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Abstract. This paper is a trial to prove Riemann hypothesis according
to the following process. 1. We create the infinite number of infinite series

from one equation that gives ζ(s) analytic continuation to Re(s) > 0 and 2

formulas (1/2 + a + bi, 1/2 − a − bi) which show zero point of ζ(s). 2. We
find that a cannot have any value but zero from the above infinite number of

infinite series. Therefore zero point of ζ(s) must be 1/2± bi.

1. Introduction

The following (1) gives Riemann zeta function ζ(s) analytic continuation to Re(s) > 0.

“+−−−” means infinite series in all equations in this paper.

1− 2−s + 3−s − 4−s + 5−s − 6−s +−−− = (1− 21−s)ζ(s) (1)

The following (2) shows non-trivial zero point of ζ(s). S0 is the zero point of the left side

of (1) and also zero point of ζ(s).

S0 = 1/2 + a+ bi (2)

The range of a is 0 ≤ a < 1/2 by the critical strip of ζ(s). The range of b is b > 0 due

to the following reasons. And i is
√
−1 .

1.1 There is no zero point on the real axis of the critical strip.

1.2 [Conjugate complex number of S0] = 1/2+ a− bi is also zero point of ζ(s). There-

fore b > 0 is necessary and sufficient range for investigation.

The following (3) also shows zero point of ζ(s) by the functional equation of ζ(s).

S1 = 1− S0 = 1/2− a− bi (3)

We have the following (4) and (5) by substituting S0 for s in the left side of (1) and putting

both the real part and the imaginary part of the left side of (1) at zero respectively.

1 =
cos(b log 2)

21/2+a
− cos(b log 3)

31/2+a
+

cos(b log 4)

41/2+a
− cos(b log 5)

51/2+a
+−−− (4)

0 =
sin(b log 2)

21/2+a
− sin(b log 3)

31/2+a
+

sin(b log 4)

41/2+a
− sin(b log 5)

51/2+a
+−−− (5)
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We also have the following (6) and (7) by substituting S1 for s in the left side of (1)

and putting both the real part and the imaginary part of the left side of (1) at zero

respectively.

1 =
cos(b log 2)

21/2−a
− cos(b log 3)

31/2−a
+

cos(b log 4)

41/2−a
− cos(b log 5)

51/2−a
+−−− (6)

0 =
sin(b log 2)

21/2−a
− sin(b log 3)

31/2−a
+

sin(b log 4)

41/2−a
− sin(b log 5)

51/2−a
+−−− (7)

2. Infinite number of infinite series

We define f(n) as follows.

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, −−−) (8)

We have the following (9) from (4) and (6) with the method shown in item 1 of [Appendix

1: Equation construction].

0 = f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5) +−−− (9)

We also have the following (10) from (5) and (7) with the method shown in item 2 of

[Appendix 1: Equation construction].

0 = f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5) +−−− (10)

We can have the following (11) (which is the function of real number x) from the above

(9) and (10) with the method shown in item 3 of [Appendix 1: Equation construction].

And the value of (11) is always zero at any value of x.

0 ≡ cosx{right side of (9)}+ sinx{right side of (10)}
= cosx{f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5) +−−−}
+ sinx{f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5) +−−−}
= f(2) cos(b log 2− x)− f(3) cos(b log 3− x) + f(4) cos(b log 4− x)

− f(5) cos(b log 5− x) + f(6) cos(b log 6− x)− −−− (11)

We have (12-1) by substituting b log 1 for x in (11).

0 = f(2) cos(b log 2− b log 1)− f(3) cos(b log 3− b log 1) + f(4) cos(b log 4− b log 1)

− f(5) cos(b log 5− b log 1) + f(6) cos(b log 6− b log 1)− −−− (12-1)

We have (12-2) by substituting b log 2 for x in (11).

0 = f(2) cos(b log 2− b log 2)− f(3) cos(b log 3− b log 2) + f(4) cos(b log 4− b log 2)

− f(5) cos(b log 5− b log 2) + f(6) cos(b log 6− b log 2)− −−− (12-2)
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We have (12-3) by substituting b log 3 for x in (11).

