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Abstract 

This paper is a trial to prove Riemann hypothesis according to the following 

process.  

1    We create the infinite number of infinite series from one equation that 

gives ζ(s) analytic continuation to Re(s)＞0 and 2 formulas (1/2+a+bi, 1/2-

a-bi) which show zero points of ζ(s).  

(Proof 1) 

2    We find that the value of F(a) (which is infinite series of a) must be 

zero from the above infinite number of infinite series.  

3    We find that F(a)=0 has only one solution of a=0. Therefore zero point of 

ζ(s) must be 1/2±bi. 

    (Proof 2) 

    4     We find a=0 from the above infinite number of infinite series directly. 

 

 

1  Introduction 

The following (1) gives Riemann zeta function ζ(s) analytic continuation to   

Re(s)＞0.“+ -----” means infinite series in all equations in this paper. 

1-2-s+3-s-4-s+5-s-6-s+ ----- = (1-21-s)ζ(s)                   (1) 

The following (2) shows non-trivial zero point of ζ(s). S0 is the zero points of 

the left side of (1) and also zero points of ζ(s). 

S0 = 1/2+a+bi                                 (2) 

The range of a is 0≦a＜1/2 by the critical strip of ζ(s). The range of b is    

b＞0 due to the following reasons. And i is √-1  . 

1.1   There is no zero point on the real axis of the critical strip.  

1.2   [Conjugate complex number of S0] = 1/2+a-bi is also zero point of ζ(s). 

Therefore b＞0 is necessary and sufficient range for investigation. 

---------------------------------------------------------------------------------- 
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The following (3) also shows zero points of ζ(s) by the functional equation of  

ζ(s). 

      S1 = 1-S0 = 1/2-a-bi                               (3) 

We have the following (4) and (5) by substituting S0 for s in the left side of 

(1) and putting both the real part and the imaginary part of the left side of (1) 

at zero respectively. 

1 = 
cos(blog2)

2
1/2+a

-
cos(blog3)

3
1/2+a

+
cos(blog4)

4
1/2+a

-
cos(blog5)

5
1/2+a

+
cos(blog6)

6
1/2+a

- -----            (4) 

 0 = 
sin(blog2)

2
1/2+a

-
sin(blog3)

3
1/2+a

+
sin(blog4)

4
1/2+a

-
sin(blog5)

5
1/2+a

+
sin(blog6)

6
1/2+a

- -----           (5) 

We also have the following (6) and (7) by substituting S1 for s in the left side 

of (1) and putting both the real part and the imaginary part of the left side of (1) 

at zero respectively. 

1 = 
cos(blog2)

2
1/2−a

-
cos(blog3)

3
1/2-a

+
cos(blog4)

4
1/2-a

-
cos(blog5)

5
1/2-a

+
cos(blog6)

6
1/2-a

- ------           (6) 

0 = 
sin(blog2)

2
1/2−a

-
sin(blog3)

3
1/2-a

+
sin(blog4)

4
1/2-a

-
sin(blog5)

5
1/2-a

+
sin(blog6)

6
1/2-a

- ------        (7) 

 

2  Infinite number of infinite series  

We define f(n) as follows.                                                                       

         f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≧ 0             (n=2,3,4,5,6, ------)                                           (8) 

We have the following (9) from (4) and (6) with the method shown in item 1 of 

[Appendix 1: Equation construction]. 

  0 = f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ -----     (9) 

We also have the following (10) from (5) and (7) with the method shown in item 2 

of [Appendix 1: Equation construction]. 

0 = f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ -----    (10) 

We can have the following (11) (which is the function of real number x) from the 

above (9) and (10) with the method shown in item 3 of [Appendix 1: Equation 

construction]. And the value of (11) is always zero at any value of x.  
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 0 ≡ cosx{right side of (9)}+sinx{right side of (10)}  

= cosx{f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ -----} 

     + sinx{f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ -----} 

    = f(2)cos(blog2-x)-f(3)cos(blog3-x)+f(4)cos(blog4-x)-f(5)cos(blog5-x)+ ----   (11) 

We have (12-1) by substituting blog1 for x in (11). 

0 = f(2)cos(blog2-blog1)-f(3)cos(blog3-blog1)+f(4)cos(blog4-blog1) 

-f(5)cos(blog5-blog1)+f(6)cos(blog6-blog1)+ -----            (12-1) 

We have (12-2) by substituting blog2 for x in (11). 

0 = f(2)cos(blog2-blog2)-f(3)cos(blog3-blog2)+f(4)cos(blog4-blog2) 

-f(5)cos(blog5-blog2)+f(6)cos(blog6-blog2)+ -----            (12-2) 

We have (12-3) by substituting blog3 for x in (11). 

0 = f(2)cos(blog2-blog3)-f(3)cos(blog3-blog3)+f(4)cos(blog4-blog3) 

-f(5)cos(blog5-blog3)+f(6)cos(blog6-blog3)+ -----            (12-3) 

In the same way as above we can have (12-n) by substituting blogn for x in 

(11). (n = 4,5,6,7,8,-----) 

0 = f(2)cos(blog2-blogn)-f(3)cos(blog3-blogn)+ f(4)cos(blog4-blogn) 

-f(5)cos(blog5-blogn)+ -----                       (12-n) 

We define g(k) as follows. ( k = 2,3,4,5,6 -----) 

g(k) = cos(blogk-blog1)+cos(blogk-blog2)+cos(blogk-blog3)+cos(blogk-blog4)+ ---- 

         = cos(blog1-blogk)+cos(blog2-blogk)+cos(blog3-blogk)+cos(blog4-blogk)+ ---- 

  = cos(blog1/k)+cos(blog2/k)+cos(blog3/k)+cos(blog4/k)+cos(blog5/k)+ ----    (13) 

We can have the following (14) from infinite equations of (12-1),(12-2),(12-3), 

----------,(12-n),------------ with the method shown in item 4 of [Appendix 1: 

Equation construction]. 

 0 = f(2){cos(blog2-blog1)+cos(blog2-blog2)+cos(blog2-blog3)+cos(blog2-blog4)+ ---} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)+cos(blog3-blog3)+cos(blog3-blog4)+ ---} 

 +f(4){cos(blog4-blog1)+cos(blog4-blog2)+cos(blog4-blog3)+cos(blog4-blog4)+ ---} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)+cos(blog5-blog3)+cos(blog5-blog4)+ ---} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)+cos(blog6-blog3)+cos(blog6-blog4)+ ---} 

- ---------- 
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    = f(2)g(2)-f(3)g(3)+f(4)g(4)-f(5)g(5)+f(6)g(6)-f(7)g(7)+ -------      (14) 

3  Proof 1 

Here we define F(a) as follows. 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                                (15) 

We have F(a)=0 as shown in the following (16) because of the following reasons. 

3.1    g(2) fluctuates between -∞ and +∞ and g(2) does not have the value of 

zero as shown in [Appendix 2: Proof of g(2)≠0]. Therefore we can divide (14) 

by g(2) because of g(2)≠0 . 

3.2    g(k)/g(2)=1 (k=3,4,5,6,7 ----) is true as shown in [Appendix 3: Proof of 

g(k)/g(2)=1]. 

    0 = f(2)-
f(3)g(3)

g(2)
+
f(4)g(4)

g(2)
-
f(5)g(5)

g(2)
+
f(6)g(6)

g(2)
-
f(7)g(7)

g(2)
+ ------ 

      = f(2)-f(3)+f(4)-f(5)+f(6)- ------ = F(a)                  (16) 

F(a)=0 has the only one solution of a=0 as shown in [Appendix 4: Solution for 

F(a)=0  (1)] or [Appendix 5: Solution for F(a)=0  (2)]. a has the range of 0≦a＜

1/2 by the critical strip of ζ(s). But a cannot have any value but zero because a 

is the solution for F(a)=0. 

S0 = 1/2+a+bi                            (2) 

      S1 = 1-S0 = 1/2-a-bi                         (3) 

Due to a=0 non-trivial zero point of Riemann zeta function ζ(s) shown by the 

above 2 equations must be 1/2±bi and other zero point does not exist. Therefore 

Riemann hypothesis which says “All non-trivial zero points of Riemann zeta function 

ζ(s) exist on the line of Re(s)=1/2.”is true.  

