN and process it in the browser.

2.3.1 Convolution and Kernels

The principle of CNN actually simulates how the human visual nerve recognizes
images. Each optic nerve is only responsible for processing a small picture of different
sizes, and processing different information at different neural levels.

We can see that the rectangle on the left side of the figure below is the input data,
which is the tensor representation of the image we want to process. The rectangle in
the middle is the kernel, and the rectangle on the right is the result of convolution.
The kernel function moves from left to right and top to bottom, scanning the image
by moving one pixel at a time, and calculating the result matrix of the convolution
sum.

And the calculation process of convolution is as follows:

Calculation methods are very intuitive,simple multiplication and addition.
We can see that the kernel function is actually a weight. For each small image, differ-
ent checks have different weights for different regions. For every singel convolution ,
the pixel values covered by the kernel are multiplied with the corresponing kernel
values and the products are summated. The result is placed in the new image at the
point corresponding to the centre of the kernel. The kernel is moved over by one
pixel and this process is repated until all of the possible locations in the image are
filtered. Notice that there is a border of empty values around the convolved image.
This is because the result of convolution is placed at the centre of the kernel. To deal

30

2.3. Convolutional Neural Networks in Tensorflow.js

Figure 2.7: Convolution kernel multiplies and sums the layers.
Convolution operation graph

Figure 2.8: Flat display of convolution kernel operation.
Convolution operation graph

31

https://www.zhihu.com/question/52668301
https://www.zhihu.com/question/52668301

Chapter 2. Fundamentals

Figure 2.9
The input is 5x5, 1 grid is filled, stride is 2, output is 3x3

Figure 2.10
Input is 2x2, 2 grids are filled, stride is 1, output is 4x4

with this, a process called ‘padding’ or more commonly ‘zero-padding’ is used. This
simply means that a border of zeros is placed around the original image to make it a
pixel wider all around. The convolution is then done as normal, but the convolution
result will now produce an image that is of equal size to the original.

From this we can see that,each pixel is a feature, and each feature is an input node.
The result of each convolution is input to the hidden node of the next layer. The
weight of the core connects the input layer and the hidden layer. The input layer
filled with 0 can output convolution results of different shapes. At the same time,
we can adjust the stride of the scan.

We can see that increasing the padding will increase the number of hidden layer
nodes, and increasing the stride can make the hidden layer nodes less.

32

https://www.zhihu.com/question/52668301
https://www.zhihu.com/question/52668301

2.3. Convolutional Neural Networks in Tensorflow.js

Figure 2.11: The whole Architecture of CNN

2.3.2 CNN architecture

Generally, the CNN network consists of the layers shown in the Figure2.11.
Input Layer: The input image is placed into this layer. It can be a single-layer 2D
image (gray scale), 2D 3-channel image (RGB colour) or 3D.
Convolution Layer: Convolution calculation, function activation (usually the most
popular ReLU is a kind of activation function). In the previous article, we have
studied the role of the convolution layer, and we will not repeat it here.
Pooling Layer: The pooling layer is usually a layer following the convolution, which
is usually the average or maximum value of the region. Pooling is similar to sampling,
which greatly reduces the data to be processed by the next layer of neural network.
Reduce the parameters of the entire network to prevent over fitting. Usually our
pooling strategy is to take the maximum or average.
Fully Connected (Dense) Layer: The fully connected layer mainly refits the features
to reduce the loss of feature information.
Softmax Classification Layer: The softmax layer is similar to the softmax classifier
in that it is the final output classification probability, so it is often used as the last
layer in the deep learning network of the classification problem.
Output Layer: Information is transmitted, analyzed, and weighed in neuron links
to form output results and is also called the output vector.

2.3.3 Implementation in Tensorflow.js

After understanding the basic convolutional network concept, let’s take a look at
how to implement a CNN in TensorflowJS.
Here is the code for a model example:

1 funct ion cnn () {

33

Chapter 2. Fundamentals

2 const model = t f . s e q u e n t i a l () ;
3 model . add (t f . l a y e r s . conv2d ({
4 inputShape : [2 8 , 28 , 1] ,
5 k e r n e l S i z e : 5 ,
6 f i l t e r s : 8 ,
7 s t r i d e s : 1 ,
8 a c t i v a t i o n : ’ r e l u ’ ,
9 k e r n e l I n i t i a l i z e r : ’ v a r i a n c e S c a l i n g ’

10 })) ;
11 model . add (t f . l a y e r s . maxPooling2d (
12 { poolSize : [2 , 2] , s t r i d e s : [2 , 2] })) ;
13 model . add (t f . l a y e r s . conv2d ({
14 k e r n e l S i z e : 5 ,
15 f i l t e r s : 16 ,
16 s t r i d e s : 1 ,
17 a c t i v a t i o n : ’ r e l u ’ ,
18 k e r n e l I n i t i a l i z e r : ’ v a r i a n c e S c a l i n g ’
19 })) ;
20 model . add (t f . l a y e r s . maxPooling2d ({ poolSize : [2 , 2] , s t r i d e s : [2 ,