0 = f(2) cos(b log 2− b log 3)− f(3) cos(b log 3− b log 3) + f(4) cos(b log 4− b log 3)

− f(5) cos(b log 5− b log 3) + f(6) cos(b log 6− b log 3)− −−− (12-3)

In the same way as above we can have (12-N) by substituting b logN for x in (11).

(N = 4, 5, 6, 7, 8,−−−)

0 = f(2) cos(b log 2− b logN)− f(3) cos(b log 3− b logN) + f(4) cos(b log 4− b logN)

− f(5) cos(b log 5− b logN) + f(6) cos(b log 6− b logN)− −−− (12-N)

3. Proof

We define g(k) as follows. (k = 2, 3, 4, 5,−−−)

g(k) = cos(b log k − b log 1) + cos(b log k − b log 2) + cos(b log k − b log 3) +−−−
= cos(b log 1− b log k) + cos(b log 2− b log k) + cos(b log 3− b log k) +−−−
= cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + cos(b log 4/k) +−−− (13)

From [Appendix 2: Investigation of g(k)] we can have the following (23-4).

g(k) =
lim

N→∞
N sin(b logN/k + tan−1 1/b)

√
1 + b2

(23-4)

We can have the following (14) from infinite equations of (12-1), (12-2), (12-3), ———,

(12-N), ———— with the method shown in item 4 of [Appendix 1: Equation construc-

tion].

0 = f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3) +−−−}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3) +−−−}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3) +−−−}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3) +−−−}
+ f(6){cos(b log 6− b log 1) + cos(b log 6− b log 2) + cos(b log 6− b log 3) +−−−}
− −−−−−−−−−−
= f(2)g(2)− f(3)g(3) + f(4)g(4)− f(5)g(5) + f(6)g(6)− f(7)g(7) +−−−

= f(2)
lim

N→∞
N sin(b logN/2 + tan−1 1/b)

√
1 + b2

− f(3)
lim

N→∞
N sin(b logN/3 + tan−1 1/b)

√
1 + b2

+ f(4)
lim

N→∞
N sin(b logN/4 + tan−1 1/b)

√
1 + b2

− f(5)
lim

N→∞
N sin(b logN/5 + tan−1 1/b)

√
1 + b2

+ −−−

= (1/
√
1 + b2) lim

N→∞
N{f(2) sin(b logN/2 + tan−1 1/b)− f(3) sin(b logN/3 + tan−1 1/b)

+ f(4) sin(b logN/4 + tan−1 1/b)− f(5) sin(b logN/5 + tan−1 1/b) + −−−} (14)
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As shown in [Appendix 3: Sum of infinite series of sine waves] sum of infinite series of

sine waves in the above (14) converges as follows.

f(2) sin(b logN/2 + tan−1 1/b)− f(3) sin(b logN/3 + tan−1 1/b)

+ f(4) sin(b logN/4 + tan−1 1/b)− f(5) sin(b logN/5 + tan−1 1/b) + −−−
= f(2) sin(b logN − b log 2 + tan−1 1/b)− f(3) sin(b logN − b log 3 + tan−1 1/b)

+ f(4) sin(b logN − b log 4 + tan−1 1/b)− f(5) sin(b logN − b log 5 + tan−1 1/b) + −−−
= A(a, b) sin{b logN −B(a, b) + tan−1 1/b} (15)

In the above (15) A(a, b) and B(a, b) are constant which depends on a and b. If A(a, b) = 0

is true, a = 0 holds true and if A(a, b) ̸= 0 is true, 0 < a < 1/2 holds true as shown

in [Appendix 3: Sum of infinite series of sine waves]. From (14) and (15) we have the

following (16).

0 = lim
N→∞

N [A(a, b) sin{b logN −B(a, b) + tan−1(1/b)}] (16)

If A(a, b) ̸= 0 is true, the right side of (16) diverges to ±∞. Therefore A(a, b) = 0 must

be true for (16) to hold. Due to A(a, b) = 0 a cannot have any value but zero. From (2)

and (3) non-trivial zero point of Riemann zeta function ζ(s) must be 1/2± bi and other

zero point does not exist. Riemann hypothesis which says “All non-trivial zero points of

Riemann zeta function ζ(s) exist on the line of Re(s) = 1/2.” is true.