From (16) F(a)=0 must have solution and F(a) is a monotonically increasing 

function as shown in [Appendix 5: Solution for F(a)=0 (2)]. So F(a)=0 has the only 

one solution. If the solution were not a=0, there would not be any zero points on 

the line of Re(s)=1/2. This assumption is contrary to the following (Fact 1) or 

(Fact 2). Therefore the only one solution for F(a)=0 must be a=0 and Riemann 

hypothesis must be true. 
    Fact 1: In 1914 Ｇ.Ｈ.Hardy proved that there are infinite zero points on the 

line of Re(s)=1/2. 

Fact 2: All zero points found until now exist on the line of Re(s)=1/2. 
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4  Proof 2 

   g(k) = 

lim
N→∞

N sin{blogN/k+ tan-1(1/b) }

√1+b
2

   (k=2,3,4,5 ----)                      (31) 

   From (14) and the above (31) in [Appendix 3: Proof of g(k)/g(2)=1] we can have 

the following (17). 

0 = f(2)g(2)-f(3)g(3)+f(4)g(4)-f(5)g(5)+f(6)g(6)-f(7)g(7)+ -------  

= f(2)

lim
N→∞

N sin {blogN/2+tan-1(1/b) }

√1+b
2

-f(3)

lim
N→∞

N sin {blogN/3+tan-1(1/b) }

√1+b
2

 

     +f(4)

lim
N→∞

N sin {blogN/4+tan-1(1/b) }

√1+b
2

-f(5)

lim
N→∞

N sin {blogN/5+tan-1(1/b) }

√1+b
2

+ ----- 

=

lim
N→∞

N [f(2)sin {blogN/2+ tan-1(1/b) }-f(3)sin{blogN/3+ tan-1(1/b)}+f(4)sin{blogN/4+ tan-1(1/b)}- -----]

√1+b2
 

                                                                               (17) 

    As shown in [Appendix 6: Sum of infinite series of sine waves] sum of infinite 

series of sine waves in (17) converges as follows. 

f(2)sin{blogN/2+ tan-1(1/b)}-f(3)sin{blogN/3+ tan-1(1/b)}+f(4)sin{blogN/3+tan-1(1/b)}- --- 

= f(2)sin{blogN-blog2+ tan-1(1/b)}-f(3)sin{blogN-blog3+tan-1(1/b)} 

  +f(4)sin{blogN-blog4+ tan-1(1/b)}-f(5)sin{blogN-blog5+ tan-1(1/b)}+ --- 

= A(a,b)sin{blogN+B(a,b)+tan-1(1/b)}                                            (18) 

In the above (18) A(a,b) and B(a,b) are constant which depends on a and b. If 

A(a,b)=0 is true, a=0 holds true and if A(a,b)≠0 is true, 0＜a＜1/2 holds true as 

shown in [Appendix 6: Sum of infinite series of sine waves]. From (17) and (18) we 

have the following (19). 

0 = lim
N→∞

N[A(a,b)sin{blogN+B(a,b)+tan-1(1/b)}]                                               (19) 

   If A(a,b)≠0 is true, the right side of (19) diverges to ±∞. Therefore A(a,b)=0 

must be true for (19) to hold. Due to A(a,b)=0 a cannot have any value but zero. And 

non-trivial zero point of Riemann zeta function ζ(s) must be 1/2±bi and other zero 

point does not exist. Riemann hypothesis is true. 
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 Appendix 1: Equation construction 

 

We can construct (9),(10),(11) and (14) by applying the following Theorem 1[1]. 

Theorem 1:   On condition that the following (Series 1) and (Series 2) converge, 

the following (Series 3) and (Series 4) are true.  

(Series 1) = a1+a2+a3+a4+a5+ ----- = A 

(Series 2) = b1+b2+b3+b4+b5+ ----- = B 

(Series 3) = (a1+b1)+(a2+b2)+(a3+b3)+(a4+b4)+(a5+b5)+ ----- = A+B 

(Series 4) = (a1-b1)+(a2-b2)+(a3-b3)+(a4-b4)+(a5-b5)+ ----- = A-B 

 

 

1 Construction of (9)  

     We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 

1) and (Series 2) respectively. 

 (Series 1)= 
cos(blog2)

2
1/2−a

-
cos(blog3)

3
1/2-a

+
cos(blog4)

4
1/2-a

-
cos(blog5)

5
1/2-a

+
cos(blog6)

6
1/2-a

- ----- = 1       (6) 

   (Series 2)= 
cos(blog2)

2
1/2+a

-
cos(blog3)

3
1/2+a

+
cos(blog4)

4
1/2+a

-
cos(blog5)

5
1/2+a

+
cos(blog6)

6
1/2+a

- ----- =1       (4) 

(Series 4)= f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ ----- 

                           = 1-1 = 0                                                               (9) 

         Here       f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≧ 0             (n=2,3,4,5,6, ------)                                 (8) 

 

2 Construction of (10) 

We can have the following (10) as (Series 4) by regarding (7) and (5) as 

(Series 1) and (Series 2) respectively. 

 (Series 1) = 
sin(blog2)

2
1/2−a

-
sin(blog3)

3
1/2-a

+
sin(blog4)

4
1/2-a

-
sin(blog5)

5
1/2-a

+
sin(blog6)

6
1/2-a

- ----- = 0    (7) 

 (Series 2) = 
sin(blog2)

2
1/2+a

-
sin(blog3)

3
1/2+a

+
sin(blog4)

4
1/2+a

-
sin(blog5)

5
1/2+a

+
sin(blog6)

6
1/2+a

- ----- = 0  (5) 

(Series 4) = f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ ----- 

                         = 0-0 = 0                                                              (10) 
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3 Construction of (11) 

We can have the following (11) as (Series 3) by regarding the following 

equations as (Series 1) and (Series 2). 

(Series 1) = cosx{right side of (9)}  

= cosx{f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ -----} = 0 

(Series 2) = sinx{right side of (10)} 

= sinx{f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ -----} = 0 

(Series 3) = f(2)cos(blog2-x)-f(3)cos(blog3-x)+f(4)cos(blog4-x)-f(5)cos(blog5-x)+ 

 ---- = 0+0                              (11) 

 

4   Construction of (14) 

4.1     We can have the following (12-1*2) as (Series 3) by regarding (12-1) and 

(12-2) as (Series 1) and (Series 2) respectively. 

(Series 1) = f(2)cos(blog2-blog1)-f(3)cos(blog3-blog1)+f(4)cos(blog4-blog1) 

-f(5)cos(blog5-blog1)+f(6)cos(blog6-blog1)+ ----- = 0     (12-1) 

(Series 2) = f(2)cos(blog2-blog2)-f(3)cos(blog3-blog2)+f(4)cos(blog4-blog2) 

-f(5)cos(blog5-blog2)+f(6)cos(blog6-blog2)+ ----- = 0     (12-2) 

(Series 3) = f(2){cos(blog2-blog1)+cos(blog2-blog2)} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)} 

                     +f(4){cos(blog4-blog1)+cos(blog4-blog2)} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)}- ----- = 0+0    (12-1*2) 

4.2    We can have the following (12-1*3) as (Series 3) by regarding (12-1*2) 

and (12-3) as (Series 1) and (Series 2) respectively.  

(Series 2) = f(2)cos(blog2-blog3)-f(3)cos(blog3-blog3)+f(4)cos(blog4-blog3) 

-f(5)cos(blog5-blog3)+f(6)cos(blog6-blog3)+ ----- = 0      (12-3) 

(Series 3) = f(2){cos(blog2-blog1)+cos(blog2-blog2)+cos(blog2-blog3)} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)+cos(blog3-blog3)} 

        +f(4){cos(blog4-blog1)+cos(blog4-blog2)+cos(blog4-blog3)} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)+cos(blog5-blog3)} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)+cos(blog6-blog3)} 

- ------ = 0+0                                              (12-1*3) 
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4.3   We can have the following (12-1*4) as (Series 3) by regarding (12-1*3) 

and (12-4) as (Series 1) and (Series 2) respectively.  

