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Abstract
This paper is a trial to prove Riemann hypothesis according to the following
process.
1 We create the infinite number of infinite series from one equation that

gives & (s) analytic continuation to Re(s) >0 and 2 formulas (1/2+a+bi, 1/2-
a-bi) which show zero points of ¢ (s).

(Proof 1)

2 We find that the value of F(a) (which is infinite series of a) must be

zero from the above infinite number of infinite series

3 We find that F(a)=0 has only one solution of a=0. Therefore zero point of
& (s) must be 1/2+bi.

(Proof 2)

4 We find a=0 from the above infinite number of infinite series directly.

1 Introduction
The following (1) gives Riemann zeta function ¢ (s) analytic continuation to

”

Re(s) >0. “+ —— means infinite series in all equations in this paper
1-275435-45+575-65+ ——— = (1-2"°) & (s) M

The following (2) shows non-trivial zero point of & (s). So is the zero points of

the left side of (1) and also zero points of & (s).
So = 1/2+a+bi 2)

The range of a is 0=a<1/2 by the critical strip of & (s). The range of b is
b>0 due to the following reasons. And i is V-1
1.1 There is no zero point on the real axis of the critical strip
1.2 [Conjugate complex number of So] = 1/2+a-bi is also zero point of & (s).

Therefore b>0 is necessary and sufficient range for investigation.
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The following (3) also shows zero points of & (s) by the functional equation of

¢ (s).
Si = 1-Sy = 1/2-a-bi )

We have the following (4) and (5) by substituting So for s in the left side of

(1) and putting both the real part and the imaginary part of the left side of (1)
at zero respectively

cos(blog?2) cos(blog3) cos(blogd) cos(blogh) cos(blogb)
- /22 * - * T )
2 +a 31/2"’3 4]/2"’3 5]/2"‘3 61/2+a

sin(blog2)_sin(blog3)+sin(b|og4)_sin(b|og5) sin(blog6)_

0= N 31727 4177 o177 * AT )

We also have the following (6) and (7) by substituting S; for s in the left side
of (1) and putting both the real part and the imaginary part of the left side of (1)
at zero respectively

cos(blog?) cos(blog3d) cos(blogd) cos(blogh) cos(blogb)
- /2-a = 2 = e (6)
2 —a 3]/23 4]/23 51/23 61/26

sin(bIogZ)_sin(bIog3)+sin(blog4)_sin(blog5) sin(blogﬁ)_

0= 512 417272 4177 51/2-a * AR )

2 Infinite number of infinite series

We define f(n) as follows.

1 1

f(n) = T nijTa =0 (n=2,3,4,5,6, ———— ) (8)

We have the following (9) from (4) and (6) with the method shown in item 1 of
[Appendix 1: Equation construction]

0 = f(2) cos(blog2)-T (3) cos (blog3)+f (4) cos (blogd) -f (5) cos (blogh) + ———— 9

We also have the following (10) from (5) and (7) with the method shown in item 2
of [Appendix 1: Equation construction].

0=Ff@2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blogd)-f(5)sin(blogh)+ —— (10)

We can have the following (11) (which is the function of real number x) from the
above (9) and (10) with the method shown in item 3 of [Appendix 1: Equation

construction]. And the value of (11) is always zero at any value of x.
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0 = cosx{right side of (9)}+sinx{right side of (10)}
= cosx {f (2) cos (blog2) - (3) cos (b10g3) +f (4) cos (bl og4) - (5) cos (b1 0gh) + ——- }
+ sinx{f(2)sin(blog2)-f(3)sin(blogld)+f (4)sin(blogd)-f (5)sin(blogh)+ —— }
= f(2)cos (blog2-x) T (3) cos (blog3—x) +f (4) cos (blogd—x)—f (5) cos (blogh-x)+ ——  (11)

We have (12-1) by substituting blogl for x in (11).

0 = f(2) cos(blog2-blogl)—-f (3)cos (blog3-blogl)+f (4) cos (blogd-blogl)
—f (5) cos (blogh-blogl)+f (6) cos (blogb-blogl)+ —— (12-1)

We have (12-2) by substituting blog2 for x in (11).

0 = f(2)cos (blog2-blog2)—f (3) cos (blog3-blog2)+f (4) cos (blogd-blog2)
—f (5) cos (blogh-blog2) +f (6) cos (blogb-blog2) + ——— (12-2)

We have (12-3) by substituting blog3 for x in (11).

