
EsoCipher: An Instance of Hybrid Cryptography
Neel Adwani

University of Petroleum and Energy Studies
Dehradun, Uttarakhand
contact@neeltron.com

ABSTRACT
This paper proposes a whole new concept in the field of Cryptog-
raphy, i.e., EsoCiphers. Short for Esoteric Cipher, EsoCipher is an
algorithm, which can be understood by a few, who have the knowl-
edge about its backend architecture. The idea behind this concept
is derived from esoteric programming languages, but EsoCiphers
will be having a practical use in the future, as more research is done
on the topic. Although the algorithm is quite simple to understand,
the complexity of the output will indeed prove to be difficult to
bruteforce if a secret is embedded to it. It uses a hybrid cryptog-
raphy based technique, which combines ASCII, Binary, Octal and
ROT 13 ciphers. The implementation and similarity index has been
provided to show that it can be implemented practically.

1 INTRODUCTION
According to the international standards, the term "esoteric" is
defined as something that can be understood by a small group of
people, having knowledge of the same. A common term, similar to
it is "esolang", short for esoteric programming language [10] which
can be further stated as a language that can be decoded by some
specific compilers or interpreters. One such example of an esoteric
programming language is Malbolge [7]. As for Esoteric Cipher, it
is not entirely an esoteric language, nor an ordinary cipher, but a
mixture of both of them, making it entirely a hybrid cryptographic
technique [1].

In Layman terms, cryptography is a study of different techniques,
in order to protect data or any sort of communications happening
through any medium. A Cipher would be defined as an algorithm
that can encrypt or decrypt the data.

In our case, the algorithm is totally dependent upon communica-
tion of text based messages, and the key to it will be as per the user’s
preference. Initially, the user will have to type the message, and
then the secret. The secret will be embedded to the message, which
is similar to salting but not exactly the same. Upon execution of the
algorithm, it’ll translate the message into an entirely tangled string,
which would be almost impossible to decipher without having the
secret.

* The terms key and secret can be used interchangeably, within
the scope of this paper.

2 RELATEDWORK
This section demonstrates a glimpse of related algorithms that have
been implemented and are currently in use.

Malbolge [7] is an esoteric programming language, which uses
characters based on the ASCII table and has a specified range of
printable and non-printable characters, depending upon that range.
Instead of Deciphering algorithms, esoteric languages have inter-
preters and they’re mostly proposed as jokes. Another popular

esoteric language is Brainfuck [5], which became notable for its
minimalistic expressions. The whole language constitutes 8 simple
commands and an instruction pointer. LOLCODE [8] is yet another
esoteric language, which is based on the lolcat meme. So, its files
are generated of the extensions .lol and .lols. Since its inspiration
comes from memes over the internet, the syntax contains keywords
like HAI, BTW, GTFO, KTHXBYE.

While there’s no intended practical use of esoteric languages, Es-
oCipher may be considered obfuscated but it can be proven useful in
some fields. Since a lot of exploration hasn’t been done around this
topic, it is hard to determine the usability of the given algorithms in
this paper, but intentionally EsoCiphers can be useful in preventing
the attacker from reading the data during data breaches. It can
even be used in Machine Learning/Deep Learning Models where
sensitive data is required to train the model. No human will be able
to make sense out of that data, without knowing the key and the
exact functions used in their algorithm. On another note, the given
algorithms can be modified, depending upon the requirements of
the developer.

3 ALGORITHMIC AND PROCEDURAL
BACKGROUND

This section presents the back-end of this algorithm, which provides
a good idea about its working approach and the ways it can be
implemented in different languages.