(Series 2) = f(2)cos(blog2-blog4)-f(3)cos(blog3-blog4)+f(4)cos(blog4-blog4) 

-f(5)cos(blog5-blog4)+f(6)cos(blog6-blog4)+ ----- = 0      (12-4) 

(Series 3) = f(2){cos(blog2-blog1)+cos(blog2-blog2)+cos(blog2- blog3)+cos(blog2-blog4)} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)+cos(blog3-blog3)+cos(blog3-blog4)} 

 +f(4){cos(blog4-blog1)+cos(blog4-blog2)+cos(blog4-blog3)+cos(blog4-blog4)} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)+cos(blog5-blog3)+cos(blog5-blog4)} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)+cos(blog6-blog3)+cos(blog6-blog4)} 

- ------ = 0+0                                                 (12-1*4) 

4.4     In the same way as above we can have (12-1*n) as (Series 3) by regarding 

(12-1*n-1) and (12-n) as (Series 1) and (Series 2) respectively. If we 

repeat this operation infinitely i.e. we do n→∞, we can have  

(12-1*∞)=(14). 
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Appendix 2: Proof of g(2)≠0 

 

1 Proof (1) 

1.1 Investigation of g(2) 

We define g(2,N) as the partial sum from the first term of g(2) to the N-th 

term of g(2). (N=1,2,3,4,5,-----)   From (13) g(2,N) is as follows. 

g(2,N) = cos(blog1/2)+cos(blog2/2)+cos(blog3/2)+cos(blog4/2)+cos(blog5/2) 

+ ---- +cos(blogN/2) 

  = N(
1

N
) [ cos{ blog(

1

N
) (

N

2
) }+ cos{blog(

2

N
) (

N

2
) }+ cos{ blog(

3

N
) (

N

2
) }+ cos{ blog(

4

N
) (

N

2
) } 

            +cos{ blog(
5

N
) (

N

2
) }+ ----- +cos{ blog(

N

N
) (

N

2
) }] 

= N(1/N){cos(blog1/N+blogN/2)+cos(blog2/N+blogN/2)+cos(blog3/N+blogN/2) 

+cos(blog4/N+blogN/2)+cos(blog5/N+blogN/2)+ ---- +cos(blogN/N+blogN/2)} 

= N(1/N){cos(blogN/2)}{cos(blog1/N)+cos(blog2/N)+cos(blog3/N)+ ---- +cos(blogN/N)} 

- N(1/N){sin(blogN/2)}{sin(blog1/N)+sin(blog2/N)+sin(blog3/N)+ ---- +sin(blogN/N)} 

Here we do N→∞ as follows. lim
N→∞

g(2,N) means g(2). 

   lim
N→∞

g(2,N)= g(2) 

= lim
N→∞

{Ncos(blogN/2)} lim
N→∞

(1/N){cos(blog1/N)+cos(blog2/N)+cos(blog3/N)+ ---- +cos(blogN/N)} 

  - lim
N→∞

{Nsin(blogN/2)} lim
N→∞

(1/N){sin(blog1/N)+sin(blog2/N)+sin(blog3/N)+ ---- +sin(blogN/N)} 

    = lim
N→∞

{Ncos(blogN/2)} ∫ cos(blogx)dx - lim
N→∞

{Nsin(blogN/2)}∫ sin(blogx)dx       (21
1

0

1

0

) 

       We define A and B as follows. 

                                           A = ∫ cos(blogx)dx      B = ∫ sin(blogx)dx  
1

0

1

0

 

    We calculate A and B. 

A = [xcos(blogx)]   + bB = 1 + bB 

 

                   B = [xsin(blogx)]   - bA = -bA 

Then we can have the values of A and B from the above equations as follows. 

A = 1/(1+b2)     B = -b/(1+b2)   

0 

 

1 

 

0 

 

1 
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       We have the following (22) by substituting the above values of A and B for 

∫ cos(blogx)dx
1

0
 and ∫ sin(blogx)dx 

1

0
in (21). 

g(2) = lim
N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}- lim

N→∞
{Nsin(blogN/2)}{-b/(1+b

2
)}  

        = 
lim
N→∞

N{cos(blogN/2)+bsin(blogN/2)}

1+b
2

 = 
lim
N→∞

Nsin{blogN/2+ tan-1(1/b)}

√1+b
2

               (22) 

(Graph 1) shows the value of [Nsin{blogN/2+tan-1(1/b)}/√1+b
2
  at b=1]. The 

scale of horizontal axis is log10N and the scale of vertical axis is  

±log10|Nsin(logN/2+π/4)/√2|. ± is subject to the sign of sin(logN/2+π/4). 

 

 

 

 

 

 

1.2  Verification of sin{blogN/2+ tan
-1
(1/b) }≠0 

       If we assume sin{blogN/2+ tan-1 (1/b)}=0   (N=3,4,5,6,7,-----),the following 

(23) is supposed to be true.  

 blogN/2+tan-1 (1/b)= kπ     (k=1,2,3,4,-----)      (23) 

In (23) k is natural number because of 0＜{left side of (23)} that is due to 

0＜b, 0＜logN/2 and 0＜tan-1(1/b)＜π/2 as shown in item 1.2.1. 
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1.2.1    tan-1(1/b) has the value of Lπ as shown in (Table 1) and the range of 

L is 0＜L＜1/2. 

Table 1：Value of tan-1(1/b) 

       

 

 

1.2.2     From (23) 

             blogN/2 + Lπ = kπ 

logN/2 = 
(k-L)π

b
 = Mπ 

k-L＞1/2 is true due to 1≦k and 0＜L＜1/2. (k-L)π/b=M＞0 is true 

due to 0＜b and k-L＞1/2. From the above equation 

                        N/2 = eMπ 

                                          N = 2eMπ                                                                          (24) 

1.2.3   N is natural number. (24) has impossible formation like 

(natural number) = (irrational number). Therefore (24) is false and (23) 

(which is the original formula of (24) ) is also false. Now we can have 

the following (25). 

         sin{blogN/2+tan-1(1/b)} ≠ 0    (N=3,4,5,6,7,-----)                         (25) 

1.3  Verification of g(2)≠0  

                       g(2) = 
lim
N→∞

Nsin{blogN/2+tan-1(1/b)}

√1+b
2

≠0                                                                       

 

 The above inequality is true due to the following reasons. 

1.3.1        lim
N→∞

sin{blogN/2+tan-1(1/b) }   fluctuates between -1 and 1 during N→∞. 

So    lim
N→∞

Nsin{blogN/2+tan-1 (1/b) } fluctuates between -∞ and +∞ as shown 

in (Graph 1) in the previous page. Therefore g(2) does not converge to 

zero. 

1.3.2    The value of g(2) cannot be zero during N→∞ due to the above (25) in 

item 1.2. 

b 0 1/√3 1 √3 ∞ 

tan-1(1/b) π/2 π/3 π/4 π/6 0 
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2 Proof（2） 

If we assume g(2)=0, the following (26) is supposed to be true from (22).  

g(2) = lim
N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}- lim

N→∞
{Nsin(blogN/2)}{-b/(1+b

2
)} = 0      (26) 

The following (27) and (28) are true because of the following reasons. 

2.1   lim
N→∞

{Ncos(blogN/2)} and lim
N→∞

{Nsin(blogN/2)} fluctuate between -∞ and  

+∞ and does not converge to zero. 

2.2   In (N=3,4,5,6,7,-----) we can confirm  sin(blogN/2)≠0 by putting 

L=0 in item 1.2. Hence lim
N→∞

{Nsin(blogN/2)} cannot be zero during N→∞. 

In (N=3,4,5,6,7,-----) we can confirm   cos(blogN/2) = sin(blogN/2+π/2)≠0 

by putting L=1/2 in item 1.2. Hence lim
N→∞

{Ncos(blogN/2)} cannot be zero 

during N→∞.  