2] })) ;
21 model . add (t f . l a y e r s . f l a t t e n ()) ;
22 model . add (t f . l a y e r s . dense (
23 { u n i t s : 10 , k e r n e l I n i t i a l i z e r : ’ v a r i a n c e S c a l i n g ’ ,
24 a c t i v a t i o n : ’ softmax ’ })) ;
25 re turn model ;
26 }

t f .sequential() creates a continuous neural network and automatically creates the
input layer.
t f .layers.conv2d is the first convolution layer, and the input 28*28*1 is the length,
height, and color channels of the image. The size of the core is 5*5, and the stride is 1.
Let’s ignore the other parameters first.
t f .layers.maxPooling2d is the next pooling layer, which is to pool the convolution
result with a small 2*2 window.
And then there is another convolution and pooling layer.
t f .layers. f latten() is to flatten the previous result.
The last is a softmax classification layer t f .layers.dense

CNN is a very popular deep learning model, widely used in image-related related
fields, from "Alpha go" to autonomous driving, he is everywhere.When we want
to use it, the last point to note is that we should consider the advantages and
disadvantages of CNN when choosing a model.

Advantages:
1. Shared convolution kernel, no pressure on high-dimensional data processing
2. No need to manually select features, just train the weights to get the features.
3. Good classification effect.

34

2.3. Convolutional Neural Networks in Tensorflow.js

Disadvantages:
1. People need to adjust parameters, need a large sample size and the training is best
to use GPU.
2. The physical meaning is not clear. With the stacking of Convolutions, the
Feature Map becomes more and more abstract, which is difficult for humans
to understand[HL09].

35

3 Model and Evaluation

In the previous article, we have introduced a lot of key knowledge about how to
perform machine learning in the browser. And in the following article, I want to guide
you through the method of machine learning in the browser to solve some practical
problems. Therefore, I will try my best to use some classic machine learning models
like LeNet [LHBB99], AlexNet [KSH12], GoogLeNet [SLJ+15], ResNet [HZRS16],
MobileNet [SHZ+18] on different datasets,so as to achieve the purpose of evaluating
our machine learning models on the Web.

3.1 Model

3.1.1 LeNet

The LeNet network is trained for gray scale images. The input image size is 32*32*1.
There are 7 layers in total without the input layer, and each layer contains trainable
parameters (connection weights). In this model, the basic framework of the convo-
lution neural network is already in place. The basic components of convolution,
activation, pooling and full connection are complete.
Features:
1. Convolution networks use a three-layer sequence: convolution, pooling, and
nonlinearity. These three characteristics lay the foundation for subsequent deep
learning.
2. Local perception. Use convolution to extract local features. People’s perception of
the outside world is from local to global, and neighboring local pixels are closely
connected. Each neuron does not need to perceive the global image, it only needs to
perceive the part, and then the higher layer combines the local information to obtain
the global information.
3. Parameter sharing. Each convolution kernel is a way to extract features, which
greatly reduces the number of parameters.
4. Down sampling using average pooling.
5. Use multi-layer neural network (MLP) as the final classifier. ([YLJ89])

37

Chapter 3. Model and Evaluation

3.1.2 AlexNet

The AlexNet network has a total of 5 convolution layers, 3 pooling layers, 3 fully
connected layers (including the output layer), and finally 1000 classifications. The
last layer is a softmax output layer.
Features:
1. Using ReLU as a nonlinear activation function solves the gradient dispersion
problem of sigmoid when the network is deep.
2. The fully connected layer uses dropout technology to selectively ignore individual
neurons in training to avoid over fitting.
3. Use overlap max pooling to avoid the blur effect of average pooling.
4. Use multi-GPU training, greatly accelerate the training speed.
5. Proposed the local response normalization LRN (Local Response Normalization),
although later proved to be of little effect, it gradually gave way to BatchNorm.
6. Data enhancement. Randomly intercept an area of 224*224 size (and the mirror
image flipped horizontally) from 256*256 data, which greatly reduces over-fitting
and enhances generalization ability[AKH12].

3.1.3 GoogLeNet:

The main innovation of this model lies in its Inception, which is a Network In
Network structure, that is, the original node is also a network.
Features:
1. While controlling the amount of calculation and parameters, a good classification
performance is obtained.
2. Removed the last fully connected layer and used a global average pooling layer.
3. Use Inception Module to improve parameter utilization.
4. Use different sizes of convolution kernels to increase diversity.
5. Introduce auxiliary classifiers (auxiliary classifiers), that is, the output of an
intermediate layer is used as a classification, and a small weight (0.3) is added to the
final classification.
6. Replace the large convolution kernel with multiple small convolution kernels.
7. n*n convolution kernel is changed to 1*n and n*1 convolution kernel, saving
parameters, accelerating.
calculation, reducing over-fitting, and adding a layer of non-linear expansion model
expression ability[CS15].