0 = f(2)cos (blog2-blog3)—f (3) cos (blog3-blog3)+f (4) cos (blogd-blog3)
—f (5) cos (blogh-blog3) +f (6) cos (blogb-blog3)+ ——— (12-3)

In the same way as above we can have (12-n) by substituting blogn for x in
(11). (h=4,516,18 —— )

0 = f(2)cos (blog2-blogn)—f (3) cos (blog3-blogn)+ f (4)cos (blogd-blogn)
-f (5) cos (blogh-blogn) + ——— (12-n)

We define g(k) as follows. (k =23,4,56 —— )

g (k) = cos(blogk-blogl)+cos (blogk-blog2)+cos (blogk-blog3)+cos (blogk-blogd)+ ——-

cos (blog1-blogk)+cos (blog2-blogk)+cos (blog3-blogk) +cos (blogd-blogk) + ———
= cos (blog1/k) +cos (blog2/k) +cos (blog3/k) +cos (b logd/k) +cos (blogh/k) + ———— (13)

We can have the following (14) from infinite equations of (12-1), (12-2), (12-3),
—————————— , (12-n), —————————— with the method shown in item 4 of [Appendix 1:

Equation construction]

0 = f(2) {cos (blog2-blogl)+cos (blog2-blog2) +cos (blog2-blog3) +cos (blog2-blogd) + ——-}
- (3) {cos (blog3-blogl)+cos (blog3-blog2) +cos (blog3-blog3) +cos (blog3-blogd) + ——-}
+f (4) {cos (blogd-blog1)+cos (blogd-blog2) +cos (blogd-blog3) +cos (blogd-blogd) + —}
- (5) {cos (blogh-blogl)+cos (blogh-blog2) +cos (blogh-blog3) +cos (blogh-blogd) + ——-}
+f (6) {cos (blogb-blogl)+cos (blogb-blog2) +cos (blogb-blog3)+cos (blogb-blogd)+ ——-}



= f(2)g2)-f(3)gB)+f(4)g(4) - (5)g®)+f (6)g(6)-F (N g+ —— (14)

3 Proof 1

Here we define F(a) as follows
F(a) = f(2)-f (3)+f(4)-f(5)+f (6)- ——— (15)

We have F(a)=0 as shown in the following (16) because of the following reasons
3.1 g(2) fluctuates between -oo and +oo and g(2) does not have the value of
zero as shown in [Appendix 2: Proof of g(2) #0]. Therefore we can divide (14)
by g(2) because of g(2) #0 .
3.2 gk /g@2)=1 (k=3,4,5,6,7 ———) is true as shown in [Appendix 3: Proof of
gk)/g2)=1].

f(3)g3) +1‘(4)g(4) _f(5)g®) +1‘(6)g(6) (e
g(2) g(2) g(2) g(2) g(2)

= f(2)-fQ)+f (4)-f(B)+f(6)- ———— = F(a) (16)

0="F(2-

F(a)=0 has the only one solution of a=0 as shown in [Appendix 4: Solution for
F(@=0 (1)1 or [Appendix 5: Solution for F(a)=0 (2)]. a has the range of 0=a<
1/2 by the critical strip of & (s). But a cannot have any value but zero because a
is the solution for F(a)=0.

So = 1/2+a+bi (2)
Si = 1-8 = 1/2-a-bi 3)

Due to a=0 non-trivial zero point of Riemann zeta function & (s) shown by the
above 2 equations must be 1/2=%bi and other zero point does not exist. Therefore
Riemann hypothesis which says “All non-trivial zero points of Riemann zeta function
& (s) exist on the line of Re(s)=1/2.” is true.

From (16) F(a)=0 must have solution and F(a) is a monotonically increasing
function as shown in [Appendix 5: Solution for F(a)=0 (2)]. So F(a)=0 has the only
one solution. If the solution were not a=0, there would not be any zero points on
the line of Re(s)=1/2. This assumption is contrary to the following (Fact 1) or
(Fact 2). Therefore the only one solution for F(a)=0 must be a=0 and Riemann
hypothesis must be true

Fact 1: In 1914 G. H.Hardy proved that there are infinite zero points on the
line of Re(s)=1/2

Fact 2: All zero points found until now exist on the line of Re(s)=1/2.



4 Proof 2

limNsin {blogN/k+tan™'(1/b)}

gk) = =2 (k=2,3,4,5 ——) 31)
1+b?

From (14) and the above (31) in [Appendix 3: Proof of g(k)/g(2)=1] we can have
the following (17).

