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Abstract

We show in this paper the existence of non-periodic real-valued and complex-
valued solutions of the Mathews-Lakshmanan oscillator equation. The theory

allows also to find the sinusoidal periodic solution given by the authors. As an
oscillator can only have periodic solutions for the same model parameters, we
conclude that the Mathews-Lakshmanan equation is a pseudo-oscillator.
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Introduction

In 1974, Mathews and Lakshmanan published a paper entitled [1]: *° On a
unique nonlinear oscillator’” in which they presented a remarkable quadratic
Lienard type differential equation using the Lagrangian approach. The authors
[1] show that the periodic solution of such an equation has the harmonic form
but with amplitude-dependent frequency. Later a vast literature has been carried
out on the usefullness of this oscillator equation. So, a rich variety of studies
from classical as well as quantum mechanical point of view has been developed
in the literature [2- 8]. Recently the authors of the present work have shown that
there exists a lot of such quadratic Lienard type equations that can have periodic
solutions exhibiting harmonic oscillations with amplitude-dependent frequency
[9, 10]. In [11] the authors have shown that the equation recorded as equation
6.111 in Kamke book [12] is equivalent to an oscillator equation since it may be
obtained from the nonlocal transformation of the harmonic oscillator equation
such that its solution is periodic and has harmonic form but with amplitude-
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dependent frequency [11, 12] when the independent variable is the time. More
recently, in [13, 14] the authors presented also quadratic Lienard type equations
that have periodic solutions exhibiting harmonic behavior but with amplitude-
dependent frequency. In [15] the authors have shown the existence for the first
time of a quadratic Lienard type equation having the Jacobi elliptic function Cn,
which is a generalization of the cosine function, as general solution. The above
shows that the problem of finding sinusoidal periodic solutions of nonlinear
differential equations constitutes an attractive research field of mathematics and
physics. In the present work one may ask whether the Mathews-Lakshmanan
oscillator equation may exhibit non-periodic solutions. This is reasonable, since,
as can be seen recently in the literature, several nonlinear differential equations
assumed to be oscillator equations, have non-periodic solutions for the same
model parameters. In this way the objective in this work is to show that the
famous Mathews-Lakshmanan oscillator equation has non-periodic solutions for
the same model or design parameters. To do this, we show the complex-valued
solution in section (2) and exhibit real non-periodic solution in section (3). We
show also in section (3) that the developed theory enables to calculate in a direct
fashion the periodic solution given in [1]. Finally a conclusion is given for the
work.

2. Complex- valued solution

Let us consider the second-order differential equation [16]
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where the overdot means differentiation with respect to time and prime stands
for the derivative with respect to the argument. The function f(x), and g(x) are
arbitrary functions of x, and « 1is an arbitrary parameter. Choosing

g(x)= ! —, yields the first derivative g'(x)= —sz such that
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gl ___2ux —. So the general equation (1) becomes
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The choice f(x)= —m, that is f'(x) = (1+fzxx2)2 , reduces the equation (2)

to the Mathews-Lakshmanan equation [1]
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where 4 1s an arbitrary parameter. The corresponding first-order differential

equation [16]
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so that one may write
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where b is an arbitrary parameter. Using the equation (6) one may obtain the
quadrature defined by
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where K is an arbitrary parameter and z=0 . The equation (7) may be also

written as
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As b is an arbitrary parameter, it is always possible to set »+-< =0, that is
Y7,

i(t+K)=I

(8)

b=-2 where a and u are always arbitrary parameters. Therefore the equation
Y7

(8) becomes



a4 K) 9

to yield
tn(x)=+V—a(t+K) (10)

from which one may secure the general solution to the Mathews-Lakshmanan
oscillator equation (3) in the form

x(t) = etV (11.2)
or
x(t) = ek (11.b)
when ¢>0 and i* =-1.

Now we may show the existence of real non-periodic solution to the equation

3).
3. Periodic and non-periodic solutions
3.1 Non-periodic solution

The equation (8) may be rewritten in this form
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Letting

>0, as b is an arbitrary parameter, the equation (12) may lead to
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from which one may secure the general solution to the Mathews-Lakshmanan
oscillator equation (3) as

x(t):—“b(‘;;b”)sh[i@(tuq] (14)
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where b20.1f >0, and x> 0, then it suffices to set »> 0, to secure bﬂb >0.
a+bu

3.2 Periodic solution
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bu

<0, thatis <0, and a+bu>0 ,as a>0, and x>0
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The application of

allows one, from (12), to get

sinll:—'u _b(a+bﬂ)x}=im(t+K) (15)
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From (15) one may obtain the general solution of the Mathews-Laskhmanan
equation (3) in the form

x(t)z——“_b(;;jbﬂ)sin[i@(t+l<)] (16)

The amplitude is given by 4=-

V=bla+bp) , such that 4> :l(—l+ a j and
bu U (=b)u
the positive angular frequency w=.-bu, that is o’ =-bu. Using the notation

adopted in [1], »* may be written as o’ = & = —bu, such that 4> = %(— 1 +ﬁj , for
&

A=u, and a=a. The equation (16) shows the existence of solution with
negative angular frequency w=--bu, which has not been highlighted

previously in the literature. That being so a conclusion may be addressed for the
work.

Conclusion

In this work the celebrated Mathews-Lakshmanan oscillator equation has been
investigated. It has been possible to show that such an equation may exhibit real
non-periodic solution and complex-valued solution. The periodic solution given
in [1] has been in a direct fashion calculated in this paper. The work developed
in this paper shows that the Mathews-Lakshmanan equation is, in fact, a pseudo-
oscillator.
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