3.1.4 ResNet:

ResNet designs a residual module that allows us to train deeper networks. The
proposal of this network is essentially to solve the problem that cannot be trained

38

3.2. Dataset

when the level is deeper. It is similar to GoogLeNet, ResNet finally uses a mean
pooling layer.
Features:
1. Using the residual module, a 152-layer residual network can be trained. Its accuracy
is higher than GoogLeNet.
2. Make the learning result more sensitive to the fluctuation of the network weight.
3. The residual results are more sensitive to data fluctuations[HZRS15].

3.1.5 MobileNet

MobileNet introduces the concept of separable convolution. In simpler terms, it
decomposes the two-dimensional convolution kernel into two separate convolution
kernels, namely the depth direction (responsible for collecting the spatial information
of each individual channel) and the point direction (responsible for processing the
inter-channel Interactive).
Features:
1. Lightweight network. Compression is performed on the trained model, so that the
network carries fewer network parameters, thereby solving the memory problem
and the speed problem.
2. Separable convolution reduces network parameters without losing network
performance[NOF20].

3.2 Dataset

In order to facilitate our better observation and evaluation of the use of machine
learning algorithms and models in the browser, here are three data sets to be tested
for different tasks.

3.2.1 Cars

(View here [RD83]) This was one of a ASA(American Statistical Association) Data
Exposition dataset. For analysis, data was on mpg, cylinders, displacement, etc. (8
variables) for 406 different cars. The dataset also includes the names of the cars. Later
we will use this data set for our regression task prediction.

39

Chapter 3. Model and Evaluation

Figure 3.1
Images from the MNIST training set.

3.2.2 MNIST

“MNIST", a handwritten digit recognition data set. It is one of the most basic data sets
used to test performance of neural network models and learning techniques. Using
60,000 images as the training set, a 97%−98% accuracy could easily be achieved on
the test set of 10,000 images, with learning methods such as k-nearest neighbors
(KNN), random forests, support vector machines (SVM)and simple neural networks
models[SA08].

In this article, there are a total of 65,000 images, we will use up to 55,000 images to
train the model, saving 10,000 images that we can use to test the model’s performance
once we are done. Each image is 28px wide 28px high and has a 1 color channel as it
is a gray scale image. So the shape of each image is [28, 28, 1]. And we are going to
do all of that in the browser.

3.2.3 Cifar-10

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images.
This dataset is divided into five training batches and one test batch, each with 10000
images. The test batch contains exactly 1000 randomly-selected images from each
class. The training batches contain the remaining images in random order, but some
training batches may contain more images from one class than another. Between
them, the training batches contain exactly 5000 images from each class.
Here are the classes in the dataset, as well as 10 random images from each:

40

http://yann.lecun.com/exdb/mnist/

3.3. Training task

Figure 3.2
Images from the Cifar-10 training set.

3.3 Training task

3.3.1 Regression

By using machine learning (ML), we want to solve a real problem. If we think about
the problem, what would be the characteristics of a car to predict its price? The
Weight? The year when it was produced? The point is that there are endless of char-
acteristics for a car that could contribute to the price of a house. These characteristics
of one date (car) in a data set (cars) are called features. For instance, the horsepower
and miles per gallon are features. In order to simplify the process of learning ML
in the article by using linear regression and gradient descent [MWL16, FK19], let’s
assume that the only feature that affects the miles per gallon is its horsepower. That
way, we can apply an univariate linear regression that simplifies the algorithm,
because we are only using one feature.
Here i will load the “Cars” data-set,(which can be found below). It contains many
different features for a given car. For this model, we want to only extract data about
Horsepower and Miles Per Gallon.
First we will also remove any entries that do not have either miles per gallon or
horsepower defined. Let’s also plot this data in a scatter plot to see what it looks like.
We can see from the plot(Figure 3.3) that there is a negative correlation between

horsepower and MPG, i.e. as horse power goes up, cars generally get fewer miles

41

https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 3. Model and Evaluation

Figure 3.3: Horsepower V MPG

per gallon.
Second add an input layer to our network, which is automatically connected to a
"dense" layer with a hidden unit. The dense layer is a type of layer that multiplies its
input by a matrix (called weights), and then adds a number (called bias).Next we
can set the size of the weight matrix in the layer. By setting it to 1 here, we could say
that the weight of each input feature of the data is 1. To get the performance benefits
of TensorFlow.js that make training machine learning models practical, we need to
convert our data to tensors. We will also perform a number of transformations on
our data that are best practices, namely shuffling and normalization.
Before we train this model,we have to ‘compile’ the model. To do so, we need to
specify a number of very important things: There are many optimizers available
in TensorFlow.js. Here we have picked the adam optimizer as it is quite effective
in practice and requires no configuration. At the same time for loss function, we
use mean Squared Error to compare the predictions made by the model with the
true values. Batch sizes tend to be in the range 32-512 and we will take 50 iterations
through the dataset.