0=~F2)g@-TR)gB)+f(4g()-T®)g®)+f(6)g®)-T(Ng(D+ ———

limNsin {blogN/2+tan™'(1/b)} limNsin {blogN/3+tan'(1/b)}
S ) famiad —f(3) =
1+b? 1+b?
limNsin {blogN/4+tan'(1/b)} limNsin {blogN/5+tan'(1/b)}
+f (4) 22 - (5) =2 mmmmm
1+b? 1+b?

lim N[f(2)sin{blogN/2+tan' (1/b) }-(3)sin{blogN/3+tan™" (1/b) Hf(4)sinfblogN/4+tan™" (1/b)}- ——- ]

-— N—oo
V1+b?

(7
As shown in [Appendix 6: Sum of infinite series of sine waves] sum of infinite

series of sine waves in (17) converges as fol lows.

f(2)sin [blogN/2+tan'(1/b)}-f (3) sin{blogN/3+tan™' (1/b)}+f (4) sin{blogN/3+tan ' (1/b)} - —-
= f(2)sin{bIogN—bIog2+tan4(1/b)}—f(3)sin{bIogN—bIog3+tan4(1/b)}
+f(4)sin{bIogN—bIog4+tan4(1/b)}—f(5)sin{bIogN—bIog5+tan4(1/b)}+ -—

= A(a,b)sin{blogN+B (a, b) +tan™ (1/b)} (18)

In the above (18) A(a,b) and B(a,b) are constant which depends on a and b. If
A(a,b)=0 is true, a=0 holds true and if A(a,b)#0 is true, 0<a<1/2 holds true as
shown in [Appendix 6: Sum of infinite series of sine waves]. From (17) and (18) we
have the following (19)

0 :NIHnN[A(a,b)sin{bIogN+B(a,b)+tan*(1/b)}] (19)

If A(a,b) #0 is true, the right side of (19) diverges to *+oo. Therefore A(a, b)=0
must be true for (19) to hold. Due to A(a,b)=0 a cannot have any value but zero. And
non-trivial zero point of Riemann zeta function ¢ (s) must be 1/2+bi and other zero

point does not exist. Riemann hypothesis is true



Appendix 1: Equation construction

We can construct (9), (10), (11) and (14) by applying the following Theorem 1[1].

Theorem 1: On condition that the following (Series 1) and (Series 2) converge,

the following (Series 3) and (Series 4) are true.

(Series 1) = aj+artazrastast ———— = A
(Series 2) = bi+by+thgtbstbst ———— - B

(Series 3) = (ay+hy) + (ax+thy) + (az+bs) + (as+by) + (as+hs) + ——— = A+B
(Series 4) = (a;~by)+ (ay-by) + (as=bs) + (as—bs) + (as—bs) + ———— -~ A-B

1 Construction of (9)
We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series

1) and (Series 2) respectively

cos(blogZ)_cos(blog3)+cos(bIog4)_cos(bIog5)+cos(blog6)_

(Ser IeS 1): 21/2—3 31/2_3 41/2_3 51/2_3 61/2_6 _____ - 1 (6)
) cos(blog?) cos(blog3) cos(blogd) cos(blogd) cos(blogh)
(Ser 'es 2): 21/2+a - 31/2+a * 41/2"’3 - 51/2+a + 61/2+a - :1 (4)
(Series 4)= f(2)cos (blog2)-f (3)cos (blog3)+f (4) cos (blogh) -f (5) cos (blogh) + ———-
=1-1=0 (g)
1 1
Here f(n) = - =0 (n=2,3,4,5,6, ——- ) 8)

n]/z_a n]/2+a

2 Construction of (10)
We can have the following (10) as (Series 4) by regarding (7) and (5) as

(Series 1) and (Series 2) respectively.

sin(bI0g2)_sin(blog3)+sin(bIog4)_sin(blog5)+sin(blog6)_

(Series1) = )1/22 51/27a 4172 51/2-a 512 =0
in(blog2 in(blog3 in(blog4 in(blogh in(blogb
(Series 2) = Slnzg/z?ag )‘Sm3(1/zfag )+S|n4(1/2:g )'S|n5(1/2+oag )+S|n6(1/zfag ) =0 ©
(Series 4) = f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blogd)-f(5)sin(blogh)+ ———
=0-0=0 (10)




3 Construction of (11)
We can have the following (11) as (Series 3) by regarding the following

equations as (Series 1) and (Series 2).

(Series 1) = cosx{right side of (9)}
= cosx{f (2) cos (blog2)-f (3) cos (blog3) +f (4) cos (blogd) —f (5) cos (b1 ogh) + ——- }

1
o

(Series 2) = sinx{right side of (10)}
= sinx{f(2)sin(blog2)-f(3)sin(blog3)+f (4)sin(blogd)-f (5)sin(blogh)+ —— } =0

(Series 3) = f(2)cos (blog2-x)-T (3) cos (blog3-x)+f (4) cos (blogd-x)—T (5) cos (blogh—x) +
—— = 040 (11)

4 Construction of (14)
4.1 We can have the following (12-1%2) as (Series 3) by regarding (12-1) and
(12-2) as (Series 1) and (Series 2) respectively.

