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ABSTRACT. In this paper, we consider the abc conjecture. In the first part, we give the proof of the
conjecture c < rad1.63(abc) that constitutes the key to resolve the abc conjecture. The proof of the abc
conjecture is given in the second part of the paper, supposing that the abc conjecture is false, we arrive
in a contradiction.

1. INTRODUCTION AND NOTATIONS

Let a be a positive integer, a = ∏i aαi
i , ai prime integers and αi ≥ 1 positive integers. We call radical

of a the integer ∏i ai noted by rad(a). Then a is written as:

a = ∏
i

aαi
i = rad(a).∏

i
aαi−1

i (1)

We denote:
µa = ∏

i
aαi−1

i =⇒ a = µa.rad(a) (2)

The abc conjecture was proposed independently in 1985 by David Masser of the University of Basel
and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) [8]. It describes the distribution of the
prime factors of two integers with those of its sum. The definition of the abc conjecture is given below:

Conjecture 1.1. (abc Conjecture): For each ε > 0, there exists K(ε) such that if a,b,c positive integers
relatively prime with c = a+b, then :

c < K(ε).rad1+ε(abc) (3)

where K is a constant depending only of ε .

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [5]. It concerned the best example given by

E. Reyssat [5]:
2+310.109 = 235 =⇒ c < rad1.629912(abc) (4)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed the following
conjecture:

Conjecture 1.2. Let a,b,c be positive integers relatively prime with c = a+b, then:

c < rad1.63(abc) (5)

abc < rad4.42(abc) (6)

Firstly, we will give the proof of the conjecture given by (5) that constitutes the key to obtain the
proof of the abc conjecture. Secondly, we present in section three of the paper the proof that the abc
conjecture is true.
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2. A PROOF OF THE CONJECTURE (1.2) CASE c = a+b

Let a,b,c be positive integers, relatively prime, with c = a + b, b < a and R = rad(abc), c =

∏ j′∈J′ c
β j′

j′ ,β j′ ≥ 1.

In a previous paper [1], we has given, for the case c = a+ 1, the proof that c < rad1.63(ac). In the
following, we will give the proof for the case c = a+b.

Proof. If c < rad(abc), then we obtain:

c < rad(abc)< rad1.63(abc) =⇒ c < R1.63

and the condition (5) is satisfied.

If c = rad(abc), then a,b,c are not coprime, case to reject. In the following, we suppose that c >
rad(abc) and a,b and c are not prime numbers.

c = a+b = µarad(a)+µbrad(b)
?
< rad1.63(abc) (7)

2.1. µa 6= 1 , µa ≤ rad0.63(a). We obtain :

c = a+b < 2a≤ 2rad1.63(a)< rad1.63(abc) =⇒ c < rad1.63(abc) =⇒ c < R1.63

Then (7) is satisfied.

2.2. µc 6= 1, µc ≤ rad0.63(c). We obtain :

c = µcrad(c)≤ rad1.63(c)< rad1.63(abc) =⇒ c < R1.63

and the condition (7) is satisfied.

2.3. µa > rad0.63(a) and µc > rad0.63(c).

2.3.1. Case: rad0.63(c)< µc ≤ rad1.63(c) and rad0.63(a)< µa ≤ rad1.63(a): We can write:

µc ≤ rad1.63(c) =⇒ c≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a≤ rad2.63(a)

=⇒ ac≤ rad2.63(ac) =⇒ a2 < ac≤ rad2.63(ac)

=⇒ a < rad1.315(ac) =⇒ c < 2a < 2rad1.315(ac)< rad1.63(abc)

=⇒ c = a+b < R1.63

2.3.2. Case: µc > rad1.63(c) or µa > rad1.63(a) . I- We suppose that µc > rad1.63(c) and µa≤ rad2(a):

I-1- Case rad(a)< rad(c): In this case a = µa.rad(a)≤ rad3(a)≤ rad1.63(a)rad1.37(a)<

rad1.63(a).rad1.37(c) =⇒ c < 2a < 2rad1.63(a).rad1.37(c)< rad1.63(abc) =⇒ c < R1.63 .

I-2- Case rad(c)< rad(a)< rad
1.63
1.37 (c): As a≤ rad1.63(a).rad1.37(a)< rad1.63(a).rad1.63(c) =⇒ c <

2a < 2rad1.63(a).rad1.63(c)< R1.63 =⇒ c < R1.63 .

