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1 Introduction and literature review1

The pattern of the primes is a question almost as old as mathematics itself.2

The concept of a number that can be evenly divided only by itself and 1 goes3

back to at least ancient Greece. Prime numbers are the multiplicative build-4

ing blocks of the number system. Since the first proof of the infinity of the5

primes by Euclid written around 300 B.C., the properties of the prime numbers6

have been studied at length by many of the best mathematical minds. From7

Gauss and Legendre’s formulation of the prime number theorem to its proof by8

Hadamard and de la Vallée Poussin. From Euler’s product formula and the zeta9

function to the Riemann hypothesis. Yet, to this day, the pattern of the primes10

remains fundamentally a mystery. Even the arithmetic properties of primes,11

while heavily researched, are still poorly understood.12

There are essentially two different ways of looking at prime numbers: glob-13

ally and algorithmically [4]. From an algorithmic standpoint, the method for14

producing prime numbers is quite clear: The prime-number sieve, credited to15

the antique Greek scholar Eratosthenes, was one of the first step-by-step meth-16

ods conceived for differentiating primes from composites among the numbers17

up to some given boundary. Nowadays, testing for primality is an elementary18

computer routine taught in most programming languages.19

In number theory, no efficiently computable formula for generating all the20

prime numbers, and only the prime numbers, is currently known, although21

a number of constraints showing what such a formula can and cannot be do22

exist [5]. Indeed, prime formulas require either tremendously precise knowledge23

of some unknown constant, or do require knowledge of the primes before the24

formulas can be used [6]. While distantly related to the current work, some25

simple prime-generating polynomials exist that produce only primes for a given26

number of integer values. For example, in 1772 Euler introduced the following27

quadratic polynomial:28

P (n) = n2 + n+ 41

which is prime for the 40 integers n = 0, 1, 2, ..., 39.29

It is also established that no non-constant polynomial function P (n) with30

integer coefficients exists that gives a prime number for all integers n.31

Because primes are apparently unpredictable with a direct algorithmic ap-32

proach, Gauss pioneered a global and lateral way to deal with this issue: Instead33

of trying to predict accurately the value of the next prime, he attempted to sta-34

tistically model the distribution of primes as a whole (e.g., he tried to determine35

how many primes were below 100 or 1000). This global approach (i.e., search-36

ing for probabilistic regularity) gave rise to the prime number theorem (PNT)37

which describes the asymptotic distribution of the prime numbers among the38

positive integers. Of some interest here is that the PNT is equivalent to the39

statement that the nth prime number pn satisfies40

pn ∼ n log(n)
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meaning that the relative error of this approximation approaches 0 as n increases41

without bound. An extended asymptotic formula for pn is given in [3]. This42

asymptotic expansion is the inverse of the logarithmic integral Li(x) obtained43

by series reversion. Some fresh work on the determination of the nth prime44

asymptotically can be found in [1].45

The present research can be considered both algorithmic and global: Algo-46

rithmic because it aims at predicting individual primes with the greatest possible47

level of accuracy but also global because it is based on the whole structure of48

the primes up to a given pn. However, the global perspective taken here is in-49

trinsically different from the traditional prime counting asymptotic method at50

the root of the PNT: It is a frontal approach focused on what happens at the51

beginning of the sequence of positive integers, i.e. finding predictability in the52

distribution of primes in the interval [1, n] when n need not be infinitely large.53

2 Problem description and method54

The aim of this study is to systematically explore the distribution of primes55

from the lowest integer ranges with polynomial regression analysis. Polynomial56

regression is a form of multiple regression based on transformations of a single57

variable into its powers. The main objective here consists of adjusting the58

parameters of polynomial functions to best fit the distribution of prime numbers.59

A data set consists of n points or data pairs (mi, pi) with i = 1, ..., n where mi60

is the independent variable (mi = i × 10−5) and pi is the dependent variable61

(i-th prime number). The model function has the form f(m, a) where q + 162

adjustable parameters are held in the vector a. Because some of the parameters63

had a tendency to become very small with higher polynomials, it was decided to64

replace i by the smaller mi. The aim is to obtain the parameter values for the65

model that ”best” fits the data as measured by its residual, i.e. the difference66

between the real value of the dependent variable and the value found by the67

model:68

ri = pi − f(mi, a). (1)

The least-squares method finds the optimal parameter values by minimizing the69

following:70

n∑
k=1

r2i .