(Series 1) = f(2)cos (blog2-blogl)—f (3)cos (blog3-blogl)+f (4) cos (blogd-blogl)
—f (5) cos (blogh-blogl)+f (6) cos (blogb-blogl)+ ——— =0 (12-1)

(Series 2) = T(2)cos (blog2-blog2)—f (3) cos (blog3-blog2)+f (4) cos (blogd-blog2)
—f (5) cos (blogh-blog2) +f (6) cos (blogb-blog2) + ———- =0 (12-2)

(Series 3) = T(2) {cos (blog2-blogl)+cos (blog2-blog2)}
- (3) {cos (blog3-blogl)+cos (blog3-blog2) }
+f (4) {cos (blogd-blogl)+cos (blogd-blog2)}
- (5) {cos (blogb-blogl)+cos (blogh-blog2) }
+f (6) {cos (blogb-blogl)+cos (blogb-blog2) }- ——— = 0+0 (12-1%2)

4.2 We can have the following (12-1%3) as (Series 3) by regarding (12-1%2)
and (12-3) as (Series 1) and (Series 2) respectively

(Series 2) = f(2)cos (blog2-blog3)-f (3)cos (blog3-blog3)+f (4) cos (blogd-blog3)
- (5) cos (blogb-blog3) +f (6) cos (blogb-blog3)+ ——— =0 (12-3)

(Series 3) = f(2) {cos (blog2-blogl)+cos (blog2-blog2)+cos (blog2-blog3)}
- (3) {cos (blog3-blogl)+cos (blog3-blog2)+cos (blog3-blog3)}
+f (4) {cos (blogd-blogl) +cos (blogd-blog2) +cos (blogd-blog3)}
-f (5) {cos (blogb-blogl)+cos (blog5-blog2)+cos (blogh-blog3)}
+f (6) {cos (blogb-blogl)+cos (blogb-blog2)+cos (blogb-blog3)}
S = 0+0 (12-1%3)



4.3 We can have the following (12-1%4) as (Series 3) by regarding (12-1x%3)
and (12-4) as (Series 1) and (Series 2) respectively

(Series 2) = T(2)cos (blog2-blogd)-f (3) cos (blog3-blogd)+f (4) cos (blogd-blogd)
- (5) cos (blogb-blogd) +f (6) cos (blogb-blogd) + ——— =0 (12-4)

(Series 3) = T(2) {cos(blog2-blog1)+cos (blog2-blog2)+cos (blog2— blog3)+cos (blog2-blogd)}
- (3) {cos (blog3-blogl)+cos (blog3-blog2) +cos (blog3-blog3) +cos (blog3-blogd) }
+f (4) {cos (blogd-blogl)+cos (blogd-blog2) +cos (blogd-blog3) +cos (blogd-blogd) }

- (5) {cos (blogb-blog1)+cos (blogh-blog2) +cos (blogh-blog3) +cos (blogh-blogd) }
+f (6) {cos (blogb-blog1)+cos (blogb-blog2) +cos (blogb-blog3) +cos (blogb-blogd) }
- - = 0+0 (12-1x4)

4.4 In the same way as above we can have (12-1xn) as (Series 3) by regarding
(12-1*n-1) and (12-n) as (Series 1) and (Series 2) respectively. If we
repeat this operation infinitely i.e. we do n—oo, we can have

(12-1x00)=(14)



Appendix 2: Proof of g(2) #0

1 Proof (1)
1.1 Investigation of g(2)
We define g(2,N) as the partial sum from the first term of g(2) to the N-th
term of g(2). (N=1,2,3,4,5 —— ) From (13) g(2,N) is as follows.

g(2.N) = cos (blog1/2)+cos (b10g2/2)+cos (blog3/2) +cos (bl ogd/2) +cos (bl 0g5/2)
+ ——— +cos (blogN/2)

= N(%) [cos{blog(%)<g>}+cos{blog<§><g>}+cos{blog<%><g)}+cos{blog<%)(g>}
+cos{b|0g<;><g>}+ ————— +cos{b|og<g><g>}]

= N(1/N) {cos (blog1/N+blogN/2) +cos (blog2/N+blogN/2) +cos (blog3/N+blogN/2)

+cos (blogd/N+blogN/2) +cos (blogh/N+blogN/2) + —— +cos (blogN/N+blogN/2)}
= N(1/N) {cos (blogN/2)} {cos (blog1/N)+cos (blog2/N)+cos (blog3/N) + ——— +cos (blogN/N) }
- N({/N) {sin(blogN/2)} {sin(blogl/N)+sin(blog2/N)+sin(blog3/N)+ ——— +sin(blogN/N)}

Here we do N—oo as follows. NI iLnog(Z,N) means g(2).

