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Abstract 

We show in this paper the existence of non-periodic real-valued and complex-

valued solutions of the Mathews-Lakshmanan oscillator equation. The theory 

allows also to find the sinusoidal periodic solution given by the authors. As an 

oscillator can only have periodic solutions for the same model parameters, we 

conclude that the Mathews-Lakshmanan equation is a pseudo-oscillator.  

Keywords: Mathews-Lakshmanan oscillator, differential equation, periodic 

solution, complex-valued solution. 

Introduction 

In 1974, Mathews and Lakshmanan published a paper entitled [1]: ‘‘ On a 

unique nonlinear oscillator’’ in which they presented a remarkable quadratic 

Lienard type differential equation using the Lagrangian approach. The authors 

[1] show that the periodic solution of such an equation has the harmonic form 

but with amplitude-dependent frequency. Later a vast literature has been carried 

out on the usefullness of this oscillator equation. So, a rich variety of studies 

from classical as well as quantum mechanical point of view has been developed 

in the literature [2- 8]. Recently the authors of the present work have shown that 

there exists a lot of such quadratic Lienard type equations that can have periodic 

solutions exhibiting harmonic oscillations with amplitude-dependent frequency 

[9, 10]. In [11] the authors have shown that the equation recorded as equation 

6.111 in Kamke book [12] is equivalent to an oscillator equation since it may be 

obtained from the nonlocal transformation of the harmonic oscillator equation 

such that its solution is periodic and has harmonic form but with amplitude-
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dependent frequency [11, 12] when the independent variable is the time. More 

recently, in [13, 14] the authors presented also quadratic Lienard type equations 

that have periodic solutions exhibiting harmonic behavior but with amplitude-

dependent frequency. In [15] the authors have shown the existence for the first 

time of a quadratic Lienard type equation having the Jacobi elliptic function Cn , 

which is a generalization of the cosine function, as general solution. The above 

shows that the problem of finding sinusoidal periodic solutions of nonlinear 

differential equations constitutes an attractive research field of mathematics and 

physics. In the present work one may ask whether the Mathews-Lakshmanan 

oscillator equation may exhibit non-periodic solutions. This is reasonable, since, 

as can be seen recently in the literature, several nonlinear differential equations 

assumed to be oscillator equations, have non-periodic solutions for the same 

model parameters. In this way the objective in this work is to show that the 

famous Mathews-Lakshmanan oscillator equation has non-periodic solutions for 

the same model or design parameters. To do this, we show the complex-valued 

solution in section (2) and exhibit real non-periodic solution in section (3). We 

show also in section (3) that the developed theory enables to calculate in a direct 

fashion the periodic solution given in [1]. Finally a conclusion is given for the 

work. 

2. Complex- valued solution 

Let us consider the second-order differential equation [16] 
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to the Mathews-Lakshmanan equation [1] 
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where µ  is an arbitrary parameter. The corresponding first-order differential 

equation [16]  
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so that one may write 
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where b  is an arbitrary parameter. Using the equation (6) one may obtain the 

quadrature defined by 
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where K  is an arbitrary parameter and 0≠µ  . The equation (7) may be also 

written as 
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As b  is an arbitrary parameter, it is always possible to set  0=+
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a
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to yield 
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 from which one may secure the general solution to the Mathews-Lakshmanan 

oscillator equation (3) in the form 

    ( )Ktaetx +−±=)(                                                                                         (11.a) 

or 
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when 0>a  and 12 −=i . 

Now we may show the existence of real non-periodic solution to the equation 

(3). 

3. Periodic and non-periodic solutions 

3.1 Non-periodic solution 

The equation (8) may be rewritten in this form 
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Letting 0>
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from which one may secure the general solution to the Mathews-Lakshmanan 

oscillator equation (3) as 
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where 0≠b . If 0>a , and 0>µ , then it suffices to set 0>b , to secure 0>
2
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3.2 Periodic solution  

The application of 0<
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, that is 0<b , and 0>µba +  , as 0>a , and 0>µ  

allows one, from (12), to get 
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From (15) one may obtain the general solution of the Mathews-Laskhmanan 

equation (3) in the form 
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µλ = , and a=α . The equation (16) shows the existence of solution with 

negative angular frequency µω b−−= , which has not been highlighted 

previously in the literature. That being so a conclusion may be addressed for the 

work.  

Conclusion 

In this work the celebrated Mathews-Lakshmanan oscillator equation has been 

investigated. It has been possible to show that such an equation may exhibit real 

non-periodic solution and complex-valued solution. The periodic solution given 

in [1] has been in a direct fashion calculated in this paper. The work developed 

in this paper shows that the Mathews-Lakshmanan equation is, in fact, a pseudo-

oscillator. 
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