Appendix 1. Equation construction

We can construct (9),(10),(11) and (14) by applying the following Theorem 1[1].

Theorem 1� �
On condition that the following (Series 1) and (Series 2) converge, the following

(Series 3) and (Series 4) are true.

(Series 1) = a1 + a2 + a3 + a4 + a5 +−−− = A

(Series 2) = b1 + b2 + b3 + b4 + b5 +−−− = B

(Series 3) = (a1 + b1) + (a2 + b2) + (a3 + b3) + (a4 + b4) +−−− = A+B

(Series 4) = (a1 − b1) + (a2 − b2) + (a3 − b3) + (a4 − b4) +−−− = A−B� �
1. Construction of (9)

We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 1) and

(Series 2) respectively.

(Series 1) =
cos(b log 2)

21/2−a
− cos(b log 3)

31/2−a
+

cos(b log 4)

41/2−a
− cos(b log 5)

51/2−a
+−−− = 1 (6)

(Series 2) =
cos(b log 2)

21/2+a
− cos(b log 3)

31/2+a
+

cos(b log 4)

41/2+a
− cos(b log 5)

51/2+a
+−−− = 1 (4)

(Series 4) = f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5)
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+−−− = 1− 1 = 0 (9)

Here

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, −−−) (8)

2. Construction of (10)

We can have the following (10) as (Series 4) by regarding (7) and (5) as (Series 1)

and (Series 2) respectively.

(Series 1) =
sin(b log 2)

21/2−a
− sin(b log 3)

31/2−a
+

sin(b log 4)

41/2−a
− sin(b log 5)

51/2−a
+−−− = 0 (7)

(Series 2) =
sin(b log 2)

21/2+a
− sin(b log 3)

31/2+a
+

sin(b log 4)

41/2+a
− sin(b log 5)

51/2+a
+−−− = 0 (5)

(Series 4) = f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5)

+−−− = 0− 0 (10)

3. Construction of (11)

We can have the following (11) as (Series 3) by regarding the following equations as

(Series 1) and (Series 2).

(Series 1) = cos x{right side of (9)}
= cosx{f(2) cos(b log 2)− f(3) cos(b log 3) + f(4) cos(b log 4)− f(5) cos(b log 5)

+−−−} = 0

(Series 2) = sin x{right side of (10)}
= sinx{f(2) sin(b log 2)− f(3) sin(b log 3) + f(4) sin(b log 4)− f(5) sin(b log 5)

+−−−} = 0

(Series 3) = f(2) cos(b log 2− x)− f(3) cos(b log 3− x) + f(4) cos(b log 4− x)

− f(5) cos(b log 5− x) + −−− = 0 + 0 (11)

4. Construction of (14)

4.1 We can have the following (12-1*2) as (Series 3) by regarding (12-1) and (12-2) as

(Series 1) and (Series 2) respectively.

(Series 1) = f(2) cos(b log 2− b log 1)− f(3) cos(b log 3− b log 1)

+ f(4) cos(b log 4− b log 1)− f(5) cos(b log 5− b log 1)

+ f(6) cos(b log 6− b log 1)− −−− = 0 (12-1)

(Series 2) = f(2) cos(b log 2− b log 2)− f(3) cos(b log 3− b log 2)

+ f(4) cos(b log 4− b log 2)− f(5) cos(b log 5− b log 2)

+ f(6) cos(b log 6− b log 2)− −−− = 0 (12-2)

(Series 3) = f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2)}
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+ −−− = 0 + 0 (12-1*2)

4.2 We can have the following (12-1*3) as (Series 3) by regarding (12-1*2) and (12-3)

as (Series 1) and (Series 2) respectively.