Nllglog(Z, N)=g(2)

= Nl_iﬂl {Ncos(blogN/Z)}NuE]o (1/N) {cos (blog1/N)+cos (blog2/N) +cos (blog3/N) + ——— +cos (blogN/N) }
_Nl_iﬂl {Nsin(blogN/Z)}NuE]o (1/N) {sin(blog1/N)+sin(blog2/N)+sin (blog3/N)+ ——— +sin(blogN/N)}
1 1
:NI im {Ncos(blogN/Z)}f cos (blogx) dx —NI im {Nsin(blogN/Z)}f sin(blogx) dx (21)
— 00 0 — 00 0

We define A and B as follows.
1 1
A= f cos (blogx) dx B = fsin(blogx)dx
0 0

We calculate A and B.

A = [xcos(blogx)], +bB =1+ bB

B = [xsin(blogx)], - bA = —bA
Then we can have the values of A and B from the above equations as fol lows.

A = 1/(1+b? B = -b/(1+b?)



We have the following (22) by substituting the above values of A and B for
f(;cos(blogx)dx and fo]sin(blogx)dx in (21).
g(2) = |im {Ncos (blogN/2)} {1/ (1+b")}~ lim {Nsin(blogN/2)} {-b/ (1+b)]

Nl_i,gl N{cos (blogN/2)+bsin(blogN/2)} Nl_i,ﬂl Nsin{blogN/2+tan"' (1/b)}

1+b° 1+b7

(Graph 1) shows the value of [Nsin{blogN/2+tan™ (1/b)} /N 1+b?  at b=1]. The

scale of horizontal axis is logiN and the scale of vertical axis is
=+ logio|Nsin(logN/2+ 7 /4) /N2|. + is subject to the sign of sin(logN/2+7 /4).

Graph 1 : Nsin(logN/2+ /4) /J 2

(22)
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+logio|Nsin(logN/2+ 7 /4) /2|

1.2 Verification of sin{blogN/2+tan™' (1/b) } #0
If we assume sin{blogN/2+tan”' (1/b)}=0  (N=3,4,5,6,7, ———— ), the following
(23) is supposed to be true.

blogN/2+tan™' (1/b) = kx (k=1,2,3,4 —— ) (23)

In (23) k is natural number because of 0<{left side of (23)} that is due to
0<b, 0<logN/2 and 0<tan'(1/b) <7 /2 as shown in item 1.2.1.
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1.2.1 tan” (1/b) has the value of Lz as shown in (Table 1) and the range of
L is 0<L<1/2.

Table 1 : Value of tan™(1/b)

b 0 1/73 1 /3 oo
tan™ (1/b) 7T/2 /3 n/4 /6 0

1.2.2 From (23)

blogN/2 + Lzt = kxr

k-L
logh/2 = b)” - Mr

k-L>1/2 is true due to 1=k and 0<L<1/2. (k-L) w/b=M>0 is true
due to 0<b and k-L>1/2. From the above equation

N/2 = elr
N = 2¢lr (24)

1.2.3 N is natural number. (24) has impossible formation |ike
(natural number) = (irrational number). Therefore (24) is false and (23)

(which is the original formula of (24) ) is also false. Now we can have

the following (25).

sin{blogN/2+tan"(1/b)} # 0 (N=3,4,5,6,7, —— ) (25)

1.3 Verification of g(2) #0

limNsin{blogN/2+tan™' (1/b)}
g(2) = k= #0

1+b?

The above inequality is true due to the following reasons.

1.3.1 NIiLnosin{blogN/2+tan_1(1/b)} fluctuates between -1 and 1 during N—oo.

So NliﬁNsin{bIogN/2+tan_] (1/b) } fluctuates between -oo and +co as shown

in (Graph 1) in the previous page. Therefore g(2) does not converge to

zero.
1.3.2 The value of g(2) cannot be zero during N—oo due to the above (25) in

item 1.2.

1



2 Proof (2)
IT we assume g(2)=0, the following (26) is supposed to be true from (22).

g2 = |im {Ncos (blogh/2)} {1/ (1+b")} - |im (Nsin(blogN/2)} {-b/ (1+b")} = 0 (26)
The following (27) and (28) are true because of the following reasons.