The first million primes (up to 15,485,863) were generated with a sieve func-71

tion written in R (version 3.6.1 for Windows) and verified against a well-known72

prime list available online [2].73

The polynomial regressions were then performed on the full sets of primes74

from 2 to pn for the following 22 values of n: 100, 1000, 5000, 10000, 20000,75

30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 200000, 300000,76

400000, 500000, 600000, 700000, 800000, 900000, and 1000000.77
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All the regressions were completed with IBM SPSS Statistics (Version 21)78

and most of them were double-checked with R-3.6.1 and Excel 2016 (and, in79

the linear and quadratic cases, formulas based on elementary calculus were also80

obtained by hand). It should be noticed here that SPSS uses the Levenberg-81

Marquardt algorithm, also known as the damped least-squares (DLS) method,82

to solve non-linear least-square problems, whereas R or Excel uses by default the83

Gauss-Newton algorithm to solve similar problems (and the formulas based on84

elementary calculus use simple ordinary least square or OLS). All the methods85

converged and always gave exactly the same result for a given data set.86

For every selected range, the regressions were performed in increasing poly-87

nomial order (i.e., first linear, second quadratic, third cubic, etc.). The following88

f functions or polynomial regression equations were thus obtained for a given89

[1, n] range:90

f1(mi) = a0,1 + a1,1mi, (2.1)

f2(mi) = a0,2 + a1,2mi + a2,2m
2
i , (2.2)

fq(mi) = a0,q + a1,qmi + a2,qm
2
i + ...+ aq,qm

q
i . (2.3)

The two following descriptive statistics are the main guiding indicators through-91

out this paper:92

1- R2 or R-squared which is the squared correlation between the dependent93

variable and the multiple regression model’s predictions for it, i.e. the percent94

of total variance in the dependent variable pi (i-th prime number) explained by95

the independent variables mi (mi = i× 10−5).96

2- SEE or the standard error of the estimate (a.k.a. regression standard97

error), which should really be called here the standard residual of the estimate,98

but because SEE is the usual name, it will be referred to by its common name:99

SEE is the square root of the sum of the squared differences between the actual100

numbers pi and the predicted numbers f(mi), divided by the number of pairs101

of scores. In statistics and optimization, errors and residuals should not be102

confused. The residual measure used in this paper is the difference between the103

existing (or observed) values (i.e. prime numbers) and the estimated values of104

that quantity (obtained by the polynomial f functions). With primes, there105

are no true unobservable values which can be linked to the use of the word106

error. Thus the statistics used here are descriptive and exploratory in nature,107

not inferential.108

The original intention was to stop adding higher exponents (limit q) when109

no noteworthy increase in R2 was possible. However, because the linear trend is110

so predominant, increases in R2 from one f function to the next were obscured111

right after f1 was calculated and f1 had to be partialed out immediately – this112

is how the nested polynomial regression approach started.113

(1) and (2.1) give us (for i = 1, ..., n):114

r1,i = pi − f1(mi). (3.1)
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(1) and (2.2) give us (for i = 1, ..., n):115

r2,i = pi − f2(mi). (3.2)

Therefore, from (3.1) and (3.2) we obtain:116

r2,i = r1,i + f1(mi) − f2(mi). (4)

By writing that117

ϕ2(mi) = f2(mi) − f1(mi) (5)

we derive:118

r2,i = r1,i − ϕ2(mi). (6.1)

Importantly, the ϕ2 function can also be derived from r1,i by using least squares119

directly and this is the method used here: Given (1), we can write that120

r2,i = r1,i − ϕ2(mi, α) (6.2)

with121

ϕ2(mi) = α0,2 + α1,2mi + α2,2m
2
i (7.1)

and for q ≥ 2,122

ϕq(mi) = α0,q + α1,qmi + α2,qm
2
i + ...+ αq,qm

2
i . (7.2)

Finally, for q ≥ 2, (5) can be generalized to123

ϕq(mi) = fq(mi) − fq−1(mi), (8)

and (6.1) and (6.2) can be generalized to124

rq,i = rq−1,i − ϕq(mi). (9)

This transition from the f functions to the ϕ functions is all important because125

the ϕ functions focus on the change from one residual to the next: We now obtain126

a global subtractive model whose main virtue is to eliminate the dwarfing effect127

of the lower polynomials on the higher ones. (9) indicates that the ϕq polynomial128

trend of degree q, if it exists, is nested in the rq−1,i residuals of the polynomial129

trend of degree q − 1.130

3 Results131

The first part of this section is devoted to the discovery of the basic nested132

structure for n = 10,000. The second part is an attempt at generalization based133

on 22 models, for n = 100 to n = 1,000,000. The third part shows the detailed134

polynomial predictions of every prime for n = 25 (i.e. of all primes smaller than135

100).136
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Figure 1: r1,i residuals.