(Series 2) = f(2) cos(b log 2− b log 3)− f(3) cos(b log 3− b log 3)

+ f(4) cos(b log 4− b log 3)− f(5) cos(b log 5− b log 3)

+ f(6) cos(b log 6− b log 3)− −−− = 0 (12-3)

(Series 3) = f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 4− b log 3)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 5− b log 3)}
+ −−− = 0 + 0 (12-1*3)

4.3 We can have the following (12-1*4) as (Series 3) by regarding (12-1*3) and (12-4)

as (Series 1) and (Series 2) respectively.

(Series 2) = f(2) cos(b log 2− b log 4)− f(3) cos(b log 3− b log 4)

+ f(4) cos(b log 4− b log 4)− f(5) cos(b log 5− b log 4)

+ f(6) cos(b log 6− b log 4) + −−− = 0 (12-4)

(Series 3) = f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + −−− + cos(b log 2− b log 4)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + −−− + cos(b log 3− b log 4)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + −−− + cos(b log 4− b log 4)}
− f(5){cos(b log 5− b log 1) + cos(b log 6− b log 2) + −−− + cos(b log 6− b log 4)}
+ −−− = 0 + 0 (12-1*4)

4.4 In the same way as above we can have the following (12-1*N) as (Series 3) by

regarding (12-1*N-1) and (12-N) as (Series 1) and (Series 2) respectively.

f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + −−− + cos(b log 2− b logN)}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + −−− + cos(b log 3− b logN)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + −−− + cos(b log 4− b logN)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + −−− + cos(b log 6− b logN)}
+ −−− = 0 + 0 (12-1*N)

4.5 If we repeat this operation infinitely i.e. we do N → ∞, from (13) and (23-4) in

[Appendix 2: Investigation of g(k)] we can have (12-1*∞)=(14) as follows.

0 = lim
N→∞

[f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + −−− + cos(b log 2− b logN)}

− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + −−− + cos(b log 3− b logN)}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + −−− + cos(b log 4− b logN)}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + −−− + cos(b log 6− b logN)}
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+ −−−] (21-1)

= f(2){cos(b log 2− b log 1) + cos(b log 2− b log 2) + cos(b log 2− b log 3) + −−−}
− f(3){cos(b log 3− b log 1) + cos(b log 3− b log 2) + cos(b log 3− b log 3) + −−−}
+ f(4){cos(b log 4− b log 1) + cos(b log 4− b log 2) + cos(b log 3− b log 3) + −−−}
− f(5){cos(b log 5− b log 1) + cos(b log 5− b log 2) + cos(b log 3− b log 3) + −−−}
+ −−− (12-1*∞)

= f(2)g(2)− f(3)g(3) + f(4)g(4)− f(5)g(5) + f(6)g(6)− f(7)g(7) +−−−

= f(2)
lim

N→∞
N sin(b logN/2 + tan−1 1/b)

√
1 + b2

− f(3)
lim

N→∞
N sin(b logN/3 + tan−1 1/b)

√
1 + b2

+ f(4)
lim

N→∞
N sin(b logN/4 + tan−1 1/b)

√
1 + b2

− f(5)
lim

N→∞
N sin(b logN/5 + tan−1 1/b)

√
1 + b2

+ −−− (21-2)

= lim
A→∞

{f(2)
lim

N→A
N sin(b logN/2 + tan−1 1/b)

√
1 + b2

− f(3)
lim

N→A
N sin(b logN/3 + tan−1 1/b)

√
1 + b2

+ f(4)
lim

N→A
N sin(b logN/4 + tan−1 1/b)

√
1 + b2

− f(5)
lim

N→A
N sin(b logN/5 + tan−1 1/b)

√
1 + b2

+ −−−} (21-3)

= (1/
√
1 + b2) lim

A→∞
{f(2)A sin(b logA/2 + tan−1 1/b)− f(3)A sin(b logA/3 + tan−1 1/b)

+ f(4)A sin(b logA/4 + tan−1 1/b)− f(5)A sin(b logA/5 + tan−1 1/b) + −−−}

= (1/
√
1 + b2) lim

A→∞
A{f(2) sin(b logA/2 + tan−1 1/b)− f(3) sin(b logA/3 + tan−1 1/b)

