A relationship between exponential growing and a basic asymptotic function

by

Jaime Vladimir Torres-Heredia Julca¹

December 2020

1.- Abstract

In this paper we study a simple exponential growing problem which leads to a basic asymptotic function. It shows a hidden property of asymptotic functions.

2.- Introduction

Nowadays basic asymptotic functions are largely studied at high-school levels, in order to present the notion of limit of a function.

Some centuries ago, a relationship between exponential functions and a rectangular hyperbola, which has an asymptote, has been found indirectly through the inverse function of an exponential function. It lead to the definition of the natural logarithm function:

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$$

This relationship is the result of researches that began during the XVIIth century thanks to the mathematician Grégoire de Saint-Vincent. He was working on the quadrature of the hyperbola $y = \frac{1}{x}$. He was applying Fermat's method and he noticed that « when the bases form a geometric progression, the rectangles have equal areas; thus the area is proportional to the logarithm of the horizontal distance . », as E. Maor wrote in [1]. There is also interesting information in Hairer-Wanner [2].

In this article, we will neither work with areas nor with logarithms. Instead, we will find a direct relationship between exponential growing and a basic asymptotic function.

3.- Simple problems leading to exponential functions

In simple problems of that kind, there is growing at a certain rate per unit of time. For exemple, we begin with an amout A_0 , and, say, this amount grows at the rate of 2 % per month. So the amount we get in time is :

$$A(t) = A_0 \cdot (\frac{102}{100})^t$$

where t is the number of months.

¹ Independent researcher

In that kind of problem, after every fixed period of time, the amount grows at a fixed rate.

Let's call p that fixed period of time.

4.- What happens if the period of time p drecreases as the rate remains unchanged?

One simple problem of this kind could be the following one:

We begin with an amount A_0 and, after a month, it doubles, and after 15 days it doubles again, and after 7,5 days it doubles again, and so on...

So we get the following graph:

5.- Finding a function which describes that kind of growing

In order to solve this problem, we will write a parametric equation, where n is the number of decreasing periods of time and t is the number of months.

For n=0 we have:

$$t = 0$$

$$A = A_0$$

And for $n \ge 1$, $n \in \mathbb{N}$:

$$t = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} + \dots + \left(\frac{1}{2}\right)^{n-1}$$

$$A = A_{0} \cdot 2^{n}$$

We can check that:

If n=0 we have t=0 and A=A₀

If n=1 we have t=1 and $A=A_0\cdot 2$

If n=2 we have t=1,5 and $A=A_0 \cdot 2^2$

If n=3 we have t=1,75 and $A=A_0 \cdot 2^3$

And so on...

We can rewrite the parametric equation:

For $n \ge 1$, $n \in \mathbb{N}$:

$$t = \left(\frac{1}{2}\right)^{0} + \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} + \dots + \left(\frac{1}{2}\right)^{n-1}$$

$$A = A_{0} \cdot 2^{n}$$

Or:

$$t = \sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k$$
$$A = A_0 \cdot 2^n$$

And we remark that t is given by a geometric series whose common ratio is $\frac{1}{2}$. So we can use the formula for the sum of the first n terms as we find it in [3]:

$$t = \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \left(\frac{1}{2}\right)}$$

So we get:

$$\begin{cases} t = 2 - \frac{2}{2^n} \\ A = A_0 \cdot 2^n \end{cases}$$

And now, if we look for a relation between the variables t and A, we must eliminate the variable n :

$$2-t = \frac{2}{2^n}$$

$$A = A_0 \cdot 2^n$$

$$\frac{2-t}{2} = \frac{1}{2^n}$$

$$A = A_0 \cdot 2^r$$

$$\frac{2}{2-t} = 2^n$$

$$A = A_0 \cdot 2^n$$

So finally we get:

$$A = \frac{2 \cdot A_0}{2 - t}$$

which means that A is given by a basic asymptotic function depending on the variable t... Here is the graph of the function :

6.- Conclusions

So we got directly a relationship between exponential growing and an hyperbola. This fact will contribue to increase our knowledge about exponential functions and asymptotic functions.

References

- [1] E. Maor, e THE HISTORY OF A NUMBER, Princeton University Press, 2015, p. 66
- [2] G. Wanner and E. Hairer, L'analyse au fil de l'histoire, Springer, 2001
- [3] https://en.wikipedia.org/wiki/Geometric_series