2.1 Nuomo {Ncos (blogN/2)} and NLin {Nsin(blogN/2)} fluctuate between -oo and

+co and does not converge to zero.
2.2 In (N=3,4,5,6,7 —— ) we can confirm sin(blogN/2) #0 by putting
L=0 in item 1.2. Hence NI igl {Nsin(blogN/2)} cannot be zero during N—oo.

In (N=3,4,5,6,7, —— ) we can confirm cos(blogN/2) =sin(blogN/2+7m/2) #0
by putting L=1/2 in item 1.2. Hence Nllmo {Ncos (blogN/2)} cannot be zero

during N—oo.

(N=3,4,5,6,7,—) Jim (Neos (blog/2)} {1/ (1+6%)} 0 (27)
Jim (Nsin(blogN/2)} {-b/ (1+6%)} #0 (28)

From (26), (27) and (28) we have the following (29).

Lim (Nsin(blog/2)} {-b/ (1+6))

. — =1 (29)
NULnO {Ncos (blogN/2)} {1/ (1+b") }
From (29) we have the following (30).
»L'o"! {Nsin(blogN/2)} Nllo"c', {sin(blogN/2)} . _
1im {Noos (b1ogN/2)]  [im {cos (blogN/2)] Jimtan (blogh/2) = - (30)

But tangent function fluctuates between —co and +oo during N—co and does not
converge to the fixed value. So (30) is false and (26) (which is the original

formula of (30) ) is also false. Therefore we can confirm g(2) #0.
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Appendix 3: Proof of g(k)/g(2)=1

1. Proof (1)
We can have the following (31) for g(k) by calculating in the same way as for
g(2) in item 1.1 of Appendix 2.

limNsin {blogN/k+tan™'(1/b)}

gk) = =2 (k=3.4.5.6,7 —-) 31)
1+b?

We define h(2,N) and h(k,N) as fol lows.

h(2,N) = blogN/2 + tan'(1/b)
h(k,N) = blogN/k + tan(1/b)

We have the fol lowing equation from the above definition.

h (k, N) _ blogN/k +tan' (1/b) . 1-logk/logN+tan™' (1/b) /blogN
[ im =lim — =|im - =1 (32)
N-oo 11 (2, N) N—’°°bI0gN/2 +tan” (1/b) N-= 1-]og2/logN+tan”' (1/b) /blogN

We have the following (33) from the above (32).

lim| imh (k, N) " hk 2 ,{h(k,N)}zm

n->coN>co =limlim———— = lim|im{———
lim| imh (2, N) 2T nseNiseop (9 Ny 2T noeetioe (D (2, N)

n—)OO — 00

{1}2” = lim1l = 1 (33)

n—oo

We have the following (34) by performing Mclaughlin expansion for sin{h(2,N)}.

A is natural number.

iminh 2N e he W’ DTN n"he
AR 3] 51 7l 2n-3) | @n-1) 1

) h@ A h@n® hen’ DN DT n
B e T Sy )N Ry
:sin{h(Z,A)}:pllirl\lsin{h(Z,N)} (34)

(34) is the identity regarding A. In other words (34) holds at any value of A,
even though through A—oco. From (34) we can have the following (35).

im i (2. M- h@ N’ h@M’ hew' +<—1>”‘2h(2,N>2“‘3+(—1)““h(2,N>Z”“}
5oy 30 51 71 TR @nT)]
heN® heNn® hen’ ED"PhE N e N

AI m [limlim{h(2,N)-

m Liim}im TR TS T R Sy ¢y ¥ R 7 byt

13



= I|mI|mS|n{h(2 N)} :Nlim sinfh(2,N)} (35)

A—»OO —A

Similarly we can have the following (36).

hk, N)® hek N)° hk N’ ED2hik 2 1) Thik, N2

IJﬂNllino{h(k N) - 30 + 51 71 * ¥ (2n-3) ! * (2n-1) ! }
:NI imsin{h(k,N)} (36)

From (22), (31), (33), (35) and (36) we can have g(k)/g(2)=1 as fol lows.