We will see in Figure3.4that they display the loss and mse, averaged over the whole
dataset, at the end of each epoch.When training a model we want to see the loss go
down. In this case, because our metric is a measure of error, we want to see it go
down as well.
Now that our model is trained, we want to make some predictions and evaluate the

42

3.3. Training task

Figure 3.4: This displays the loss and mse, averaged over the whole dataset, at the
end of each epoch.

Figure 3.5: The "slash" indicates the prediction performance of the model, which
tries to fit a line to the trend present in input data.

43

Chapter 3. Model and Evaluation

model by seeing what it predicts for a uniform range of numbers of low to high
horsepowers.
This Figure3.5 currently performs what is known as linear regression which tries to
fit a line to the trend present in input data.

3.3.2 Classifition

For evaluating classification tasks in machine learning, in this module we will make
a web page that uses TensorFlow.js to train a model in the browser [HCE+17]. Given
a black and white image of a particular size it will classify which digit appears in
the image.
First, we’ll train the classifier by having it "look" at thousands of hand written digit
images and their labels. Then we’ll evaluate the classifier’s accuracy using test data
that the model has never seen. This task is considered a classification task as we are
training the model to assign a category (the digit that appears inthe image) to the
input image. We will train the model by showing it many examples of inputs along
with the correct output. This is referred to as supervised learning.
Similarly, after loading the MNIST training data, we need to configure the parame-
ters in our model: The size of the sliding convolution filter windows to be applied to
the input data (kernel Size) could be 5, which specifies a square, 5x5 convolution
window. We will apply 8 filters to the data. Here, we also specify strides of 1, which
means that the filter will slide over the image in steps of 1 pixel. After the convolution
is complete. In this case, we are applying a Rectified Linear Unit (ReLU) function
as activation function, which is a very common activation function in ML models.
When we compile the model, we need to specify the optimizer, loss function and
indicator to be tracked. Contrary to our first regression task, here we use categorical
Crossentropy as the loss function. As the name implies, this name will be used when
the output of our model is a probability distribution. The categorical Crossentropy
measures the error between the probability distribution generated by the last layer
of the model and the probability distribution given by the real label.We could see
Figure 3.6 and Figure 3.7 reporting training progress.

After training the model, we need to make some predictions. Here, we will take 500
images and predict the number of bits in them (Of course, we can also increase this
number to test larger image sets).
Notably the argmax function is what gives us the index of the highest probability
class. Remember that the model outputs a probability for each class. Here we find out
the highest probability and assign use that as the prediction. We should notice that
we can do predictions on all 500 examples at once. This is the power of vectorization
that TensorFlow.js provides.

44

3.3. Training task

Figure 3.6: When training a model we want to see the loss go down. In this case,
because our metric is a measure of error, we want to see it go down as
well.

Figure 3.7: As the number of epochs of our training increases, our accuracy value
keeps increasing, and the loss value is gradually decreasing

45

Chapter 3. Model and Evaluation

Figure 3.8: The performance is good, and the highest accurate prediction rate for the
number "Zero" reaches 98.51%

Show per class accuracy
With a set of predictions and labels we can calculate accuracy for each class. We
could see a display in our webpage that looks like the Figure3.8.

Show a confusion matrix
A confusion matrix in the Figure3.9 is similar to per class accuracy but further breaks
it down to show patterns of misclassification. It allows us to see if the model is
getting confused about any particular pairs of classes. In the results, we can clearly
see that the prediction accuracy of the MNIST dataset in the browser is amazing for
machine learning anyway [FKB+18, FKS+15a, GFSK17, FKSK18].

For the Cifar-10 data set, the steps we need to configure the neural network param-
eters are similar to MNIST. The same is to train the model, then store the model
and use tfjs−converter to convert to a model that can be run on an html/javascript
scripts.
But this dataset is more difficult and it takes longer to train a network. Data augmen-
tation includes random flipping and random image shifts by up to 2px horizontally
and vertically. We need to notice that by default, we will use Adadelta, which is one
of the per-parameter adaptive step size methods, so we don’t have to worry about
the learning rate or momentum that changes over time. However, there is also the
possibility of using SGD + Momentum trainer.
Here I will show some results based on last 200 test images in Figure3.10.

46

3.3. Training task

Figure 3.9: The highest count in the confusion matrix is 69 for the number “Six", and
the lowest count is 33 for the number "Eight".

47

Chapter 3. Model and Evaluation

Figure 3.10: The green rectangles in each object represent examples of successful
and accurate predictions, and the red represent incorrect predictions

From the results, the test accuracy nearlly reached 80%.