+ f(4) sin(b logA/4 + tan−1 1/b)− f(5) sin(b logA/5 + tan−1 1/b) + −−−}

= (1/
√
1 + b2) lim

N→∞
N{f(2) sin(b logN/2 + tan−1 1/b)− f(3) sin(b logN/3 + tan−1 1/b)

+ f(4) sin(b logN/4 + tan−1 1/b)− f(5) sin(b logN/5 + tan−1 1/b) + −−−}
(14)

In (21-1) all N become N → ∞ simultaneously and synchronously because all

N are operated by only one lim
N→∞

. In (21-2) all lim
N→∞

work simultaneously and

synchronously because (21-2) is equal to (21-1) and all N in (21-2) also must

become N → ∞ simultaneously and synchronously. (21-3) shows the situation

where in (21-2) all lim
N→∞

work simultaneously and synchronously. A is natural

number. Therefore we can combine all lim
N→∞

in (21-2) into one lim
N→∞

and make

(14).

Appendix 2. Investigation of g(k)

We define g(k,N) as follows.

g(k,N): the partial sum from the first term of g(k) to the N-th term of g(k).

(k = 2, 3, 4, 5,−−−)



8 T. Ishiwata

From (13) g(k,N) is as follows.

g(k,N) = cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + −−− + cos(b logN/k)

= N
1

N
{cos(b log 1

N

N

k
) + cos(b log

2

N

N

k
) + cos(b log

3

N

N

k
) + −−− cos(b log

N

N

N

k
)}

= N
1

N
{cos(b log 1

N
+ b log

N

k
) + cos(b log

2

N
+ b log

N

k
) + cos(b log

3

N
+ b log

N

k
)

+ −−− + cos(b log
N

N
+ b log

N

k
)}

= N
1

N
{cos(b log N

k
)}{cos(b log 1

N
) + cos(b log

2

N
) + cos(b log

3

N
) + −−− + cos(b log

N

N
)}

−N
1

N
{sin(b log N

k
)}{sin(b log 1

N
) + sin(b log

2

N
) + sin(b log

3

N
) + −−− + sin(b log

N

N
)}

Here we do N → ∞ as follows. lim
N→∞

g(k,N) means g(k).

lim
N→∞

g(k,N) = g(k)

= lim
N→∞

{cos(b log 1/k) + cos(b log 2/k) + cos(b log 3/k) + −−− + cos(b logN/k)}

= lim
N→∞

[N
1

N
{cos(b log N

k
)}{cos(b log 1

N
) + cos(b log

2

N
) + cos(b log

3

N
) + −−− + cos(b log

N

N
)}

−N
1

N
{sin(b log N

k
)}{sin(b log 1

N
) + sin(b log

2

N
) + sin(b log

3

N
) + −−− + sin(b log

N

N
)}]

(22-1)

= lim
N→∞

{N cos(b log
N

k
)} lim

N→∞

1

N
{cos(b log 1

N
) + cos(b log

2

N
) + cos(b log

3

N
) + −−− + cos(b log

N

N
)}

− lim
N→∞

{N sin(b log
N

k
)} lim

N→∞

1

N
{sin(b log 1

N
) + sin(b log

2

N
) + sin(b log

3

N
) + −−− + sin(b log

N

N
)}

= lim
N→∞

{N cos(b log
N

k
)}

∫ 1

0

cos(b log x)dx− lim
N→∞

{N sin(b log
N

k
)}

∫ 1

0

sin(b log x)dx

(22-2)

We define A and B as follows.

A =

∫ 1

0

cos(b log x)dx B =

∫ 1

0

sin(b log x)dx

We calculate A and B.

A = [x cos(b log x)]10 + bB = 1 + bB

B = [x sin(b log x)]10 − bA = −bA

Then we can have the values of A and B from the above equations as follows.