        (N=3,4,5,6,7,-----)         lim
                                                  N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}≠0                                             (27) 

                                                                 lim
N→∞

{Nsin(blogN/2)}{-b/(1+b
2
)}≠0                                 (28) 

From (26),(27) and (28) we have the following (29). 

lim
N→∞

{Nsin(blogN/2)}{-b/(1+b
2
)}

lim
N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}

 = 1             (29) 

From (29) we have the following (30). 

lim
N→∞

{Nsin(blogN/2)}

lim
N→∞

{Ncos(blogN/2)}
 = 

lim
N→∞

{sin(blogN/2)}

lim
N→∞

{cos(blogN/2)}
 = lim

N→∞
tan(blogN/2) = 

-1

b
      (30) 

But tangent function fluctuates between -∞ and +∞ during N→∞ and does not 

converge to the fixed value. So (30) is false and (26) (which is the original 

formula of (30) ) is also false. Therefore we can confirm g(2)≠0. 
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Appendix 3: Proof of g(k)/g(2)=1 

 

1. Proof (1) 

We can have the following (31) for g(k) by calculating in the same way as for 

g(2) in item 1.1 of Appendix 2. 

   g(k) = 

lim
N→∞

N sin {blogN/k+ tan-1(1/b) }

√1+b
2

   (k=3,4,5,6,7 ----)                                       (31)  

     We define h(2,N) and h(k,N) as follows. 

              h(2,N) = blogN/2 + tan-1(1/b)                    

               h(k,N) = blogN/k + tan-1(1/b)       

    We have the following equation from the above definition.           

   lim
N→∞

h(k,N)

h(2,N)
 = lim

N→∞

blogN/k + tan-1 (1/b)

blogN/2 + tan-1 (1/b)
 = lim

N→∞

1-logk/logN+ tan-1 (1/b) /blogN 

1-log2/logN+tan-1 (1/b) /blogN
 = 1       (32) 

We have the following (33) from the above (32). 

  
lim
n→∞

lim
N→∞

h(k,N)
2n-1

lim
n→∞

lim
N→∞

h(2,N)
2n-1

  = lim
n→∞

lim
N→∞

h(k,N)
2n-1

h(2,N)
2n-1

 = lim
n→∞

lim
N→∞

{
h(k,N)

h(2,N)
}

2n-1

= lim
n→∞

{1}2n-1= lim
n→∞

1 = 1         (33) 

We have the following (34) by performing Mclaughlin expansion for sin{h(2,N)}. 

A is natural number. 

lim
n→∞

lim
N→A

{h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ ---- +

(-1)
n-2

h(2,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,N)

2n-1

(2n-1)!
} 

= lim
n→∞

{h(2,A)-
h(2,A)

3

3!
+
h(2,A)

5

5!
-
h(2,A)

7

7!
+ ---- +

(-1)
n-2

h(2,A)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,A)

2n-1

(2n-1)!
} 

=  sin{h(2,A)} = lim 
N→A

sin{h(2,N)}                                                   (34) 

  (34) is the identity regarding A. In other words (34) holds at any value of A, 

even though through A→∞. From (34) we can have the following (35). 

lim
n→∞

lim
N→∞

{h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ ---- +

(-1)
n-2

h(2,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,N)

2n-1

(2n-1)!
} 

=lim
A→∞

 [lim
n→∞

lim
N→A

{h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ ---- +

(-1)
n-2

h(2,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,N)

2n-1

(2n-1)!
}] 
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= lim
A→∞

lim 
N→A

sin{h(2,N)} = lim 
N→∞

sin{h(2,N)}                                                                                              (35) 

   Similarly we can have the following (36). 

lim
n→∞

lim
N→∞

{h(k,N)-
h(k,N)

3

3!
+
h(k,N)

5

5!
-
h(k,N)

7

7!
+ ---- +

(-1)
n-2

h(k,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(k,N)

2n-1

(2n-1)!
} 

 = lim 
N→∞

sin{h(k,N)}                                                              (36) 

From (22),(31),(33),(35) and (36) we can have g(k)/g(2)=1 as follows. 

g(k)

g(2)
 = 

lim
N→∞

Nsin{blogN/k+tan-1 (1/b)}

lim
N→∞

Nsin{blogN/2+tan-1 (1/b)}
 = 

lim
N→∞

sin{blogN/k+ tan-1 (1/b) }

lim
N→∞

sin{blogN/2+ tan-1 (1/b) }
 = 

lim
N→∞

sin{h(k,N)}

lim
N→∞

sin{h(2,N)}
    

 = 
lim
n→∞

lim
N→∞

{h(k,N)-
h(k,N)

3

3!
+
h(k,N)

5

5!
-
h(k,N)

7

7!
+ ---- +

(-1)
n-2

h(k,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(k,N)

2n-1

(2n-1)!
}

lim
n→∞

lim
N→∞

{h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ ---- +

(-1)
n-2

h(2,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,N)

2n-1

(2n-1)!
}

 

= 
lim
n→∞

lim
N→∞

{h(k,N)
2n-1

}{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- ---- +

(-1)
n-2

h(k,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

lim
n→∞

lim
N→∞

{h(2,N)
2n-1

}{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- ---- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

 

= 
lim
n→∞

lim
N→∞

{h(k,N)
2n-1

}lim
n→∞

lim
N→∞

{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- ---- +

(-1)
n-2

h(k,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

lim
n→∞

lim
N→∞

{h(2,N)
2n-1

}lim
n→∞

lim
N→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- ---- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

 

= 
lim
n→∞

lim
N→∞

{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- 

h(k,N)
8-2n

7!
+ ---- +

(-1)
n-2

h(k,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

lim
n→∞

lim
N→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- 

h(2,N)
8-2n

7!
+ ---- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

 

=  
lim
n→∞

(-1)
n-1

(2n-1)!

lim
n→∞

(-1)
n-1

(2n-1)!

 = lim
n→∞

(-1)
n-1

(2n-1)!

(-1)
n-1

(2n-1)!

 = lim
n→∞

1 = 1                                                                                                         (37) 

    The 4th equal sine (=) in (37) is true due to (35) and (36). 

The 7th equal sine (=) in (37) is true due to (33). 

The 8th equal sine (=) in (37) is true due to lim
N→∞

h(2,N) =∞ and lim
N→∞

h(k,N) =∞ . 
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2. Proof (2) 

We have the following (41) from (32). 

  
lim
N→∞

lim
n→∞

h(k,N)
2n-1

lim
N→∞

lim
n→∞

h(2,N)
2n-1

  = lim
N→∞

lim
n→∞

h(k,N)
2n-1

h(2,N)
2n-1

 = lim
N→∞

lim
n→∞

{
h(k,N)

h(2,N)
}

2n-1

= lim
N→∞

{
h(k,N)

h(2,N)
}

∞

= 1∞ = 1      (41) 

We have the following (42) and (43) for (46) in the next page. 

lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
- ----- +

(-1)n-2h(2,N)
-2

(2n-3)!
+

(-1)n-1

(2n-1)!
} 

= lim
N→∞

{h(2,N)
-∞

-
h(2,N)

-∞

3!
+
h(2,N)

-∞

5!
-
h(2,N)

-∞

7!
+ --------}                                  

= 0                                                                              (42) 

The 2nd equal sign (=) of (42) is true due to lim
N→∞

h(2,N) = ∞ . Here we exchange 

lim
N→∞

 with lim
n→∞

 each other in the above (42) as follows. 

lim
n→∞

lim
N→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- ----- +

(-1)
n-4

h(2,N)
-4

(2n-5)!
+
(-1)

n-2
h(2,N)

-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
} 

  = lim
n→∞

(-1)
n-1

(2n-1)!
 

= 0                                                                              (43) 

The 1st equal sign (=) of (43) is true due to lim
N→∞

h(2,N) = ∞ .  We can have the 

following (44) from (42) and (43). 

lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- 
h(2,N)

8-2n

7!
+ -------- + 

(-1)n-2h(2,N)
-2

(2n-3)!
 +

(-1)n-1

(2n-1)!
} 

= lim
n→∞

(-1)
n-1

(2n-1)!
                                                                     (44) 

By calculating in the same way as (42),(43) and (44)  we can have the following 

(45). 

lim
N→∞

lim
n→∞

{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- 
h(k,N)

8-2n

7!
+ -------- +

(-1)n-2h(k,N)
-2

(2n-3)!
 +

(-1)n-1

(2n-1)!
} 

= lim
n→∞

(-1)
n-1

(2n-1)!
                                                                                                                                                             (45) 
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From (22),(31),(41),(44) and (45) we can have g(k)/g(2)=1 as follows by performing 

Mclaughlin expansion for sin{h(2,N)} and sin{h(k,N)}. 