3.4 Performance comparison

When we deploy the above machine learning model in the browser, we want to
know the difference between different parameters and different models on the
efficiency of machine learning. In other words, what kind of model is most suitable
for browser-side machine learning? How does it perform? What effect will we have if
we change the parameters of the neural network model? In this section, we will apply
different models for our data set in order to observe their respective performance.

For the "Cars" dataset in the regression task, we want to change its model parameters
and observe its performance changes. First, we try to change the number of epochs,
the new epochs number should be doubled. Second, we try to increase the units in
the hidden layer and try to add more hidden layers between the first hidden layer
added and the final output layer. The code for these additional layers should look
like the following.

1 model . add (t f . l a y e r s . dense ({ u n i t s : 50 , a c t i v a t i o n : ’ sigmoid ’ })) ;

48

3.4. Performance comparison

Figure 3.11: When we add more hidden layers between the first hidden layer added
and the final output layer in the models of "Cars" dataset. There will be
better convergence of data and trends.

Here we increase the unit in the added hidden layer to 50 and use the sigmoid
function to activate. The most important new thing about these hidden layers is that
they introduce a non-linear activation function, in this case sigmoid activation. And
the test results are as follows.

In this Figure3.11, we can clearly see that the fitting curve between horsepower
and MPG becomes more smoother, and the performance and effect have become
better than before. It turns out that when we add more hidden layers and choose a
suitable activation function, it will have a profound impact on the performance of
our machine learning in the browser.

For our MNIST dataset, we want to deploy several classic CNN models(such as
AlexNet, GoogLeNet, and ResNet)to compare their respective performance.
According to the comparison(Figure3.12), we found that ResNet performed the

best,with top-5 error of only 3.57%. ResNet has more layers, deeper convolution
layers and larger convolution kernels than AlexNet and GoogleNet. At the same
time,the number of its fully connected layers is more simplified and the size is
more appropriate. And more valuable is that ResNet has both Local Response
Normalization and Batch Normalization.
So let’s take a look at the performance of these networks on Cifar-10 data (Figure3.13).
When we train with the LeNet model for 100 epochs, the accuracy can reach at 66%.
When we train with the AlexNet model for 100 epochs, the effect is really improved.
Finally, the performance of the ResNet is the best, basically reached at 80%.

Therefore, it is not difficult to see that in the classic CNN heavyweight models,

49

Chapter 3. Model and Evaluation

Figure 3.12: Comparison of three models parameters from shallow to deep, among
them ResNet ranks first with the least Top-5 error rate and deeper layers
structure.

Figure 3.13: From left to right, LeNet, AlexNet, and ResNet deploy on the Cifar-10
model in turn. After completing 100 epochs, ResNet reached the highest
accuracy rate of 80%

50

3.4. Performance comparison

Figure 3.14: The performance of MobileNet in different devices and different envi-
ronments.We can see that the performance on the mobile side is more
prominent.

ResNet has a deeper number of layers and better performance. It is a brilliant model
we can choose and trust.
After discussing the classic heavyweight models, the lightweight models such as
MobileNet in recent years have become more and more popular. But how effective
is the lightweight model on mobile and web side? According to Google Cloud
data[Goo], we can make an intuitive evaluation based on MobileNet,which can be
used as a reference for us.
Here we will use the same model to run 200 times in python through tensorflow
and run in the browser with javascript through the tensorflow.js(Figure3.14).
In the browser, TensorFlow.js can use WebGL for hardware acceleration and use

GPU resources. When we run an inference in the browser with tensorflow.js:
It takes 97ms on the CPU
It takes 10ms on GPU (WebGL)
Compared with the Python code benchmark, the running time of TensorFlow.js in
the browser is 1.7 times that of the CPU, and the running time of the GPU (WebGL)
is 3.8 times.
In Node.js, we can load the converted model with JavaScript through tensorflw.js, or
use C++ Binding of the TensorFlow, which approach and surpass the performance
of Python respectively.
When we run an inference in the browser on Node.js through tensorflow.js:
Running native model time on CPU is 19.6ms
Running native model time on GPU (CUDA) is 7.68ms
Compared with the Python code benchmark, it runs 4% faster than the benchmark
on both CPU and GPU.

51

4 Conclusion

In this thesis we evaluated different models for different tasks. This makes it possible
to select the appropriate model for a mobile web-based application. The results of
this thesis allow to consider the accuracy of the model as well as its runtime with
and without GPU.
Machine learning inn the browser has gradually become a trend. Using the browser
for machine learning has unparalleled advantages. Because compared to traditional
local deployment, accessing web pages through a browser has a lower threshold and
a wider spread. When we only use local CPU/GPU resources to perform the machine
learning we gain more flexible useage of AI applications in the browser: We do not
need to install unnecessary software or drivers; More convenient human-computer
interaction can be carried out through the browser; We can call various sensors of
the phone hardware (such as GPS, electronic compass, acceleration sensor, camera,
etc.) through the phone browser; Our user data can be completed locally without
uploading to the server.
Internet is a very powerful medium. It is cross-platform and can be used with a
variety of different devices, from mobile devices, tablets to desktop devices, and
different operating systems (Android, iOS and Mac, Windows, etc.), with only one
link. Different from common applications, it does not require any installation process
nor complex configurations.
When we deploy the machine learning model in the browser, it is particularly
important to configure the appropriate neural network parameters and select the
appropriate model. Among the heavyweight models, ResNet is unique with its excel-
lent performance. However, compared to the flexibility and speed of the lightweight
model, MobileNet is more suitable for our deployment in the browser due to the
low ressource consumption and low runtime.