I-3- Case rad
1.63
1.37 (c)< rad(a):
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I-3-1- We suppose c≤ rad3.26(c), we obtain:

c≤ rad3.26(c) =⇒ c≤ rad1.63(c).rad1.63(c) =⇒

c < rad1.63(c).rad(a)1.37 < rad1.63(c).rad(a)1.63.rad1.63(b) = R1.63 =⇒ c < R1.63

I-3-2- We suppose c > rad3.26(c) =⇒ µc > rad2.26(c). We consider the case µa = rad2(a) =⇒ a =
rad3(a). Then, we obtain that X = rad(a) is a solution in positive integers of the equation:

X3 +1 = c−b+1 = c′ (8)

But it is the case c′ = 1+a. If c′ = radn(c′) with n≥ 4, we obtain the equation:

radn(c′)− rad3(a) = 1 (9)

But the solutions of the equation (9) are [2] :(rad(c′) = 3,n = 2,rad(a) = +2), it follows the contra-
diction with n≥ 4 and the case c′ = radn(c′),n≥ 4 is to reject.

In the following, we will study the cases µ ′c = A.radn(c′) with rad(c′) - A,n ≥ 0. The above equation
(8) can be written as :

(X +1)(X2−X +1) = c′ (10)

Let δ any divisor of c′, then:

X +1 = δ (11)

X2−X +1 =
c′

δ
= c” = δ

2−3X (12)

We recall that rad(a)> rad
1.63
1.37 (c).

I-3-2-1- We suppose δ = l.rad(c′). We have δ = l.rad(c′) < c′ = µ ′c.rad(c′) =⇒ l < µ ′c. As δ is a
divisor of c′, then l is a divisor of µ ′c, we write µ ′c = l.m. From µ ′c = l(δ 2−3X), we obtain:

m = l2rad2(c′)−3rad(a) =⇒ 3rad(a) = l2rad2(c′)−m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µ ′c = ml = 3m′l =⇒ 3|rad(c′) and (rad(c′),m′) not coprime.
We obtain:

rad(a) = l2rad(c′).
rad(c′)

3
−m′

It follows that a,c’ are not coprime, then the contradiction.

B - Case m = 3 =⇒ µ ′c = 3l =⇒ c′ = 3lrad(c′) = 3δ = δ (δ 2−3X) =⇒ δ 2 = 3(1+X) = 3δ =⇒ δ =
lrad(c′) = 3, then the contradiction.

I-3-2-2- We suppose δ = l.rad2(c′), l ≥ 2. If lrad(c′) - µ ′c then the case is to reject. We suppose

lrad(c′)|µ ′c =⇒ µ ′c = m.lrad(c′), then
c′

δ
= m = δ

2−3rad(a).

C - Case m = 1 = c′/δ =⇒ δ 2−3rad(a) = 1 =⇒ (δ −1)(δ +1) = 3rad(a) = rad(a)(δ +1) =⇒ δ =
2 = l.rad2(c′), then the contradiction.

D - Case m = 3, we obtain 3(1+ rad(a)) = δ 2 = 3δ =⇒ δ = 3 = lrad2(c′). Then the contradiction.
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E - Case m 6= 1,3, we obtain: 3rad(a) = l2rad4(c′)−m =⇒ rad(a) and rad(c′) are not coprime. Then
the contradiction.

I-3-2-3- We suppose δ = l.radn(c′), l ≥ 2 with n≥ 3. From c′= µ ′c.rad(c′) = lradn(c′)(δ 2−3rad(a)),
we denote m = δ 2−3rad(a) = δ 2−3X .

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions, it follows the
reject of these cases.

G - Case m 6= 1,3. Let q be a prime that divides m, it follows q|µ ′c =⇒ q = c′j′0 =⇒ c′j′0 |δ
2 =⇒

c′j′0 |3rad(a). Then rad(a) and rad(c′) are not coprime. It follows the contradiction.

I-3-2-4- We suppose δ = ∏ j∈J1 c′β j
j , β j ≥ 1 with at least one j0 ∈ J1 with β j0 ≥ 2, rad(c′) - δ . We can

write:
δ = µδ .rad(δ ), rad(c′) = m.rad(δ ), m > 1, (m,µδ ) = 1 (13)

Then, we obtain:

c′ = µ ′c.rad(c′) = µ ′c.m.rad(δ ) = δ (δ 2−3X) = µδ .rad(δ )(δ 2−3X) =⇒
m.µ ′c = µδ (δ

2−3X) (14)

- If µ ′c = µδ =⇒ m = δ 2−3X = (µ ′c.rad(δ ))2−3X . As δ < δ 2−3X =⇒ m > δ =⇒ rad(c′)> m >
µ ′c.rad(δ )> rad3(c′) because µ ′c > rad2.26(c′), it follows rad(c′)> rad2(c′). Then the contradiction.