3.1 Finding the nested polynomial structure for the first137

10,000 primes (up to p = 104,729)138

3.1.1 The f1 model139

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:140

f1(mi) = −3690.885 + 1066041.926 ×mi, (10.1)

with R2 = .999 and SEE = 1058.777. Unsurprisingly, the linear trend is very141

strong as prime numbers very closely follow their best fitting straight line.142

f1 must now be eliminated to discover what it may hide (see (3.1)). The143

curve of r1,i residuals is the outcome (see Figure 1).144

Because the r1,i curve looks mostly parabolic (and this is very surprising)145

we proceed with quadratic modeling.146
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Figure 2: r2,i residuals.

3.1.2 The ϕ2 model147

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:148

ϕ2(mi) = 2286.209 − 137145.140 ×mi + 1371314.269 ×m2
i , (10.2)

with R2 = .932 and SEE = 275.833. The quadratic trend is very strong as r1,i149

residuals closely follow their best fitting parabolic curve.150

ϕ2 must now be removed to discover the remaining trend if there is one (see151

(6.2)). The curve of r2,i residuals is the outcome (see Figure 2).152

Because the r2,i curve looks mostly cubic (and this is very surprising) we153

proceed with cubic modeling.154

3.1.3 The ϕ3 model155

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:156

ϕ3(mi) = 666.534 − 79956.156 ×mi + 1998604.107 ×m2
i − 13322695, 134 ×m3

i ,
(10.3)
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Figure 3: r3,i residuals.

with R2 = .883 and SEE = 112.585. The cubic trend is strong as r2,i residuals157

follow their best fitting cubic curve. ϕ3 must now be removed to discover the158

remaining trend if there is one (see (9)). The curve of r3,i residuals is the159

outcome (see Figure 3).160

Before modeling the r3,i residuals which look mostly quartic (with ϕ4), we161

will take a closer look at the f1, f2, and f3 curves.162

3.1.4 The relationships between pi, f1(mi), f2(mi), and f3(mi)163

Thus far it was found that the prime number curve pi follows a linear pattern164

(f1(mi)) and that the first and second residuals r1,i and r2,i are mostly quadratic165

and cubic (as modeled by ϕ2 and ϕ3). But what does it mean in terms of pi,166

f1(mi), f2(mi), and f3(mi)?167

When best approximating pi, f1 intersects pi twice and pi follows a parabolic168

pattern around f1 (as established by the r1,i residuals which are modeled by169

ϕ2). When ϕ2 is added to f1, f2 is obtained (see (5)): This corresponds to170

the addition of the linear and parabolic trends which best fit pi. The two171

intersections of f1 and f2 are obtained when ϕ2 = 0. The f2 trend is visible to172
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Figure 4: The f1, f2, and f3 curves.

the naked eye on a graph.173

When best approximating pi, f2 intersects pi three times and pi follows a174

cubic pattern around f2 (as established by the r2,i residuals which are modeled175

by ϕ3). When ϕ3 is added to f2, f3 is obtained (see (8)): This corresponds to176

the addition of the linear, parabolic, and cubic trends which best fit pi. The177

three intersections of f2 and f3 are obtained when ϕ3 = 0. The f3 trend is178

invisible to the naked eye on a graph.179

Figure 4 is a graphic representation of the process of successively approxi-180

mating pi with f1, f2, and f3 (it is not drawn to scale and all the curvatures181

are greatly exaggerated).182

3.1.5 The ϕ4 model183

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:184

ϕ4(mi) = 262, 363 − 52443.737 ×mi + 2359456.895 ×m2
i

− 36697769.434 ×m3
i + 183470499.723 ×m4

i , (10.4)

with R2 = .602 and SEE = 70.992. The quartic trend is moderatly strong as185

r3,i residuals follow their best fitting quartic curve. ϕ4 must now be removed to186

discover the remaining trend if there is one (see (9)). The curve of r4,i residuals187

is the outcome (see Figure 5).188
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Figure 5: r4,i residuals.
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Figure 6: r5,i residuals.