53

Bibliography

[AAB+17] Nassim Ammour, Haikel Alhichri, Yakoub Bazi, Bilel Benjdira, Naif
Alajlan, and Mansour Zuair. Deep learning approach for car detection
in uav imagery. Remote Sensing, 9(4):312, 2017.

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16), pages 265–283, 2016.

[AKH12] I. Sutskever A. Krizhevsky and G. Hinton. Imagenet classification with
deep convolutional neural networks. 2012.

[BBLP12] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu.
Advances in optimizing recurrent networks, 2012.

[BFG+16] H. Bahmani, W. Fuhl, E. Gutierrez, G. Kasneci, E. Kasneci, and S. Wahl.
Feature-based attentional influences on the accommodation response.
In Vision Sciences Society Annual Meeting Abstract, 2016.

[CS15] Yangqing Jia Pierre Sermanet Scott E. Reed Dragomir Anguelov Du-
mitru Erhan Vincent Vanhoucke Andrew Rabinovich Christian Szegedy,
Wei Liu. Going deeper with convolutions. 2015.

[Dev16] Desale. Devendra. Top 15 frameworks for machine learning experts.
2016.

[Duc11] Hazan E. Singer Y. Duchi, J. Adaptive subgradient methods for online
learning and stochastic optimization. 2011.

[EFK17] Shahram Eivazi, Wolfgang Fuhl, and Enkelejda Kasneci. Towards intel-
ligent surgical microscopes: Surgeons gaze and instrument tracking. In
Proceedings of the 22st International Conference on Intelligent User Interfaces,
IUI 2017. ACM, 03 2017.

[EHF+17] S. Eivazi, A. Hafez, W. Fuhl, H. Afkari, E. Kasneci, M. Lehecka, and R. Bed-
narik. Optimal eye movement strategies: a comparison of neurosurgeons
gaze patterns when using a surgical microscope. Acta Neurochirurgica,
2017.

55

Bibliography

[ESF+17] Shahram Eivazi, Michael Slupina, Wolfgang Fuhl, Hoorieh Afkari, Ah-
mad Hafez, and Enkelejda Kasneci. Towards automatic skill evaluation
in microsurgery. In Proceedings of the 22st International Conference on
Intelligent User Interfaces, IUI 2017. ACM, 03 2017.

[FBH+19] Wolfgang Fuhl, Efe Bozkir, Benedikt Hosp, Nora Castner, David Geisler,
Thiago C., and Enkelejda Kasneci. Encodji: Encoding gaze data into
emoji space for an amusing scanpath classification approach ;). In Eye
Tracking Research and Applications, 2019.

[FCK18a] W. Fuhl, N. Castner, and E. Kasneci. Histogram of oriented velocities
for eye movement detection. In International Conference on Multimodal
Interaction Workshops, ICMIW, 2018.

[FCK18b] W. Fuhl, N. Castner, and E. Kasneci. Rule based learning for eye
movement type detection. In International Conference on Multimodal
Interaction Workshops, ICMIW, 2018.

[FCK+19] W. Fuhl, N. Castner, T. C. Kübler, A. Lotz, W. Rosenstiel, and E. Kasneci.
Ferns for area of interest free scanpath classification. In Proceedings of the
2019 ACM Symposium on Eye Tracking Research & Applications (ETRA), 06
2019.

[FCZ+18] W. Fuhl, N. Castner, L. Zhuang, M. Holzer, W. Rosenstiel, and E. Kasneci.
Mam: Transfer learning for fully automatic video annotation and spe-
cialized detector creation. In International Conference on Computer Vision
Workshops, ICCVW, 2018.

[FEH+18] W. Fuhl, S. Eivazi, B. Hosp, A. Eivazi, W. Rosenstiel, and E. Kasneci.
Bore: Boosted-oriented edge optimization for robust, real time remote
pupil center detection. In Eye Tracking Research and Applications, ETRA,
2018.

[FGK20a] W. Fuhl, H. Gao, and E. Kasneci. Neural networks for optical vector
and eye ball parameter estimation. In ACM Symposium on Eye Tracking
Research & Applications, ETRA 2020. ACM, 01 2020.