- We suppose µ ′c < µδ . As rad(a) = µδ rad(δ )−1, we obtain:

rad(a)> µ ′c.rad(δ )−1 > 0 =⇒ rad(ac′)> c′.rad(δ )− rad(c′)> 0 =⇒

c′ > rad(ac′)> c′.rad(δ )− rad(c′)> 0 =⇒ 1 > rad(δ )− rad(c′)
c′

> 0, rad(δ )≥ 2

=⇒ The contradiction (15)

- We suppose µδ < µ ′c. In this case, from the equation (14) and as (m,µδ ) = 1, it follows we can write:

µ
′
c = µ1.µ2, µ1,µ2 > 1 (16)

c′ = µ
′
crad(c′) = µ1.µ2.rad(δ ).m = δ .(δ 2−3X) (17)

so that m.µ1 = δ
2−3X , µ2 = µδ =⇒ δ = µ2.rad(δ ) (18)

** We suppose (µ1,µ2) 6= 1, then ∃c′j0 so that c′j0 |µ1 and c′j0 |µ2. But µδ = µ2 ⇒ c′2j0 |δ . From 3X =

δ 2−mµ1 =⇒ c′j0 |3X =⇒ c′j0 |X or c′j0 = 3.
- If c′j0 |X , it follows the contradiction with (c′,a) = 1.
- If c′j0 = 3. We have mµ1 = δ 2− 3X = δ 2− 3(δ − 1) =⇒ δ 2− 3δ + 3−m.µ1 = 0. As 3|µ1 =⇒

µ1 = 3kµ ′1,3 - µ ′1,k ≥ 1, we obtain:

δ
2−3δ +3(1−3k−1mµ

′
1) = 0 (19)

- We consider the case k > 1 =⇒ 3 - (1−3k−1mµ ′1). Let us recall the Eisenstein criterion [7]:

Theorem 2.1. (Eisenstein Criterion) Let f = a0 + · · ·+ anXn be a polynomial ∈ Z[X ]. We suppose
that ∃ p a prime number so that p - an, p|ai, (0≤ i≤ n−1), and p2 - a0, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

R(Z) = Z2−3Z +3(1−3k−1mµ
′
1) (20)
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then:
- 3 - 1, - 3|(−3),- 3|3(1−3k−1mµ ′1), and - 32 - 3(1−3k−1mµ ′1).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R(δ ) = 0.

- We consider the case k = 1, then µ1 = 3µ ′1 and (µ ′1,3) = 1, we obtain:

δ
2−3δ +3(1−mµ

′
1) = 0 (21)

* If 3 - (1−m.µ ′1), we apply the same Eisenstein criterion to the polynomial R′(Z) given by:

R′(Z) = Z2−3Z +3(1−mµ
′
1)

and we find a contradiction with R′(δ ) = 0.

* We consider that 3|(1−m.µ ′1) =⇒ mµ ′1− 1 = 3i.h, i ≥ 1, 3 - h,h ∈ N∗. δ is an integer root of the
polynomial R′(Z):

R′(Z) = Z2−3Z +3(1−mµ
′
1) = 0⇒ the discriminant of R′(Z) is :∆ = 32 +3i+1×4.h (22)

As the root δ is an integer, it follows that ∆ = l2 > 0 with l a positive integer. We obtain:

∆ = 32(1+3i−1×4h) = l2 (23)

=⇒ 1+3i−1×4h = q2 > 1,q ∈ N∗ (24)

We can write the equation (21) as :

δ (δ −3) = 3i+1.h =⇒ 33
µ
′
1

rad(δ )
3

.
(
µ
′
1rad(δ )−1

)
= 3i+1.h =⇒ (25)

µ
′
1

rad(δ )
3

.
(
µ
′
1rad(δ )−1

)
= h (26)

We obtain i = 2 and q2 = 1+12h = 1+4µ ′1rad(δ )(µ ′1rad(δ )−1). Then, q satisfies :

q2−1 = 12h⇒ (q−1)
2 . (q+1)

2 = 3h = (µ ′1rad(δ )−1).µ ′1rad(δ )⇒ (27)
q−1 = 2µ ′1rad(δ )−2 (28)

q+1 = 2µ ′1rad(δ ) (29)

It follows that (q = x,1 = y) is a solution of the Diophantine equation:

x2− y2 = N (30)

with N = 12h > 0. Let Q(N) be the number of the solutions of (30) and τ(N) is the number of suitable
factorization of N, then we announce the following result concerning the solutions of the Diophantine
equation (30) (see theorem 27.3 in [6]):

- If N≡2(mod 4), then Q(N) = 0.
- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].
- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x]≤ x < [x]+1.