Because the r4,i curve looks mostly quintic we proceed with quintic modeling.189

3.1.6 The ϕ5 model190

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:191

ϕ5(mi) = 151.308 − 45355.995 ×mi + 3173967.307 ×m2
i

− 84624317.539 ×m3
i + 951904580.028 ×m4

i

− 3807237605.034 ×m5
i , (10.5)

with R2 = .412 and SEE = 54.444. The quintic trend is moderate as r4,i resid-192

uals basically follow their best fitting quintic curve. ϕ5 must now be removed to193

discover the remaining trend if there is one (see (9)). The curve of r5,i residuals194

is the outcome (see Figure 6).195

Because the r5,i curve looks somewhat sextic we proceed with sextic model-196

ing.197
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Figure 7: r6,i residuals.

3.1.7 The ϕ6 model198

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:199

ϕ6(mi) = 103.474 − 43411.342 ×mi + 4339396.960 ×m2
i

− 173536805.568 ×m3
i + 3253310576.702 ×m4

i

− 28625696740.570 ×m5
i + 95409446044.143 ×m6

i , (10.6)

with R2 = .277 and SEE = 46.300. The sextic trend is weak as r5,i residuals200

somewhat follow their best fitting sextic curve. ϕ5 must now be removed to201

discover the remaining trend if there is one (see (9)). The curve of r6,i residuals202

is the outcome (see Figure 7).203

Eventhough the r6,i does not really look septic we proceed with septic mod-204

eling.205

11



3.1.8 The ϕ7 model206

By using least squares for i = 1 to 10,000 (i.e., mi = 10−5 to 10−1) we obtain:207

ϕ7(mi) = 26.184 − 14641.689 ×mi + 1975603.697 ×m2
i

− 109724559.205 ×m3
i + 3016850249.255 ×m4

i

− 43436399755.792 ×m5
i + 313670651779.481 ×m6

i

− 896112095174, 456 ×m7
i , (10.7)

with R2 = .022 and SEE = 45.809. Given R2, the septic trend is nonexistent208

as r6,i residuals do not really follow their best fitting septic curve.209

All the immediately following polynomials higher than 7 also have an R2
210

close to 0 and no significant gains in SEE can be obtained (they will not be211

detailed here). The polynomial modeling of the first 10,000 primes is thus212

considered finished at this stage.213

3.2 Generalizing the nested polynomial structure for n =214

100 to n = 1,000,000 (up to p = 15,485,863)215

3.2.1 The R2 values of f1, ϕ2, and ϕ3216

Table 1 indicates the R2 values of f1, ϕ2, and ϕ3 for 22 increasing values of217

n. The R2 values for these first three polynomials converge very quickly. The218

R2 of f1 is .999 for n ≥ 5, 000. The R2 of ϕ2 oscillates between .936 and .937219

for n ≥ 100, 000. Finally, the R2 of ϕ3 oscillates between .834 and .841 for220

n ≥ 500, 000. It can also be observed that in all cases f1R
2 ≥ ϕ2R

2 ≥ ϕ3R
2.221

3.2.2 The R2 values of f1 and the ϕqs222

Table 2 indicates the R2 values of f1 and the ϕqs up to q = 15 for 6 different223

values of n. A 0 in the table indicates that R2 is equal to zero (or almost) and224

that there is no rebound after. It can be observed that higher degree polynomials225

appear and become increasingly significant with higher values of n: For n = 100226

a 3rd degree polynomial extracts all the variance but for n = 1,000,000 a 14th227

degree polynomial is required.228

3.2.3 The SEE values of f1 and the ϕqs229

Table 3 indicates the SEE values corresponding to the R2 values given in Table230

2 (n/a means not applicable because R2 = 0). The SEE (which is very similar231

to the average error of the prediction) varies between 3 for n = 100 and 551232

for n = 1,000,000. This indicates that despite the higher degree polynomials233

involved in the models, the accuracy of prediction decreases with higher values234

of n as primes become less frequent.235
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Table 1: R2 values of f1, ϕ2, and ϕ3 for n = 100 to 1,000,000.
f1 ϕ2 ϕ3

n R2 R2 R2

100 .995 .840 .487
1,000 .998 .924 .696
5,000 .999 .935 .769

10,000 .999 .932 .833
20,000 .999 .935 .833
30,000 .999 .934 .845
40,000 .999 .937 .820
50,000 .999 .935 .840
60,000 .999 .937 .830
70,000 .999 .935 .843
80,000 .999 .936 .829
90,000 .999 .938 .826