gk) quiomoNsin{bIogN/k+tan_1 (1/b) } ) Nlilposin{blogN/k+tan_1 (1/b) } ) Nllglosin{h (k,N)}

g2 limNsin{blogh/2+tan"" (1/b)] ) Jimsin{blogh/2+tan™ (1/b) } - Limsinfh@,N) ]

h(k N) Lhik, N° hk N’ ED2hik 2 1) Thik N2
_oimimth G- 51 i =0 T N R
h(2 N) .he N° h@ N’ ED2hE N2 1) Thie, Ny
Lim Vim{h(2, N)- 51 7 B ¢ e 7o )y
on-1 22n_h (kN hk, M) ED"2hk N2 (=)™
_oHmimih G N7 i (e N 31 A =0 LI T
N 2n-1 2 h@ N h@ D" N2 )T
A linth@ N {h 2. N) 30 I 7 N R TR N
o ety 220_h(k ) bk, ) D Phk, N2 (1)
_mlinth &N i inh GV 3] A =0 | I = L
o ety 220_h 2N h@ N D" he N2 1)
Hnfinth@ N L inth @ N 31 I T I
o 2o h kN RGN hk D D2k N2 D
_ aimlin iGN 31 51 /A /= | I = 1
o 2 h@ N WD hE N ED"2he N D
Lim lim (h(2,N) 30 51 7L Y 7o) N R ¢ Tt }
i DT (_1)n—1 (_1)n—1
e QDT @Dy (37)
T Gl P -1 s -1 n—ee
-1 T 2n-1) 1

The 4th equal sine (=) in (37) is true due to (35) and (36).
The 7th equal sine (=) in (37) is true due to (33).

The 8th equal sine (=) in (37) is true due to limh(2,N) =0 and |imh(k, N) =co
N—oo N—oo
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2. Proof (2)
We have the following (41) from (32).

1 _ oo
Limlimh (k, ) *™ h(k, N) 2™ L (hG W 2 ik, N) .

o —||m||mﬁ_ | im h(2 N) = m m =1 =1 (41)
I |mnl imh (2, N) N—con—eoy (9 N) e N—oco ;

We have the following (42) and (43) for (46) in the next page.

o son RN @ N K NED -D2h @ N2 (=)
aim Him th (2, N) = — =TT
. o h2,N™™ h@,N™™ h@EN ™™
= mth @ N) -t e }
=0 (42)

The 2nd equal sign (=) of (42) is true due to NI imh(2,N) =co. Here we exchange

[im with |im each other in the above (42) as fol lows.

N—oo n—oo
son RN R N EDheN ™ EDTPheN T DM
Hmlimth @ N — e o T T @ T a1
n-1
= |lim—=—— ch
noo (2N-1) 1
=0 (43)

The 1st equal sign (=) of (43) is true due to limh(2,N)=c. We can have the

N— oo
following (44) from (42) and (43).
son RN RN hNs™ D 2h@, N2 (=)
/B — o T anenn)
n-1
lim———— ) (44)

T e @1

By calculating in the same way as (42), (43) and (44) we can have the following
(45) .

poon N2 Rk &2 hk, N)E2 D 2hk, N2 (=)
dimlim b, N — e+ ot et
( 1)n—I
r!—!ong @n-1)1 5
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From (22), (31), (41), (44) and (45) we can have g(k)/g(2)=1 as follows by performing
Mclaughlin expansion for sin{h(2,N)} and sinf{h(k, N)}.
¢ () NI im Nsin{blogN/k+tan_‘ (1/b) } NI imsin{blogN/k+tan™' (1/b)} NI imsin{h(k, N)}
£ NI imNsin{blogN/2+tan™' (1/b)} ) NI imsin{blogN/2+tan™" (1/b) } ) NLiToSin{h 2,N) }

3 5 7 n-2 2n-3 n-1 2n-1
hk 0° hkM® kW' Dk W™ D" Thk, 0™

JRELEILILIAT e i B 2n-3)1 @11
S h@2 N2 heN°® heN’ ED"2hE N DT, N
B s L S ¢y N Ry e )y
4-2n 6-2n n-2 -2 n-1
Nlimruﬂ{h(k'mzn_]}{h(k' N)z—zn_h(k,3l‘l!) +h(k,5N!) _ +(—1)(2nf_1él)<,|N) +((2_n1—)1)|}
N o1 2 h@,N)"™ h@ N&™ ED"he N )™
aimlimth 2 N7 th @ N == s T o T
4-2n 6-2n n-2 -2 n-1
N'li‘,l,n'icfﬂ{h(k'N)zn_]}N'l'.Jln'io"!{h(k* N)z—zn_h(k,sl\l!) +h(k,5l\l!) _ +(—1)(2nflél)<,!N) +((2_r:—)1)!}
S ety 2m h(@2,N)*?" h(, N2 D" N2 )
aimLimth @ N Him L imth (2. ==+ = — T ey 1)
o 2m b N kN hk N’ D2k, N2 1)
B 1 T L T =) N
. 2 b2 N W@ N he N’ D"he N )T
imlim{h @ N = e T T s T e T
i (_1)n—1 (_1) n-1
= o= QoD @D g - (46)
lim (-1) e (-1) n—ee
o Zn-1) 1 n-1)1