Let (α ′,m′), α ′,m′ ∈N∗ be another pair, solution of the equation (30), then α ′2−m′2 = x2−y2 = N =
12h, but q = x and 1 = y satisfy the equation (29) given by x+ y = 2µ ′1rad(δ ), it follows α ′,m′ verify
also α ′+m′ = 2µ ′1rad(δ ), that gives α ′−m′ = 2(µ ′1rad(δ )− 1), then α ′ = x = q = 2µ ′1rad(δ ) and
m′ = y = 1. So, we have given the proof of the uniqueness of the solutions of the equation (30) with
the condition x+ y = 2µ ′1rad(δ ). As N = 12h≡0(mod 4) =⇒ Q(N) = [τ(N/4)/2] = [τ(3h)/2], the
expression of 3h = µ

′
1.rad(δ ).

(
µ
′
1rad(δ )−1

)
, then Q(N) = [τ(3h)/2] > 1. But Q(N) = 1, then the
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contradiction and the case 3|(1−m.µ ′1) is to reject.

** We suppose that (µ1,µ2) = 1.

From the equation mµ1 = δ 2− 3X = δ 2− 3(δ − 1), we obtain that δ is a root of the following poly-
nomial :

R(Z) = Z2−3Z +3−m.µ1 = 0 (31)

The discriminant of R(Z) is:

∆ = 9−4(3−m.µ1) = 4m.µ1−3 = q2 with q ∈ N∗ as δ ∈ N∗ (32)

- We suppose that 2|mµ1 =⇒ c′ is even. Then q2≡5(mod 8), it gives a contradiction because a square
is ≡0,1 or 4(mod 8).

- We suppose c′ an odd integer, then a is even. It follows a = rad3(a)≡0(mod 8) =⇒ c′≡1(mod 8).
As c′ = δ 2− 3X .δ , we obtain δ 2− 3X .δ≡1(mod 8). If δ 2≡1(mod 8) =⇒ −3X .δ≡0(mod 8) =⇒
8|X .δ =⇒ 4|δ =⇒ c′ is even. Then, the contradiction. If δ 2≡4( mod 8)=⇒ δ≡2( mod 8) or δ≡6( mod
8). In the two cases, we obtain 2|δ . Then, the contradiction with c′ an odd integer.

It follows that the case c > rad3.26(c) and a = rad3(a) is impossible.

I-3-3- We suppose c > rad3.26(c) and large, then c = rad3(c)+h,h > rad3(c), h a positive integer and
µa < rad2(a) =⇒ a+ l = rad3(a), l > 0. Then we obtain :

rad3(c)+h = rad3(a)− l +b =⇒ rad3(a)− rad3(c) = h+ l−b > 0 (33)

as rad(a)> rad
1.63
1.37 (c). We obtain the equation:

rad3(a)− rad3(c) = h+ l−b = m > 0 (34)

Let X = rad(a)− rad(c), then X is an integer root of the polynomial H(X) defined as:

H(X) = X3 +3rad(ac)X−m = 0 (35)

To resolve the above equation, we denote X = u+v, It follows that u3,v3 are the roots of the polynomial
G(t) given by:

G(t) = t2−mt− rad3(ac) = 0 (36)

The discriminant of G(t) is ∆ = m2 +4rad3(ac) = α2, α > 0. The two real roots of (36) are:

t1 = u3 =
m+α

2
, t2 = v3 =

m−α

2
(37)

As m = rad3(a)− rad3(c)> 0, we obtain that α = rad3(a)+ rad3(c)> 0, then from the expression of
the discriminant ∆, it follows that (α = x,m = y) is a solution of the Diophantine equation:

x2− y2 = N (38)

with N = 4rad3(ac)> 0. From the expression of ∆ above, we remark that α and m verify the following
equations:

x+ y = 2u3 = 2rad3(a) (39)

x− y =−2v3 = 2rad3(c) (40)

then x2− y2 = N = 4rad3(a).rad3(c) (41)
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Let Q(N) be the number of the solutions of (38) and τ(N) is the number of suitable factorization of N,
and using the same method as in the paragraph I-3-2-4- (case 3|(1−m.µ ′1)), we obtain a contradiction.