g(k)

g(2)
 = 

lim
N→∞

Nsin{blogN/k + tan-1 (1/b)}

lim
N→∞

Nsin{blogN/2+ tan-1 (1/b)}
 = 

lim
N→∞

sin{blogN/k+ tan-1 (1/b)}

lim
N→∞

sin{blogN/2+ tan-1 (1/b)}
 = 

lim
N→∞

sin{h(k,N)}

lim
N→∞

sin{h(2,N)}
    

= 

lim
N→∞

lim
n→∞

{h(k,N)-
h(k,N)

3

3!
+
h(k,N)

5

5!
-
h(k,N)

7

7!
+ ---- +

(-1)
n-2

h(k,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(k,N)

2n-1

(2n-1)!
}

lim
N→∞

lim
n→∞

{h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ ---- +

(-1)
n-2

h(2,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,N)

2n-1

(2n-1)!
}

 

= 

lim
N→∞

lim
n→∞

{h(k,N)
2n-1

}{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- ---- +

(-1)
n-2

h(k,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

lim
N→∞

lim
n→∞

{h(2,N)
2n-1

}{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- ---- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

 

= 

lim
N→∞

lim
n→∞

{h(k,N)
2n-1

}lim
N→∞

lim
n→∞

{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- ---- +

(-1)
n-2

h(k,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

lim
N→∞

lim
n→∞

{h(2,N)
2n-1

}lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- ---- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

 

= 

lim
N→∞

lim
n→∞

{h(k,N)
2-2n

-
h(k,N)

4-2n

3!
+
h(k,N)

6-2n

5!
- 
h(k,N)

7

7!
+ ---- +

(-1)
n-2

h(k,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- 
h(2,N)

7

7!
+ ---- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
}

 

= 
lim
n→∞

(-1)
n-1

(2n-1)!

lim
n→∞

(-1)
n-1

(2n-1)!

 = lim
n→∞

(-1)
n-1

(2n-1)!

(-1)
n-1

(2n-1)!

 = lim
n→∞

1 = 1                                                                                                         (46) 

       The 7th equal sine (=) in (46) is true due to (41). 

       The 8th equal sine (=) in (46) is true due to (44) and (45). 
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Appendix 4 : Solution for F(a)=0   (1) 

  

1 Preparation for verification of F(a)＞0  

1.1  Investigation of f(n) 

      f(n) = 
1

n1/2-a
 - 

1

n1/2+a
  ≧ 0            (n=2,3,4,5,-------)                  (8) 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                                   (15) 

a=0 is the solution for F(a)=0 due to f(n)≡0 at a=0. Hereafter we define 

the range of a as 0＜a＜1/2 to verify F(a)＞0. The alternating series F(a) 

converges due to lim
n→∞

f(n)=0.  

We have the following equation by differentiating f(n) regarding n. 

                
df(n)

dn
 = 

1/2+a

na+3/2
 - 

1/2-a

n3/2-a
 = 

1/2+a

na+3/2
{1 - (

1/2-a

1/2+a
) n2a} 

The value of f(n) increases with the increase of n and reaches the maximum 

value f(nmax) at n=nmax .  Afterward f(n) decreases to zero through n→∞. nmax is  

the nearest natural number to (
1/2+a

1/2-a
)
1/2a

.   (Graph 1) shows f(n) in various value of 

a. At a=1/2 f(n) does not have f(nmax) and increases to 1 through n→∞ due to 

nmax =∞.  

 

 
 

0

0.2

0.4

0.6

0.8

1

1.2

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92

Graph 1: f(n) in various a

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5
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1.2  The method for verifying F(a)＞0    

We define F(a,N) as the partial sum from the first term of F(a) to the N-th 

term of F(a).(N=1,2,3,4,5,-----)  F(a,N) repeats increase and decrease by f(n) 

with increase of N as shown in (Graph 2), because F(a) is the alternating series. 

In (Graph 2) upper points mean F(a,2N-1) and lower points mean F(a,2N). F(a,2N-

1) decreases and converges to F(a). F(a,2N) increases and also converges to F(a) 

due to lim
n→∞

f(n)=0 . 

 

F1(a,2N) which is the partial sum from the first term of the following F1(a) 

to the 2N-th term of F1(a) is equal to F(a,2N).  

     F1(a) = {f(2)-f(3)}+{f(4)-f(5)}+{f(6)-f(7)}+{f(8)-f(9)}+ ----- 

Therefore lim
N→∞

F1(a,2N) also converges to F(a). That means F(a)=F1(a). We use 

F1(a) instead of F(a) for verifying F(a)＞0. On the condition of nmax=k or nmax=k+1

（k:odd number）,after enclosing 2 terms of F(a) each from the first term with 

{ } as follows, the inside sum of { } from f(2) to f(k) is negative value and 

the inside sum of { } after f(k+1) is positive value. 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)-f(7)+ ------            

={f(2)-f(3)}+{f(4)-f(5)}+ --- +{f(k-1)-f(k)}+{f(k+1)-f(k+2)} + ---- 

(inside sum of { })＜0 ←❘→ (inside sum of { })＞0 

(total sum of { }) = -B ←❘→ (total sum of { }) = A  

We define as follows. 

      [the partial sum from f(2) to f(k)] = -B ＜0  

[the partial sum from f(k+1) to f(∞)] = A ＞0 

 F(a) = A-B  

So we can verify F(a)＞0 by verifying A＞B.  
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1.3 Investigation of f(n)-f(n+1)  

We have the following equation by differentiating [f(n)-f(n+1)] regarding n. 

       
df(n)

dn
 - 

df(n+1)

dn
 = 

1/2+a

n3/2+a
{1-(

n

n+1
)
3/2+a

}  - 
1/2-a

n3/2-a
{1- (

n

n+1
)
3/2-a

} 

      = C(n) - D(n) 

“Convergence velocity to zero”of n-a-3/2 is larger than that of na-3/2 . When n 

is small number the value of [f(n)-f(n+1)] increases with increase of n due to 

[C(n)＞D(n)]. As n increases the value reaches the maximum value {kmax} at C(n)≒

D(n). (n is natural number. The situation cannot be C(n)=D(n).)  After that the 

situation changes to C(n)＜D(n) and the value decreases to zero through n→∞. 

(Graph 3) shows the value of [f(n)-f(n+1)] in various value of a. (Graph 4) shows 

the value of [f(n)-f(n+1)] at a=0.1.  
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We can find the following from (Graph 3) and (Graph 4). 

1.3.1   The maximum value of |f(n)-f(n+1)| is f(3)-f(2) at same value of a. 

1.3.2   With increase of n the sign of [f(n)-f(n+1)] changes from “-” to 

“+”at n=nmax (n=nmax+1) when nmax is even(odd) number.  

1.3.3  After that the value reaches the maximum value {kmax} and the value 

decreases to zero through n→∞. 

 

2  Verification of A＞B (f(nmax) is even-numbered term.) 

Hereafter a is fixed within 0＜a＜1/2 to find the condition for A＞B. f(nmax) 

is even-numbered term as follows.  

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- ------           

= {f(2)-f(3)}+{f(4)-f(5)}+ --- +{f(nmax-3)-f(nmax-2)}+{f(nmax-1)-f(nmax)} 

+{f(nmax+1)-f(nmax+2)}+{f(nmax+3)-f(nmax+4)}+{f(nmax+5)-f(nmax+6)}+ ----- 

We can have A and B as follows. 

B = {f(3)-f(2)}+{f(5)-f(4)}+{f(7)-f(6)}+ --- +{f(nmax-2)-f(nmax-3)}+{f(nmax)-f(nmax-1)} 

A = {f(nmax+1)-f(nmax+2)}+{f(nmax+3)-f(nmax+4)}+{f(nmax+5)-f(nmax+6)}+ ----- 

 

2.1  Condition for B 

We define as follows. 

{ } is included within B.  

{ } is not included within B. 
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Graph 4:  [f(n)-f(n+1)] at a=0.1 nmax {kmax} 
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       We have the following equation. 

f(nmax)-f(2) = {f(nmax)-f(nmax-1)}+{f(nmax-1)-f(nmax-2)}+{f(nmax-2)-f(nmax-3)}+ ---  

+{f(7)-f(6)}+{f(6)-f(5)}+{f(5)-f(4)}+{f(4)-f(3)}+{f(3)-f(2)} 

And we have the following inequalities from (graph 3) and (graph 4). 