100,000 .999 .936 .841
200,000 .999 .937 .833
300,000 .999 .937 .837
400,000 .999 .936 .838
500,000 .999 .936 .841
600,000 .999 .936 .840
700,000 .999 .937 .834
800,000 .999 .936 .840
900,000 .999 .936 .838

1,000,000 .999 .937 .836

Table 2: R2 values of f1 and the ϕqs for n = 100 to 1,000,000.
f1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12 ϕ13 ϕ14 ϕ15

n R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

100 .995 .840 .487 0 0 0 0 0 0 0 0 0 0 0 0
1,000 .998 .924 .696 .375 .075 0 0 0 0 0 0 0 0 0 0

10,000 .999 .932 .833 .602 .412 .277 .022 .085 .022 0 0 0 0 0 0
100,000 .999 .936 .841 .706 .651 .448 .227 .384 .020 .040 0 0 0 0 0
500,000 .999 .936 .841 .727 .698 .502 .498 .463 .103 .349 .140 .030 0 0 0

1,000,000 .999 .937 .836 .755 .648 .598 .536 .384 .338 .412 .040 .217 .045 .009 0

Table 3: SEE values of f1 and the ϕqs for n = 100 to 1,000,000.
f1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12 ϕ13 ϕ14 ϕ15

n SEE SEE SEE SEE SEE SEE SEE SEE SEE SEE SEE SEE SEE SEE SEE

100 11 4 3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1,000 108 30 16 13 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

10,000 1059 276 113 71 54 46 46 44 43 n/a n/a n/a n/a n/a n/a
100,000 10461 2656 1059 575 340 252 222 174 172 169 n/a n/a n/a n/a n/a
500,000 51853 13091 5215 2727 1499 1058 749 549 520 420 389 383 n/a n/a n/a

1,000,000 103394 25965 10521 5203 3086 1956 1333 1046 851 653 640 566 553 551 n/a
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3.3 Detailed prime polynomial predictions for n = 25236

Table 4 indicates, for n = 25, the exact predictions of every prime calculated237

with the f1, f2, and f3 polynomial functions. It is an example of the pattern at238

the very beginning of the sequence of primes. For the best model f3, SEE =239

1.35 which is somewhat more than the corresponding Mean Average Deviation240

(MAD = 1.04). Lastly, when the predictions for the first prime and the last241

five primes are not taken into consideration, we get an f3 MAD of 0.84.242

Table 4: pi predictions with f1, f2, and f3 (n = 25).
i pi f1(i) f2(i) f3(i)
1 2 -5.42 -0.30 0.82
2 3 -1.43 2.41 2.96
3 5 2.55 5.22 5.34
4 7 6.54 8.15 7.95
5 11 10.52 11.19 10.76
6 13 14.51 14.34 13.78
7 17 18.49 17.60 16.98
8 19 22.48 20.98 20.37
9 23 26.46 24.46 23.92

10 29 30.45 28.06 27.63
11 31 34.43 31.76 31.49
12 37 38.42 35.58 35.48
13 41 42.40 39.51 39.60
14 43 46.38 43.55 43.83
15 47 50.37 47.70 48.17
16 53 54.35 51.97 52.60
17 59 58.34 56.34 57.11
18 61 62.32 60.82 61.69
19 67 66.31 65.42 66.34
20 71 70.29 70.13 71.03
21 73 74.28 74.95 75.76
22 79 78.26 79.88 80.52
23 83 82.25 84.92 85.29
24 89 86.23 90.07 90.08
25 97 90.22 95.33 94.86

4 Explanation and discussion243

The nested residual pattern discovered for every range of primes (from the 1st to244

the nth for n = 100 to 1,000,000) is unique and remarkable for several important245

reasons.246

For a given value of n, every q residual is revealed after the preceding q − 1247
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residual has been extracted because ϕq regressions explain less and less variance248

in the exact sequential order in which they appear, which is something totally249

unexpected and very idiosyncratic. For example, for n = 100,000, f1 explains250

99.9 % of all the variance, followed by ϕ2 which explains 93.6 % of the remaining251

variance, followed by ϕ3 which explains 83.3 % of the variance left, followed by252

all the other ϕqs up to ϕ10, i.e. until there is no more variance to explain (see253