3.1 Encipher
During the process of enciphering, the algorithm initially replaces
special characters like ’.’, ’,’, ’@’, ’!’, etc., with their alphabetical
counterparts like "period", "comma", "at", "exclamation", which are
absolutely flexible, making the cipher flexible and secure, as per
the special characters are defined. Moving forward, the ASCII [3]
value of each alphabet is converted into binary and then embedded
into a new variable as a string. The character ’b’ has to be removed
as it may cause conversion errors. After that, the octal [6] value
of that string is taken into account for an integer of the whole
string and finally, the ROT13 [4] Algorithm is executed and the
enciphered string executed by the EsoCipher Algorithm is obtained.
A summarized visualization for the same is shown in Fig. 1.

3.2 Decipher
In order to decipher the EsoCipher, the program needs an "EsoCi-
phered" string to begin with. After the successful input of the string,
it is looped through and a ROT -13 is executed on it, i.e., the ASCII
value of each character is decreased by 13 and stored collectively in
a variable. For each group of 8 characters, a 0 is added initially and
then an octal value is received. The octal value is then taken into
account and converted to binary. For each series of 8, the binary



Neel Adwani

Algorithm 1: Generating an EsoCipher
Result: The EsoCipher is returned as a string.
input_string = "", modified_string = "", iter = 0, x = 0,
temp_string = "";

𝑖𝑛𝑝𝑢𝑡_𝑠𝑡𝑟𝑖𝑛𝑔← ”𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑡𝑟𝑖𝑛𝑔”;
while iter < len(input_string) do

𝑥 ← 𝑏𝑖𝑛𝑎𝑟𝑦 (𝑎𝑠𝑐𝑖𝑖 (𝑖𝑛𝑝𝑢𝑡_𝑠𝑡𝑟𝑖𝑛𝑔[𝑖𝑡𝑒𝑟 ]));
𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔←𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔 + 𝑠𝑡𝑟𝑖𝑛𝑔(𝑥);

end
𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔←𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔.𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (′𝑏 ′, 1);
𝑡𝑒𝑚𝑝_𝑠𝑡𝑟𝑖𝑛𝑔← 𝑜𝑐𝑡𝑎𝑙 (𝑖𝑛𝑡 (𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔));
modified_string = "";
iter = 0;
while iter < len(temp_string) do

𝑥 ← 𝑎𝑠𝑐𝑖𝑖 (𝑡𝑒𝑚𝑝_𝑠𝑡𝑟𝑖𝑛𝑔[𝑖𝑡𝑒𝑟 ]);
𝑥 ← 𝑥 + 13;
𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔←𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔 + 𝑎𝑙𝑝ℎ𝑎(𝑥);

end
return modified_string;

Figure 1: Flowchart for understanding the Esocipher

is converted into ASCII and then the respective value of ASCII is
replaced by the corresponding alphabet, as per the given table 1. For
connotations like "period", "comma", "at", "exclamation", etc., they’re
finally converted into symbols like ’.’, ’,’, ’@’, ’!’, etc., to ensure that
the complete original string is obtained. The similarity index and
losses for the same are discussed in section 5. The algorithm for
deciphering an EsoCipher can be referred as dEsoCipher Algorithm.
A summarized visualization for the same is shown in Figure 2.

Algorithm 2: Deciphering the EsoCipher string
Result: The EsoCipher is deciphered and returned as a

string.
esocipher = "", deciphered_string = "", iter = 0, x = 0,
temp_string = "";

while iter < len(esocipher) do
𝑥 ← 𝑎𝑠𝑐𝑖𝑖 (𝑒𝑠𝑜𝑐𝑖𝑝ℎ𝑒𝑟 [𝑖𝑡𝑒𝑟 ]);
𝑥 ← 𝑥 − 13;
𝑑𝑒𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔← 𝑑𝑒𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔 + 𝑐ℎ𝑎𝑟 (𝑥);

end
𝑑𝑒𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔←′ 0′+𝑠𝑡𝑟𝑖𝑛𝑔(𝑖𝑛𝑡 (𝑑𝑒𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔, 8);

𝑡𝑒𝑚𝑝_𝑠𝑡𝑟𝑖𝑛𝑔← 𝑜𝑐𝑡𝑎𝑙 (𝑖𝑛𝑡 (𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑_𝑠𝑡𝑟𝑖𝑛𝑔));
for iter in modified_string[::8] do

final_string = final_string + char(iter);
end
return modified_string;

4 IMPLEMENTATION OF ESOCIPHER
This section demonstrates an in-depth explanation of the way this
algorithm was implemented in Python 3.7 and it includes relevant
screenshots attached to it.