{f(3)-f(2)}＞{f(4)-f(3)}＞{f(5)-f(4)}＞{f(6)-f(5)}＞{f(7)-f(6)}＞----- 

＞{f(nmax-2)-f(nmax-3)}＞{f(nmax-1)-f(nmax-2)}＞{f(nmax)-f(nmax-1)}＞0 

From above equation and inequality we have the following (41). 

f(nmax)-f(2)+{f(3)-f(2)}  

= {f(3)-f(2)}+{f(5)-f(4)}+{f(7)-f(6)}+ --- +{f(nmax-2)-f(nmax-3)}+{f(nmax)-f(nmax-1)} 

  ‖     ∧     ∧             ∧              ∧     ←Value comparison 

+ {f(3)-f(2)}+{f(4)-f(3)}+{f(6)-f(5)}+ --- +{f(nmax-3)-f(nmax-4)}+{f(nmax-1)-f(nmax-2)} 

＞2B                                                                       (51) 

Due to [Total sum of upper row of (51) = B ＜ Total sum of lower row of (51)], 

we have the following inequality. 

  f(nmax)-f(2)+{f(3)-f(2)} ＞2B                               (52) 

 

2.2  Condition for A ({kmax} is included within A.) 

We abbreviate {f(nmax+k)-f(nmax+k+1)} to {k} for easy description. (k=0,1,2,3-

----) All {k} have positive value as shown in item 1.2. We define as follows. 

{ } is included within A.  

{ } is not included within A. 

{kmax} has the maximum value in all {k}. 

{kmax} is included within A. Then value comparison of {k} is as follows from 

item 1.3. 

{1}＜{2}＜{3}＜-----＜{kmax-3}＜{kmax-2}＜{kmax-1}＜{kmax}＞{kmax+1}＞{kmax+2}＞{kmax+3}＞---- 

       We have the following equation. 

f(nmax+1) = {f(nmax+1)-f(nmax+2)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+3)-f(nmax+4)} 

+{f(nmax+4)-f(nmax+5)}+ ----- 

 = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

From the above equation 
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f(nmax+1)-{kmax-1} 

    = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

←------------ Range 1 -----------→｜←------------- Range 2 -------------- 

(Range 1) and (Range 2) are determined as above. 

In (Range 1) value comparison is as follows. 

{1}＜{2}＜{3}＜{4}-----{kmax-4}＜{kmax-3}＜{kmax-2} 

And 

Total sum of { } = {1} + {3} + {5} + {7}+ --------- +{kmax-4}+{kmax-2} 

∨    ∨   ∨                ∨      ∨ ←value comparison 

Total sum of { } =       {2} + {4} + {6} + -------- +{kmax-5}+{kmax-3} 

Therefore    Total sum of { } ＞ Total sum of { }  holds. 

In (Range 2) value comparison is as follows. 

{kmax}＞{kmax+1}＞{kmax+2}＞{kmax+3}＞{kmax+4}＞{kmax+5}----- 

And 

Total sum of { } =  {kmax} + {kmax+2} + {kmax+4} + {kmax+6}+ ---------  

∨      ∨        ∨        ∨     ←value comparison 

Total sum of { } = {kmax+1} + {kmax+3} + {kmax+5} + {kmax+7}+ -------- 

Therefore  Total sum of { } ＞ Total sum of { }   holds. 

In (Range 1)+(Range 2) we have  [A=Total sum of { } ＞Total sum of { }]. So 

we have the following inequality. 

f(nmax+1) - {kmax-1}＜2A                               (53) 

 

2.3  Condition for A ({kmax} is not included within A.) 

       We have the following equations. {kmax} is not included within A. 

f(nmax+1) = {f(nmax+1)-f(nmax+2)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+3)-f(nmax+4)} 

+{f(nmax+4)-f(nmax+5)} + ----- 

   = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

 

f(nmax+1)- {kmax} 

 = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax+1}+{kmax+2}+{kmax+3}+{kmax+4}+ ----- 

←---------------- Range 1 ---------------→｜←------------ Range 2 ------------- 
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(Range 1) and (Range 2) are determined as above. 

In (Range 1) value comparison is as follows. 

{1}＜{2}＜{3}＜{4}＜-----＜{kmax-3}＜{kmax-2}＜{kmax-1} 

And 

Total sum of { } = {1} + {3} + {5} + {7}+ --------- +{kmax-3}+{kmax-1} 

∨    ∨   ∨                ∨      ∨ ←value comparison 

Total sum of { } =       {2} + {4} + {6} + -------- +{kmax-4}+{kmax-2} 

Therefore  Total sum of { } ＞ Total sum of { }   holds. 

In (Range 2) value comparison is as follows. 

{kmax+1}＞{kmax+2}＞{kmax+3}＞{kmax+4}＞{kmax+5}＞{kmax+6}----- 

And 

Total sum of { } =  {kmax+1} + {kmax+3} + {kmax+5} + {kmax+7}+ ---------  

∨       ∨        ∨        ∨      ←value comparison 

Total sum of { } =  {kmax+2} + {kmax+4} + {kmax+6} + {kmax+8}+ -------- 

Therefore  Total sum of { } ＞ Total sum of { }   holds. 

In (Range 1)+(Range 2) we have  [A=total sum of { } ＞Total sum of { }]. So 

we have the following inequality. 

f(nmax+1)- {kmax}＜2A                                    (54) 

 

2.4  Condition for A＞B 

From (53) and (54) we have the following inequality. 

f(nmax+1)-[{kmax} or {kmax-1}]＜2A                

As shown in item 1.3.1 {f(3)-f(2)} has the maximum value in all |{ }|. The  

following inequalities holds. 

{f(3)-f(2)}＞[{kmax} or {kmax-1}]  

{f(3)-f(2)}＞f(nmax)-f(nmax+1)  

We have the following inequality from the above conditions. 

2A＞f(nmax+1)-[{kmax} or {kmax-1}]＞f(nmax+1)-{f(3)-f(2)} 

         ＞f(nmax)-{f(3)-f(2)}-{f(3)-f(2)} = f(nmax)-2{f(3)-f(2)}                (55) 
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We have the following condition for A＞B from (52) and (55). 

2A＞f(nmax)-2{f(3)-f(2)}＞f(nmax)-f(2)+{f(3)-f(2)}＞2B                   (56) 

From (56) we can have the final condition for A＞B as follows. 

(4/3)f(2)＞f(3)                                 (57) 

(Graph 6) shows (4/3)f(2)-f(3) = (4/3)(2a-1/2-2-a-1/2)-(3a-1/2-3-a-1/2). 

 

Table 1：The values of (4/3)f(2)-f(3) 
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Graph 6：(4/3)f(2)-f(3)

a= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(4/3)f(2)-f(3) 0 0.001903 0.003694 0.005257 0.00648 0.007246 0.007437 0.006933 0.005611 0.003343 0
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   (Graph 7) shows [differentiated (4/3)f(2)-f(3) regarding a] i.e. 

(4/3)f`(2)-f`(3) = (4/3){log2(2a-1/2+2-a-1/2)}-{log3(3a-1/2+3-a-1/2)}. 

 

Table 2：The values of (4/3)f`(2)-f`(3) 

 

From (Graph 6) and (Graph 7) we can find [(4/3)f(2)-f(3)＞0  in 0＜a＜1/2] 

that means A＞B i.e. F(a)＞0 in 0＜a＜1/2. 

 

3  Verification of A＞B (f(nmax) is odd-numbered term.) 

f(nmax) is odd-numbered term as follows. 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- ------           

= {f(2)-f(3)}+{f(4)-f(5)}+ --- +{f(nmax-4)-f(nmax-3)}+{f(nmax-2)-f(nmax-1)} 

+{f(nmax)-f(nmax+1)}+{f(nmax+2)-f(nmax+3)} + ----- 

And 

B = {f(3)-f(2)}+{f(5)-f(4)}+ --- +{f(nmax-3)-f(nmax-4)}+{f(nmax-1)-f(nmax-2)} 

A = {f(nmax)-f(nmax+1)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+4)-f(nmax+5)}+ ----- 

f(nmax) = {f(nmax)-f(nmax+1)}+{f(nmax+1)-f(nmax+2)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+3)-f(nmax+4)} + 

----- 

  = {0}+{1}+{2}+{3}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

After the same process as in item 2 we can have the following condition. 
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Graph 7：(4/3)f`(2)-f`(3)

a= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(4/3)f'(2)-f'(3) 0.038443 0.037313 0.033921 0.02825 0.020277 0.009967 -0.00272 -0.01785 -0.03547 -0.05567 -0.07852
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 f(nmax-1)-f(2)+{f(3)-f(2)} ＞2B                              (58) 

As shown in item 1.3.1 {f(3)-f(2)} has the maximum value in all |{ }|. The 

following inequalities hold. 