It follows that the cases µa ≤ rad2(a) and c > rad3.26(c) are impossible.

II- We suppose that rad1.63(c)< µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒ c < rad1.63(c).rad1.37(a) <

rad1.63(ac)< rad1.63(abc) =⇒ c < R1.63 .

II-2- Case rad(a)< rad(c)< rad
1.63
1.37 (a) : As c≤ rad3(c)≤ rad1.63(c).rad1.37(c) =⇒

c < rad1.63(c).rad1.63(a)< rad1.63(abc) =⇒ c < R1.63 .

II-3- Case rad
1.63
1.37 (a)< rad(c):

II-3-1- We suppose rad2.63(a)< a≤ rad3.26(a)=⇒ a≤ rad1.63(a).rad1.63(a)=⇒ a< rad1.63(a).rad1.37(c)

=⇒ c = a+b < 2a < 2rad1.63(a).rad1.63(c)< rad1.63(abc) =⇒ c < R1.63 =⇒ c < R1.63 .

II-3-2- We suppose a > rad3.26(a) and µc ≤ rad2(c). Using the same method as it was explicated
in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive at a contradiction. It follows that the case
µc ≤ rad2(c) and a > rad3.26(a) is impossible.

Finally, we have finished the study of the case rad1.63(c)< µc ≤ rad2(c) and µa > rad1.63(a).

2.3.3. Case µc > rad1.63(c) and µa > rad1.63(a). Taking into account the cases studied above, it re-
mains to see the following two cases:

- µc > rad2(c) and µa > rad1.63(a),
- µa > rad2(a) and µc > rad1.63(c).

III-1- We suppose µc > rad2(c) and µa > rad1.63(a) =⇒ c > rad3(c) and a > rad2.63(a). We can write
c = rad3(c)+h and a = rad3(a)+ l with h a positive integer and l ∈ Z.

III-1-1- We suppose rad(c)< rad(a). We obtain the equation:

rad3(a)− rad3(c) = h− l−b = m > 0 (42)

Let X = rad(a)− rad(c), from the above equation, X is a real root of the polynomial:

H(X) = X3 +3rad(ac)X−m = 0 (43)

As above, to resolve (43), we denote X = u+ v, It follows that u3,v3 are the roots of the polynomial
G(t) given by :

G(t) = t2−mt− rad3(ac) = 0 (44)

The discriminant of G(t) is:
∆ = m2 +4rad3(ac) = α

2, α > 0 (45)

The two real roots of (44) are:

t1 = u3 =
m+α

2
, t2 = v3 =

m−α

2
(46)
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As m = rad3(a)−rad3(c)> 0, we obtain that α = rad3(a)+rad3(c)> 0, then from the equation (45),
it follows that (α = x,m = y) is a solution of the Diophantine equation:

x2− y2 = N (47)

with N = 4rad3(ac) > 0. From the equations (46), we remark that α and m verify the following
equations:

x+ y = 2u3 = 2rad3(a) (48)

x− y =−2v3 = 2rad3(c) (49)

then x2− y2 = N = 4rad3(a).rad3(c) (50)

Let Q(N) be the number of the solutions of (47) and τ(N) is the number of suitable factorization of N,
and using the same method as in the paragraph I-3-2-4- (case 3|(1−m.µ ′1)), we obtain a contradiction.

III-1-2- We suppose rad(a)< rad(c). We obtain the equation:

rad3(c)− rad3(a) = b+ l−h = m > 0 (51)

Using the same calculations as in III-1-1-, we find a contradiction.

It follows that the case µc > rad2(c) and µa > rad1.63(a) is impossible.

III-2- We suppose µa > rad2(a) and µc > rad1.63(c) =⇒ a > rad3(a) and c > rad2.63(c). We can write
a = rad3(a)+h and c = rad3(c)+ l with h a positive integer and l ∈ Z.

The calculations are similar to those in case III-1-. We obtain the same results namely the cases of
III-2- to be rejected.

It follows that the case µc > rad1.63(c) and µa > rad2(a) is impossible. �

We can state the following important theorem:

Theorem 2.2. Let a,b,c positive integers relatively prime with c = a+b, then c < rad1.63(abc).