For the enciphering algorithm, no external libraries are needed
to be imported, unless a different cryptic function has to be used.
As for the algorithm, the users are allowed to set their own codes
to punctuation marks, so basically for more number of punctuation
marks, the cipher will get stronger. A string "hello world" is supplied
as an input to our program, with the notation for ’ ’ as "space_bar".
The output turned out to be as shown in Figure 3.

For Deciphering of the same generated string in Figure 3, a
separate algorithm was programmed in the same development
environment, as per Algorithm 2, stated above in this paper. The
string that is supposed to be inputted is the one generated in Figure
3. For looking into the results, refer to Figure 4.

5 SIMILARITY INDEX AND LOSSES
This section is about testing Algorithm 1 on a random paragraph,
Algorithm 2 on the result generated from Algorithm 1, and calcu-
lating the Levenshtein Distance [2] [9] between the original string
(random paragraph) and the output of Algorithm 2. Since the punc-
tuation marks are to be defined by the user, it is assumed within the
scope of this paper, that all the punctuation marks in the paragraph
are annotated in both the algorithms.

A short excerpt from a Harry Potter novel is taken, which went
through both the algorithms and the Levenshtein distance between



EsoCipher: An Instance of Hybrid Cryptography

Figure 2: Flowchart for understanding the process of deci-
phering an Esocipher

Figure 3: Output during Enciphering

Figure 4: Output during Deciphering

the original string and the deciphered string turns out to be 1, which
is due to a punctuation error, and is solvable with some alterations.
Refer to Figure 5 for the implementation.

Since the Levenshtein distance is 1 in a string of 234 characters,
the loss turns out to be 0.427%, which will be considerably lower

Figure 5: Implementation of Levenshtein’s Distance Algo-
rithm

and even 0 if all the punctuation marks are defined correctly in the
source code.

REFERENCES
[1] Alexander W Dent. 2004. Hybrid cryptography. IACR Cryptol. ePrint Arch. 2004

(2004), 210.
[2] Wilbert Jan Heeringa. 2004. Measuring dialect pronunciation differences using

Levenshtein distance. Ph.D. Dissertation. University Library Groningen][Host].
[3] James L Hieronymus. 1993. ASCII phonetic symbols for the world’s languages:

Worldbet. Journal of the International Phonetic Association 23 (1993), 72.
[4] Markus Jakobsson and Jacob Ratkiewicz. 2006. Designing ethical phishing ex-

periments: a study of (ROT13) rOnl query features. In Proceedings of the 15th
international conference on World Wide Web. 513–522.

[5] U Müller. [n.d.]. Brainfuck–an eight-instruction turing-complete programming
language (1993).

[6] Albert R Plantz and Martin Berman. 1971. Adoption of the octal number system.
IEEE Trans. Comput. 100, 5 (1971), 593–598.

[7] Masahiko Sakai. 2010. Introduction to esoteric language Malbolge. In Japan-
Vietnam Workshop on Software Engineering. 15–19.

[8] Stryzhachenko and MY Tykhomirova. 2013. The esoteric programming languages.
Ph.D. Dissertation. Sumy State University.

[9] Li Yujian and Liu Bo. 2007. A normalized Levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence 29, 6 (2007), 1091–1095.

[10] AA Zabenkov and DA Morel Morel. 2014. Esoteric programming languages as a
state-of-the-art semiotic trend. (2014).


	Abstract
	1 Introduction
	2 Related Work
	3 Algorithmic and Procedural Background
	3.1 Encipher
	3.2 Decipher

	4 Implementation of EsoCipher
	5 Similarity Index and Losses
	References