{f(3)-f(2)}＞[{kmax} or {kmax-1}]  

f(nmax)＞f(nmax-1)  

We have the following inequality from the same process as in item 2 and the 

above conditions. 

2A＞f(nmax) - [{kmax} or {kmax-1}]＞f(nmax) - {f(3)-f(2)} ＞f(nmax-1) - {f(3)-f(2)}      (59) 

We have the following condition for A＞B from (58) and (59). 

2A＞f(nmax-1)-{f(3)-f(2)}＞f(nmax-1)-f(2)+{f(3)-f(2)}＞2B             (60) 

From (60) we can have the final condition for A＞B as follows. 

(3/2)f(2)＞f(3)                                 (61) 

In the inequality of [(3/2)f(2)＞(4/3)f(2)＞f(3)＞0], (3/2)f(2)＞(4/3)f(2) is 

true self-evidently and in item 2.4 we already confirmed that the following (57) 

is true in 0＜a＜1/2.  

(4/3)f(2)＞f(3)                                       (57) 

Therefore (61) is true in 0＜a＜1/2. 

 

4  Conclusion 

F(a)=0 has the only one solution of a=0 due to 

[0≦a＜1/2], [F(0)=0]  and  [F(a)＞0 in 0＜a＜1/2]. 
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Appendix 5 : Solution for F(a)=0   (2) 

 

1  Investigation of F(a)N 

               f(n) = 
1

n1/2-a
 - 

1

n1/2+a
  ≧ 0           (n=2,3,4,5,-------)            (8) 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                         (15) 

F(a,N): the partial sum from the first term of F(a) to the N-th term of F(a) 

a=0 is the solution for F(a)=0 because of f(n)≡0 at a=0.  F(a) is the 

alternating series. So F(a,N) repeats increase and decrease by f(n) with increase 

of N. lim
N→∞

F(a,N) converges to F(a) due to lim
n→∞

f(n)=0 .  

(Graph 1) shows F(0.1,N) from N=1 to N=5,000. The upper edge of blue area 

shows F(0.1,2N-1) and lower edge of blue area shows F(0.1,2N). ((Graph 1) is line 

graph. Graph has so many data points that the area surrounded by data points 

becomes blue.) 

 

Upper-right point of blue area, F(0.1,4999) decreases to F(0.1) through N→

∞ and lower-right point of blue area, F(0.1,5000) increases to F(0.1) through 

N→∞. F(0.1) can be approximated with {F(0.1,4999)+ F(0.1,5000)}/2. 

But {F(a,N-1)+F(a,N)}/2 is also the partial sum of alternating series. It 

repeats increase(decrease) of {f(n)-f(n-1)}/2 and decrease(increase) of {f(n+1)-

f(n)}/2 when n is even(odd) number. So we approximate F(a) with the average of  

{F(a,N-1)+F(a,N)}/2 i.e. F(a)N for better accuracy according to the following 
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Graph 1：F(0.1,N) from N=1 to N=5,000
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(71). 

               
F(a,N)+F(a,N-1)

2
 + 

F(a,N+1)+F(a,N)

2

2
  = F(a)N                        (71) 

 Left side of (71) converges to F(a) through N→∞. If N is large number, we 

can have the accurate F(a)N  from F(a,N). (Graph 2) shows F(a)N  calculated at 3 

cases of N=500, 1000, 5000.  

 

Table 1：The values of F(a)N 

 

3 line graphs overlapped. Because F(a)N calculated at 3 cases of N=500, 1000, 

5000 are equal to 4 digits after the decimal point.  

The range of a is 0≦a＜1/2. a=1/2 is not included in the range. But we added 

F(1/2)N to calculation according to the following reason.  

[f(n) at a=1/2] is (1-1/n) and lim
n→∞

(1-1/n) does not converge to zero. Therefore 

F(1/2) fluctuates due to lim
n→∞

f(n)=1 .   But {F(a,N)+F(a,N-1)}/2 is partial sum of 

alternating series with the term of {f(n+1)-f(n)}/2 and it can converge to the 

fixed value on the condition of lim
n→∞

{f(n+1)-f(n)}=0 . lim
n→∞

{f(n+1)-f(n)} converges 

to zero due to f(n+1)-f(n)=1/(n+n2). 
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Graph 2： F(a)N  at 3 cases

N=500 N=1,000 N=5,000

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N=500 0 0.01932876 0.03865677 0.05798326 0.0773074 0.09662832 0.11594507 0.13525658 0.15456168 0.17385904 0.19314718
N=1,000 0 0.01932681 0.03865282 0.05797725 0.0772993 0.09661821 0.11593325 0.13524382 0.15454955 0.17385049 0.19314743
N=5,000 0 0.01932876 0.03865676 0.05798324 0.07730738 0.09662829 0.11594504 0.13525655 0.15456165 0.17385902 0.19314718
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2  Investigation of F`(a)Ｎ 

We define as follows. 

f`(n) = df(n)/da = na-1/2logn + n-a-1/2logn = na-1/2logn (1 + n-2a) ＞ 0 

F`(a) = f`(2)-f`(3)+f`(4)-f`(5) + ----- 

F`(a,N): the partial sum from the first term of F`(a) to the N-th term of F`(a) 

F`(a) converges due to lim
n→∞

f`(n)=0 . We can calculate approximation of F`(a) 

i.e. F`(a)N according to the following (72). lim
N→∞

F`(a)N converges to F`(a). 

               
F`(a,N)+F`(a,N-1)

2
 + 

F`(a,N+1)+F`(a,N)

2

2
  = F`(a)N                   (72) 

    (Graph 3) shows F`(a)N  calculated by (72) at 5 cases of N=500, 1000, 2000, 

5000, 10000. 5 line graphs overlapped. Because F`(a)N  of 5 cases are equal to 6 

digits after the decimal point.  

  

Table 2：The values of F`(a)N 
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Graph 3 : F`(a)N  at 5 cases

N=500 N=1,000 N=2,000 N=5,000 N=10,000

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N=500 0.38657754 0.38657004 0.38654734 0.38650882 0.38645348 0.3863799 0.38628625 0.38617032 0.3860295 0.38586078 0.38566075
N=1,000 0.38657764 0.38657014 0.38654743 0.38650891 0.38645355 0.38637995 0.38628627 0.3861703 0.3860294 0.38586057 0.38566038
N=2,000 0.38657766 0.38657016 0.38654745 0.38650893 0.38645357 0.38637996 0.38628628 0.3861703 0.38602938 0.38586052 0.38566029
N=5,000 0.38657766 0.38657016 0.38654745 0.38650893 0.38645358 0.38637997 0.38628628 0.3861703 0.38602938 0.38586051 0.38566026
N=10,000 0.38657766 0.38657016 0.38654745 0.38650893 0.38645358 0.38637997 0.38628629 0.3861703 0.38602938 0.3858605 0.38566026
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The range of a is 0≦a＜1/2. a=1/2 is not included in the range. But we 

added F`(1/2)N to calculation according to the following reason.  

[f`(n) at a=1/2 ] is (1+1/n)logn and lim
n→∞

(1+1/n)logn does not converge to 

zero. F(1/2) diverges to ±∞ due to lim
n→∞

f`(n)=∞ . But {F`(a,N)+F`(a,N-1)}/2 

is partial sum of alternating series with the term of {f`(n+1)-f`(n)}/2 and 

it can converge to the fixed value on the condition of  lim
n→∞

{f`(n+1)- f`(n)}=0 .   

lim
n→∞

{f`(n+1)- f`(n)}=0 is true as follows. 

      f`(n) is the increasing function regarding n due to [
df`(n)

dn
=
1+n-logn

n2
＞0 ] . 

It means  [0 ＜ f`(n+1)-f`(n)]. 