[FGK20b] W. Fuhl, H. Gao, and E. Kasneci. Tiny convolution, decision tree,
and binary neuronal networks for robust and real time pupil outline
estimation. In ACM Symposium on Eye Tracking Research & Applications,
ETRA 2020. ACM, 01 2020.

[FGRK19] W. Fuhl, D. Geisler, W. Rosenstiel, and E. Kasneci. The applicability of
cycle gans for pupil and eyelid segmentation, data generation and image
refinement. In International Conference on Computer Vision Workshops,
ICCVW, 11 2019.

[FGS+18] W. Fuhl, D. Geisler, T. Santini, T. Appel, W. Rosenstiel, and E. Kasneci.
Cbf:circular binary features for robust and real-time pupil center de-

56

Bibliography

tection. In ACM Symposium on Eye Tracking Research & Applications, 06
2018.

[FK18] W. Fuhl and E. Kasneci. Eye movement velocity and gaze data generator
for evaluation, robustness testing and assess of eye tracking software
and visualization tools. In Poster at Egocentric Perception, Interaction and
Computing, EPIC, 2018.

[FK19] W. Fuhl and E. Kasneci. Learning to validate the quality of detected
landmarks. In International Conference on Machine Vision, ICMV, 11 2019.

[FKB+18] W. Fuhl, T. C. Kübler, H. Brinkmann, R. Rosenberg, W. Rosenstiel, and
E. Kasneci. Region of interest generation algorithms for eye tracking
data. In Third Workshop on Eye Tracking and Visualization (ETVIS), in
conjunction with ACM ETRA, 06 2018.

[FKH+17] W. Fuhl, T. C. Kübler, D. Hospach, O. Bringmann, W. Rosenstiel, and
E. Kasneci. Ways of improving the precision of eye tracking data:
Controlling the influence of dirt and dust on pupil detection. Journal of
Eye Movement Research, 10(3), 05 2017.

[FKRK20] W. Fuhl, G. Kasneci, W. Rosenstiel, and E. Kasneci. Training decision
trees as replacement for convolution layers. In Conference on Artificial
Intelligence, AAAI, 02 2020.

[FKS+15a] W. Fuhl, T. C. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. Arbitrarily
shaped areas of interest based on gaze density gradient. In European
Conference on Eye Movements, ECEM 2015, 08 2015.

[FKS+15b] W. Fuhl, T. C. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. Excuse:
Robust pupil detection in real-world scenarios. In 16th International
Conference on Computer Analysis of Images and Patterns (CAIP 2015), 09
2015.

[FKSK18] W. Fuhl, T. Kübler, T. Santini, and E. Kasneci. Automatic generation of
saliency-based areas of interest. In Symposium on Vision, Modeling and
Visualization (VMV), 09 2018.

[FRE20] Wolfgang Fuhl, Yao Rong, and Kasneci Enkelejda. Fully convolutional
neural networks for raw eye tracking data segmentation, generation,
and reconstruction. In Proceedings of the International Conference on Pattern
Recognition, pages 0–0, 2020.

[FRK19] W. Fuhl, W. Rosenstiel, and E. Kasneci. 500,000 images closer to eyelid
and pupil segmentation. In Computer Analysis of Images and Patterns,
CAIP, 11 2019.

[FRM+20] Wolfgang Fuhl, Yao Rong, Thomas Motz, Michael Scheidt, Andreas
Hartel, Andreas Koch, and Enkelejda Kasneci. Explainable online

57

Bibliography

validation of machine learning models for practical applications. arXiv,
08 2020.

[FSG+16] W. Fuhl, T. Santini, D. Geisler, T. C. Kübler, W. Rosenstiel, and E. Kasneci.
Eyes wide open? eyelid location and eye aperture estimation for per-
vasive eye tracking in real-world scenarios. In ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct publication –
PETMEI 2016, 09 2016.

[FSG+17] W. Fuhl, T. Santini, D. Geisler, T. C. Kübler, and E. Kasneci. Eyelad:
Remote eye tracking image labeling tool. In 12th Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP 2017), 02 2017.

[FSK17a] W. Fuhl, T. Santini, and E. Kasneci. Fast and robust eyelid outline and
aperture detection in real-world scenarios. In IEEE Winter Conference on
Applications of Computer Vision (WACV 2017), 03 2017.

[FSK17b] W. Fuhl, T. Santini, and E. Kasneci. Fast camera focus estimation for
gaze-based focus control. In CoRR, 2017.

[FSK+18] W. Fuhl, T. Santini, T. Kuebler, N. Castner, W. Rosenstiel, and E. Kasneci.
Eye movement simulation and detector creation to reduce laborious
parameter adjustments. arXiv preprint arXiv:1804.00970, 2018.

[FSKK16] W. Fuhl, T. Santini, T. C. Kübler, and E. Kasneci. Else: Ellipse selection
for robust pupil detection in real-world environments. In Proceedings of
the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications
(ETRA), pages 123–130, 03 2016.