3. The Proof of the abc conjecture

We note R = rad(abc) in the case c = a+ b or R = rad(ac) in the case c = a+ 1. We recall the
following proposition [4]:

Proposition 3.1. Let ε −→ K(ε) the application verifying the abc conjecture, then:

limε→0K(ε) = +∞ (52)

3.1. Case : ε ≥ 0.63. As c < R1.63 is true, we have ∀ε ≥ 0.63:

c < R1.63 ≤ R1+ε < K(ε).R1+ε , with K(ε) = e
1

0.632 , ε ≥ 0.63 (53)

Then the abc conjecture is true.

3.2. Case: ε < 0.63.
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3.2.1. Case: c < R. In this case, we can write :

c < R < R1+ε < K(ε).R1+ε , with K(ε) = e
1

0.632 > 1, ε < 0.63 (54)

Then the abc conjecture is true.

3.2.2. Case: c > R. From the statement of the abc conjecture 1.1, we want to give a proof that
c < K(ε)R1+ε ⇐⇒ Logc < LogK(ε)+(1+ε)LogR⇐⇒ LogK(ε)+(1+ε)LogR−Logc > 0. For our
proof, we proceed by contradiction of the abc conjecture, so we assume that the conjecture is false:

∃ε0 ∈]0,0.63[,∀K(ε)> 0, ∃c0 = a0 +b0 so that c0 > K(ε0)R
1+ε0
0 =⇒ c0 not a prime (55)

We choose the constant K(ε) = e
1
ε2 . Let Yc0(ε) =

1
ε2 +(1+ ε)LogR0−Logc0,ε ∈]0,0.63[. From the

above explications, if we will obtain ∀ε ∈ ]0,0.63[,Yc0(ε)> 0 =⇒ Yc0(ε0)> 0, then the contradiction
with (55).
About the function Yc0 , we have limε−→0.63Yc0(ε) = 1/0.632+Log(R1.63

0 /c0)> 0 and limε−→0Yc0(ε) =
+∞. The function Yc0(ε) has a derivative for ∀ε ∈ ]0,0.63[, we obtain with R0 > 2977:

Y ′c0
(ε) =− 2

ε3 +LogR0 =
ε3LogR0−2

ε3 ⇒ Y ′c0
(ε) = 0⇒ ε = ε

′ = 3

√
2

LogR0
∈ ]0,0.63[ (56)

Discussion:
- If Yc0(ε

′) ≥ 0, it follows that ∀ε ∈ ]0,0.63[,Yc0(ε) ≥ 0, then the contradiction with Yc0(ε0) < 0 =⇒
c0 > K(ε0)R

1+ε0
0 . Hence the abc conjecture is true for ε ∈ ]0,0.63[.

- If Yc0(ε
′) < 0 =⇒ ∃ 0 < ε1 < ε ′ < ε2 < 0.63, so that Yc0(ε1) = Yc0(ε2) = 0. Then we obtain c0 =

K(ε1)R
1+ε1
0 = K(ε2)R

1+ε2
0 . We recall the following definition:

Definition 3.1. The number ξ is called algebraic number if there is at least one polynomial:

l(x) = l0 + l1x+ · · ·+amxm, am 6= 0 (57)

with integral coefficients such that l(ξ ) = 0, and it is called transcendental if no such polynomial exists.

We consider the equality c0 = K(ε1)R
1+ε1
0 =⇒ c0

R
=

µc

rad(ab)
= e

1
ε2

1 Rε1
0 .

i) - We suppose that ε1 = β1 is an algebraic number then β0 = 1/ε2
1 and R0 = α1 are also algebraic

numbers. We obtain:

µc

rad(ab)
= e

1
ε2

1 Rε1
0 = eβ0 .α

β1
1 (58)

From the theorem (see theorem 3, page 196 in [9]):

Theorem 3.1. eβ0α
β1
1 . . .α

βn
n is transcendental for any nonzero algebraic numbers α1, . . . ,αn,β0, . . . ,βn.

we deduce that the right member eβ0 .α
β1
1 of (58) is transcendental, but the term

µc

rad(ab)
is an algebraic

number, then the contradiction and the abc conjecture is true.

ii) - We suppose that ε1 is transcendental, in this case there is also a contradiction, and the abc conjec-
ture is true.

Then the proof of the abc conjecture is finished.
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4. Conclusion

We have given an elementary proof of the abc conjecture. We can announce the important theorem:

Theorem 4.1. For each ε > 0, there exists K(ε)> 0 such that if a,b,c positive integers relatively prime
with c = a+b, then :

c < K(ε).rad1+ε(abc) (59)
where K is a constant depending of ε .
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