0 ＜ f`(n+1)-f`(n) = {1+1/(n+1)}log(n+1) - (1+1/n)logn  

＜ (1+1/n)log(n+1) - (1+1/n)logn = (1+1/n)log(1+1/n) 

      From the above inequality we can have lim
n→∞

{f`(n+1)-f`(n)}=0 due to 

 lim
n→∞

{(1+1/n)log(1+1/n)}=0 . 

 

3  Approximation of F`(a) 

F`(a)N calculated by (72) converges to F`(a) through N→∞. To confirm how 

large N we need to approximate F`(a) accurately, we calculated  F`(a)N  with N 

from N=500 to  N=100,000. (Graph 4) shows F`(a)N/F`(a)500 from N=500 to N=100,000 

in various a.  
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0.9999985

0.999999

0.9999995
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N=500 1000 2000 5000 10000 50000 100000

グラフ4：F`(a)N/F`(a)500 in various a

a=0 a=0.1 a=0.2 a=0.3 a=0.4 a=0.5
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Table 3：The values of F`(a)N/F`(a)500 

 

We can find the following from (Graph 4) and (Table 3). 

3.1  F`(a)50,000/F`(a)500 and F`(a)100,000/F`(a)500 have the same values. When N is 

larger than N=50,000 the values are same as at N=50,000. So we can consider 

F`(a)50,000 = F`(a). 

3.2  The differences between F`(a)500 and F`(a)50,000 have the maximum value at 

a=1/2. The maximum difference is [1-0.999998731 = 0.00013%] as shown in 

(Table 3). Therefore F`(a)500 is almost equal to  F`(a)50,000 i.e. F`(a). 

N=500 is enough to obtain the accurate F`(a). 

From item 3.2 we can consider that (Graph 3) shows F`(a) accurately. (Graph 

3) illustrates [0.3866 ＞ F`(a) ＞ 0.3856 in 0≦a＜1/2]. Therefore F(a) is the 

monotonically increasing function in 0≦a＜1/2. 

 

4  Conclusion 

F(a)=0 has the only one solution of a=0 due to  

[0≦a＜1/2], [F(0)=0]  and   

[ F(a) is the monotonically increasing function in 0≦a＜1/2.]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 0 0.1 0.2 0.3 0.4 0.5

N=500 1 1 1 1 1 1
1,000 1.000000242 1.000000232 1.000000189 1.000000061 0.999999745 0.999999051
2,000 1.000000294 1.000000284 1.000000234 1.000000082 0.999999692 0.999998811
5,000 1.000000306 1.000000296 1.000000246 1.000000089 0.999999681 0.999998743

10,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998734
50,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731

100,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731
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Appendix 6: Sum of infinite series of sine waves 

f(2)sin{blogN/2+ tan-1(1/b)}-f(3)sin{blogN/3+ tan-1(1/b)}+f(4)sin{blogN/4+tan-1(1/b)}- --- 

= f(2)sin{blogN-blog2+ tan-1(1/b)}-f(3)sin{blogN-blog3+tan-1(1/b)} 

  +f(4)sin{blogN-blog4+ tan-1(1/b)}-f(5)sin{blogN-blog5+ tan-1(1/b)}+ --- 

= A(a,b)sin{blogN+B(a,b)+tan-1(1/b)}                                           (18) 

        Sum of infinite series of sine waves in (18) converges to one sine wave like 

the rightmost side of (18) due to the following reasons. 

1     The general term of the infinite series in (18) is  

(-1)nf(n)sin{blogN-blogn+tan-1(1/b)} (n=2,3,4,5,-----). If n is large natural 

number, the value of blogn increases very slowly with the increase of n and the 

sign of sin{blogN-blogn+tan-1(1/b)} does not change often. Therefore +term and 

-term appear alternately and 2 +terms or 2 -terms appear in succession only when 

the sign of sin{blogN-blogn+tan-1(1/b)} changes. +term and -term in the above 

explanation are defined as follows.  (  blogN-blogn+tan-1(1/b)=α ) 

              +term :  +f(n)sinα when the sign of sinα is “+”. 

-f(n)sinα when the sign of sinα is “-”. 

              -term :  +f(n)sinα when the sign of sinα is “-”. 

-f(n)sinα when the sign of sinα is “+”. 

On the condition of [sin{blogN-blogX0+tan-1(1/b)}=0] and [n0+1＞X0＞n0] 

[log(n0+1)-logn0＞logX0-logn0＞0] and [log(n0+1)-logn0＞log(n0+1)-logX0＞0] are  

true.  Due to lim{log(n0+1)-logn0}=0 the following equations hold. 

lim log(n0+1) = logX0 = lim logn0 

lim sin{blogN-blog(n0+1)+tan-1(1/b)} = sin{blogN-blogX0+tan-1(1/b)}  

= lim sin{blogN-blogn0+tan-1(1/b)} = 0    

Therefore 2 +terms or 2 -terms ( ±f(n0)sin{blogN-blogn0+tan-1(1/b)} and 

 ∓f(n0+1)sin{blogN-blog(n0+1)+tan-1(1/b)} ) which appear in succession only when 

the sign of sin{blogN-blogn+tan-1(1/b)} changes have almost the values of zero, 

if n0 is large number. If we regard the sum of these 2 +terms or 2 -terms that 

exist in succession as one +terms or one -terms, we can consider this infinite 

series as alternating series and this alternating series converges due to 

lim
n→∞

f(n)=0. 

n0→∞ 

n0→∞ n0→∞ 

n0→∞ 

n0→∞ 
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 f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≧ 0             (n=2,3,4,5,6, ------)                                                  (8) 

  2    If we calculate sum or difference of 2 sine waves which have the same period, 

the result becomes another sine wave which has the same period as shown in 

(Figure 1) and (Figure 2).  

 

 

Figure1:  Sum of 2 sine waves

blogN+tan-1(1/b)

f(2+3)sinθ(2+3)

f(2)sinθ(2)

f(3)sinθ(3)

f(2)eiθ(2)

f(3)eiθ(3)

f(2+3)eiθ(2+3)

θ(2+3)
θ(2)

θ(2)

θ(3)

θ(2)=-blog2

θ(3)=-blog3

Figure2:  Difference of 2 sine waves

blogN+tan-1(1/b)

f(2-3)sinθ(2-3)

f(2)sinθ(2)
f(3)sinθ(3)

f(2)eiθ(2)

f(3)eiθ(3)

f(2-3)eiθ(2-3)
θ(2-3)

θ(2)

θ(2)

θ(3)

-f(3)eiθ(3)

θ(2)=-blog2

θ(3)=-blog3
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f(2)sin{blogN+θ(2)+tan-1(1/b)}±f(3)sin{blogN+θ(3)+tan-1(1/b)} 

= f(2±3)sin{blogN+θ(2±3)+tan-1(1/b)}                                     (71) 

If we calculate sum or difference of 2 sine waves which have the same period and 

obtain the new sine wave like the right side of the above (71), the amplitude f(2±

3) and the phase θ(2±3) of the new sine wave become as follows. Sum (difference) 

of 2 sine waves takes +(-) sign in (71) and the following equations. 

f(2±3)=√f(2)2+f(3)2±2f(2)f(3) cos{θ(2)-θ(3)} 

                                              θ(2±3)= tan-1
f(2) sinθ(2)±f(3) sinθ(3)

f(2) cosθ(2)±f(3) cosθ(3)
 

Therefore sum of infinite series of sine waves which have the same period becomes 

one sine wave which has the same period as shown in the above (18). In (18) A(a,b) 

and B(a,b) are constant which depends on a and b. If A(a,b)=0 is true, we have the 

following (18-1) which is identity regarding N. 

f(2)sin{blogN-blog2+ tan-1(1/b)}-f(3)sin{blogN-blog3+ tan-1(1/b)} 

  +f(4)sin{blogN-blog4+ tan-1(1/b)}-f(5)sin{blogN-blog5+ tan-1(1/b)}+ --- 

= A(a,b)sin{blogN+B(a,b)+tan-1(1/b)}≡ 0                                     (18-1) 

     For the value of the leftmost side of (18-1) to be zero at any value of N the 

value of f(n) must be zero at any value of n like the following (8-1). In other word 

a=0 must hold. 

f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≡ 0             (n=2,3,4,5,6, ------)                                                (8-1) 

     Now we can say if A(a,b)=0 is true, a=0 holds true and if A(a,b)≠0 is true,  

0＜a＜1/2 holds true. 
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