[FSR+16] W. Fuhl, T. Santini, C. Reichert, D. Claus, A. Herkommer, H. Bahmani,
K. Rifai, S. Wahl, and E. Kasneci. Non-intrusive practitioner pupil
detection for unmodified microscope oculars. Elsevier Computers in
Biology and Medicine, 79:36–44, 12 2016.

[FTBK16] Wolfgang Fuhl, Marc Tonsen, Andreas Bulling, and Enkelejda Kasneci.
Pupil detection for head-mounted eye tracking in the wild: An evaluation
of the state of the art. In Machine Vision and Applications, pages 1–14, 06
2016.

[Fuh19] W. Fuhl. Image-based extraction of eye features for robust eye tracking. PhD
thesis, University of Tübingen, 04 2019.

[Fuh20] Wolfgang Fuhl. From perception to action using observed actions to
learn gestures. User Modeling and User-Adapted Interaction, pages 1–18,
08 2020.

[GFSK17] D. Geisler, W. Fuhl, T. Santini, and E. Kasneci. Saliency sandbox: Bottom-
up saliency framework. In 12th Joint Conference on Computer Vision,

58

Bibliography

Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017),
02 2017.

[Goo] Google. Cloud data.

[HCE+17] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke,
Aren Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A
Saurous, Bryan Seybold, et al. Cnn architectures for large-scale audio
classification. In 2017 ieee international conference on acoustics, speech and
signal processing (icassp), pages 131–135. IEEE, 2017.

[Heu17] Ramsauer H. Unterthiner T. Nessler B. Hochreiter S Heusel, M. Gans
appendix a. reference. 2017.

[HL09] R. Ranganath A. Y. Ng H. Lee, R. Grosse. Convolutional deeb belief net-
works for scalable unsupervised learning of hierarchical representation.
2009.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[Kin15] Ba J. L. Kingma, D. P. Adam: a method for stochastic optimization. 2015.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[LHBB99] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object
recognition with gradient-based learning. In Shape, contour and grouping
in computer vision, pages 319–345. Springer, 1999.

[MMR+16] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. Communication-efficient learning of deep
networks from decentralized data. 2016.

[MWL16] Shun Miao, Z Jane Wang, and Rui Liao. A cnn regression approach
for real-time 2d/3d registration. IEEE transactions on medical imaging,
35(5):1352–1363, 2016.

[Nes83] Y Nesterov. A method for unconstrained convex minimization problem
with the rate of convergence o(1/k2). doklady ansssr (translated as
soviet.math.docl.), vol. 269, pp. 543-547. 1983.

[NOF20] Anna Nguyen, Adrian Oberföll, and Michael Färber. Right for the right
reason: Making image classification robust, 2020.

[Ola14] C Olah. Neural networks, manifolds, and topology. 2014.

59

Bibliography

[PSL+16] Alexandra Papoutsaki, Patsorn Sangkloy, James Laskey, Nediyana
Daskalova, Jeff Huang, and James Hays. Webgazer: Scalable webcam
eye tracking using user interactions. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence-IJCAI 2016, 2016.

[Qia] N. Qian. On the momentum term in gradient descent learning algo-
rithms.

[RD83] Ernesto Ramos and David Donoho. 1983.

[Rru16] Sebastian Rruder. An overview of gradient descent optimization algo-
rithms. 2016.

[SA08] Sanglee Park Heerin Yang Jungmin So Sanghyeon An, Minjun Lee. An
ensemble of simple convolutional neural network models for mnist digit
recognition. 2008.

[SHZ+18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[Sut86] R. S. Sutton. Two problems with backpropagation and other steepest-
descent learning procedures for networks. 1986.

[SW] Carter S. Sculley D. Viegas F. Smilkov, D. and M Wattenberg. Direct-
manipulation visualization of deep networks.

[XAJ+18] Lele Xie, Tasweer Ahmad, Lianwen Jin, Yuliang Liu, and Sheng Zhang.
A new cnn-based method for multi-directional car license plate detection.
IEEE Transactions on Intelligent Transportation Systems, 19(2):507–517, 2018.

[YLJ89] J. S. Denker D. Henderson R. E. Howard W. Hubbard Y. LeCun, B. Boser
and L. D. Jackel. “backpropagation applied to handwritten zip code
recognition”. 1989.

60

	Introduction
	Advantages in a browser-based environment

	Fundamentals
	Framework
	Tensorflow
	Tensorflow.js

	Optimization Algorithm
	Three forms of gradient descent
	Challenges

	Convolutional Neural Networks in Tensorflow.js
	Convolution and Kernels
	CNN architecture
	Implementation in Tensorflow.js

	Model and Evaluation
	Model
	LeNet
	AlexNet
	GoogLeNet:
	ResNet:
	MobileNet

	Dataset
	Cars
	MNIST
	Cifar-10

	Training task
	Regression
	Classifition

	Performance comparison

	Conclusion