A =
1

1 + b2
B =

−b

1 + b2

We have the following (23-1) by substituting the above values of A and B for
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0
cos(b log x)dx and

∫ 1

0
sin(b log x)dx in (22-2).

g(k) = lim
N→∞

{N cos(b log
N

k
)} 1

1 + b2
− lim

N→∞
{N sin(b log

N

k
)} −b

1 + b2
(23-1)

= lim
A→∞

[ lim
N→A

{N cos(b log
N

k
)} 1

1 + b2
− lim

N→A
{N sin(b log

N

k
)} −b

1 + b2
] (23-2)

=
lim

A→∞
A{cos(b log A

k
) + b sin(b log

A

k
)}

1 + b2

=
lim

N→∞
N{cos(b log N

k
) + b sin(b log

N

k
)}

1 + b2
=

lim
N→∞

N sin(b log
N

k
+ tan−1 1

b
)

√
1 + b2

(23-4)

In (22-1) all N become N → ∞ simultaneously and synchronously because all N are

operated by only one lim
N→∞

. In (23-1) 2 lim
N→∞

work simultaneously and synchronously

because (22-1) is equal to (23-1) and all N in (23-1) also must become N → ∞ simul-

taneously and synchronously. (23-2) shows the situation where in (23-1) 2 lim
N→∞

work

simultaneously and synchronously. A is natural number. Therefore we can combine 2

lim
N→∞

in (23-1) into one lim
N→∞

and make (23-4).

Appendix 3. Sum of infinite series of sine waves

Sum of infinite series of sine waves in the following (15) converges to one sine wave

like the rightmost side of (15) due to the following reasons.

f(2) sin(b logN/2 + tan−1 1/b)− f(3) sin(b logN/3 + tan−1 1/b)

+ f(4) sin(b logN/4 + tan−1 1/b)− f(5) sin b logN/5 + tan−1 1/b) + −−−
= f(2) sin(b logN − b log 2 + tan−1 1/b)− f(3) sin(b logN − b log 3 + tan−1 1/b)

+ f(4) sin(b logN − b log 4 + tan−1 1/b)− f(5) sin(b logN − b log 5 + tan−1 1/b) + −−−
= A(a, b) sin{b logN −B(a, b) + tan−1 1/b} (15)

1 The general term of the infinite series in (15) is

(−1)nf(n) sin{b logN − b log n+ tan−1 1/b} (n = 2, 3, 4, 5,−−−).

If n is large natural number, the value of b log n increases very slowly with increase

of n and the sign of sin{b logN−b log n+tan−1 1/b} does not change often. There-

fore +term and −term appear alternately and 2 +terms or 2 −terms appear in

succession only when the sign of sin{b logN − b log n+ tan−1 1/b} changes. +term

and −term in the above explanation are defined as follows.

(b logN − b log n+ tan−1 1/b = α )

+term : +f(n) sinα when the sign of sinα is“+”.
−f(n) sinα when the sign of sinα is“−”.

−term : +f(n) sinα when the sign of sinα is“−”.
−f(n) sinα when the sign of sinα is“+”.
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On the condition of

sin{b logN − b logX0 + tan−1 1/b} = 0 (n0 + 1 > X0 > n0)

the followings are true.

log(n0 + 1)− log n0 > logX0 − log n0 > 0

log(n0 + 1)− log n0 > log(n0 + 1)− logX0 > 0

Due to lim
n0→∞

{log(n0 + 1)− log n0} = 0 the following equations hold.

lim
n0→∞

log(n0 + 1) = logX0 = lim
n0→∞

log n0

lim
n0→∞

sin{b logN − b log(n0 + 1) + tan−1 1/b} = sin{b logN − b logX0 + tan−1 1/b}

= lim
n0→∞

sin{b logN − b log n0 + tan−1 1/b} = 0

Therefore 2 +terms or 2 −terms ( ±f(n0) sin{b logN − b log n0 + tan−1 1/b} and

∓f(n0+1) sin{b logN−b log(n0+1)+tan−1 1/b} ) which appear in succession only

when the sign of sin{b logN − b log n+ tan−1 1/b} changes have almost the values

of zero, if n0 is large natural number. If we regard the sum of these 2 +terms or

2 −terms that exist in succession as one +terms or one −terms, we can consider

this infinite series as alternating series and this alternating series converges due to

lim
n→∞

f(n) = 0.

f(n) =
1

n1/2−a
− 1

n1/2+a
≥ 0 (n = 2, 3, 4, 5, −−−) (8)