Table 2). This pattern would not have been discovered if it weren’t for the254

initial decision to partial out the f1 linear trend. This configuration is mostly255

reminiscent of Russian dolls which typically consist of a set of wooden figures256

of decreasing size placed one inside another (every residual reveals a smaller257

residual of the same sort within). The origin of this remarkable structure is258

unknown at this stage.259

In terms of the fq functions obtained, and as already briefly explained in260

Subsection 3.1.4, these functions all better and better approximate the pi dis-261

tribution as q increases and they always intertwine with each other for a given262

value of n: An fq polynomial regression function intersects the preceding fq−1263

function exactly q times in all cases observed.264

After the above described residual nestedness and polynomial intertwining,265

the scale invariance of all the models obtained is just as striking. For the 22266

models (for n = 100 to 1,000,000) the same basic pattern appeared every single267

time (see Table 1) and even if one million models were not calculated (maybe 40268

were obtained overall) there is no reason to believe that some gaps exist given269

the established R2 convergence (see Subsection 3.2.1). There is also no reason270

to believe that the obtained pattern should be limited to the first million primes.271

Another important feature of this recurring pattern is the appearance and R2
272

stabilization of ever more ϕq polynomials as n increases (see Table 2). Again,273

there is no reason to believe that there is a limit to the maximum q value of the274

ϕq polynomials when n becomes larger than 1,000,000.275

Because scale invariance may imply a fractal structure, it was of interest276

to model primes for ranges other than simply 1 to n and this was tried for277

ranges of n such as n = 1,000 to 2,000 or n = 10,000 to 20,000 (not shown278

here). No structure of any sort ever appeared in any of those models. It was279

also attempted to model random numbers with distances between them equal280

on average to that of prime numbers for a given interval to check if the nested281

structure could appear for non-primes (not shown here), but again no such282

pattern ever materialized. Therefore, the nested polynomial pattern apparently283

works exclusively for whole sequences of primes starting from the beginning.284

Last but not least is the accuracy of the models. If indeed there is a clear285

pattern at work, one may wonder how accurate is the trend and SEE gives us286

a partial answer. An SEE of 3 for n = 100 seems adequate but an SEE of 551287

for n = 1,000,000 seems poor (see Table 3). First of all, it must be noticed that288

all the models have a tendency to model relatively poorly at the very beginning289

(and sometimes end) of a prime sequence (see Figures 1 to 3, Figures 5 to 7, and290

Table 4), thus increasing the value of SEE. Another important aspect observed291

is the presence of pockets of resistance, i.e. some clusters of primes that resist292

prediction at a given level of n (not shown here). For example, for n = 1,000,293
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polynomial modeling was increased all the way to ϕ15 (well beyond ϕ5 where294

no R2 increase is to be expected, see Table 2) to look for a possible positive295

effect and to eliminate the pockets of resistance but to no avail. However, when296

checking how well those resisting numbers were predicted for n = 10,000 (with297

the model described in Subsection 3.1), a much better fit for virtually all of them298

was found and all the pockets disappeared. Indeed there are as many models299

as primes and when modeling up to n = 1,000,000 there are 1 million models300

at our disposal: It is therefore very likely that the increase in the number of301

models more than offsets the decrease in prediction accuracy. A lot more work302

would be required to find out what models in particular permit an almost perfect303

prediction for a given number and to find out whether some prime numbers exist304

that are never well predicted by any model at all.305

In conclusion, the most important contribution of this research is the discov-306

ery of a core polynomial trend for prime numbers from 1 to n across all ranges307

for n = 100 to 1,000,000. The ad hoc technique developed is called residual308

nestedness (based on least-square regression analysis) and it reveals increasing309

polynomial intertwining. This polynomial pattern is all the more surprising as310

it shows scale invariance, or at least strong self-similarity, across all ranges for311

n = 100 to 1,000,000. Accuracy of prediction seems to decrease as n increases,312

however, this trend may not be truly relevant because definitive predictions can313

only be obtained holistically, i.e. across all models and for all primes.314
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