2 In f(n) sin{b logN−b log n+tan−1 1/b} even if N is multiplied by e2π/b, the value

of the equation does not change as follows. Therefore f(n) sin{b logN − b log n +

tan−1 1/b} has a period of e2π/b times. 1 < e2π/b < ∞ is true due to 0 < b < ∞.

f(n) sin{b log(e2π/bN)− b log n+ tan−1 1/b}
= f(n) sin{b logN + 2π − b log n+ tan−1 1/b} = f(n) sin{b logN − b log n+ tan−1 1/b}

If we calculate sum or difference of 2 sine waves which have the same period, the

result becomes another sine wave which has the same period as shown in (Figure

1) and (Figure 2).
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Im(s)

0 Re(s)

Figure 1:  Sum of 2 sine waves

f(2+3)sin{β-θ(2+3)}f(2)sin{β-θ(2)}

f(3)sin{β-θ(3)}

θ(2)= blog2

θ(3)= blog3

β

β= blogN+tan-11/b

Im(s)

0 Re(s)

Figure 2:  Difference of 2 sine waves

f(2-3)sin{β-θ(2-3)}
f(2)sin{β-θ(2)}

f(3)sin{β-θ(3)}

θ(2)= blog2

θ(3)= blog3

β

β= blogN+tan-11/b

f(2) sin{b logN − θ(2) + tan−11/b} ± f(3) sin{b logN − θ(3) + tan−11/b}
= f(2± 3) sin{b logN − θ(2± 3) + tan−1 1/b} (24)

If we calculate sum or difference of 2 sine waves which have the same period and

obtain the new sine wave like the right side of the above (24), the amplitude f(2±3)

and the phase θ(2 ± 3) of the new sine wave become as follows. Sum (difference)
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of 2 sine waves takes +(−) sign of ± in (24) and the following equations.

f(2± 3) =
√

f(2)2 + f(3)2 ± 2f(2)f(3) cos{θ(2)− θ(3)}

θ(2± 3) = tan−1 f(2) sin θ(2)± f(3) sin θ(3)

f(2) cos θ(2)± f(3) cos θ(3)

Therefore the partial sum of the infinite series in (15) becomes one sine wave which

has the same period as that of the term of the patial sum like the following (25).

f(2) sin(b logN − b log 2 + tan−1 1/b)− f(3) sin(b logN − b log 3 + tan−1 1/b)

+ f(4) sin(b logN − b log 4 + tan−1 1/b)

+ −−− + (−1)nf(n) sin(b logN − b log n+ tan−1 1/b)

= fn(a, b) sin{b logN − θn(a, b) + tan−1 1/b} (25)

fn(a, b) and θn(a, b) converges to A(a, b) and B(a, b) with n → ∞ respectively

because as confirmed in item 1 the left side of (25) converges with n → ∞.

In (15) A(a, b) and B(a, b) are constant which depends on a and b. If A(a, b) = 0 is true,

we have the following (15-1) which is identity regarding N .

f(2) sin(b logN − b log 2 + tan−1 1/b)− f(3) sin(b logN − b log 3 + tan−1 1/b)

+ f(4) sin(b logN − b log 4 + tan−1 1/b)− f(5) sin(b logN − b log 5 + tan−1 1/b) + −−−
= A(a, b) sin{b logN −B(a, b) + tan−1 1/b} ≡ 0 (15-1)

For the value of the leftmost side of (15-1) to be zero at any value of N the value of f(n)

must be zero at any value of n like the following (8-1). In other word a = 0 must hold.

f(n) =
1

n1/2−a
− 1

n1/2+a
≡ 0 (n = 2, 3, 4, 5, −−−) (8-1)

Now we can say if A(a, b) = 0 is true, a = 0 holds true and if A(a, b) ̸= 0 is true,

0 < a < 1/2 holds true.

References

[1] Yukio Kusunoki, Introduction to infinite series, Asakura syoten, (1972), page 22, (written in Japan-
ese)

Toshihiko Ishiwata

E-mail: toshihiko.ishiwata@gmail.com