The 7th equal sine (=) in (46) is true due to (41).
The 8th equal sine (=) in (46) is true due to (44) and (45).
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Appendix 4 : Solution for F(a)=0 (1)

1 Preparation for verification of F(a) >0

1.1 Investigation of f(n)

1
fM = =% = 7

F(a) = f(2)-f Q) +f(4)-f(5)+f(6)- —— (15)

=0 (n=2,3,4,5, ——— ) (8)

a=0 is the solution for F(a)=0 due to f(n) =0 at a=0. Hereafter we define
the range of a as 0<a<1/2 to verify F(a)>0. The alternating series F(a)
converges due to nll@of(n) =0.

We have the following equation by differentiating f(n) regarding n.

df (n) 1/2+a 1/2-a 1/2+a{ (1/2—a> 2}
= = 1 - n+a

dn~ ez e pard2 1/2+a

The value of f(n) increases with the increase of n and reaches the maximum

value f(nmx) at n=nmy . Afterward f(n) decreases to zero through n—oo. nux is

1/2+a)‘/ 2

7ra) (Graph 1) shows f(n) in various value of

the nearest natural number to(

a. At a=1/2 f(n) does not have f(nwx) and increases to 1 through n—oo due to

nmax =00 .

Graph 1: f(n) in various a

2 5 811141720232629323538414447505356596265687174778083868992
a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 =——2a=0.5
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1.2 The method for verifying F(a) >0
We define F(a,N) as the partial sum from the first term of F(a) to the N-th
term of F(a). (N=1,2,3,4,5 —— ) F(a,N) repeats increase and decrease by f(n)
with increase of N as shown in (Graph 2), because F(a) is the alternating series.
In (Graph 2) upper points mean F(a, 2N-1) and lower points mean F(a, 2N). F(a, 2N-
1) decreases and converges to F(a). F(a, 2N) increases and also converges to F(a)
due to nli@of(n) =0 .

|
Graph 2 : F(0.1,N) from 1st to 100th term F(a, 2N-1)

0.15

R T ——

AT
I3 e e He Ll bbb narsiuacaes

-0.05 ~ F(a, 2N)

F1(a, 2N) which is the partial sum from the first term of the following F1(a)
to the 2N-th term of F1(a) is equal to F(a, 2N).

Fl(a) = {F(QQ)~F@)}+{f @)~F B)}+1F (6)—F (1)} +{F (8)~F (@)} + ——

Therefore NI igl°F1 (a, 2N) also converges to F(a). That means F(a)=F1(a). We use

F1(a) instead of F(a) for verifying F(a) >0. On the condition of Nua=k or Nua=k+1
(k:odd number) ,after enclosing 2 terms of F(a) each from the first term with
{ } as follows, the inside sum of { } from f(2) to f(k) is negative value and

the inside sum of { } after f(k+1) is positive value.

Fla) = f(2)~F (3)+F (4)F (5)+F () ~F () + ———-
={f@Q-F@+{f@-FO)}+ — +{f k-1)-F ) }+{f k+1)-f k+2)} + —-
(inside sum of { })<0 «— 1 — (inside sum of { })>0
(total sum of { }) = B < | — (total sumof { }) = A

We define as fol lows.
[the partial sum from f(2) to f(k)] = -B <0
[the partial sum from f(k+1) to f(e0)] = A >0
F(a) = A-B

So we can verify F(a) >0 by verifying A>B.
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1.3 Investigation of f(n)—f (n+1)
We have the following equation by differentiating [f(n)-f(n+1)] regarding n.

df(n) _ df(n+1) 1/2+a {1_( n )3/2+a} ) 1/2_3{1_( n )3/2—a}

dn dn " p¥2a | \n+l n¥/2a |- \n+l

=GC(n) - D(n)

“Convergence velocity to zero” of n®%2 is larger than that of n*¥2. When n
is small number the value of [f(n)-f(n+1)] increases with increase of n due to
[C(n)>D(n)]. As n increases the value reaches the maximum value {knx} at C(n)=
D(n). (n is natural number. The situation cannot be C(n)=D(n).) After that the
situation changes to C(n) <D(n) and the value decreases to zero through n—oo.
(Graph 3) shows the value of [f(n)-f(n+1)] in various value of a. (Graph 4) shows
the value of [f(n)-f(n+1)] at a=0.1.

Graph 3: [f(n)-f(n+1)] in various a

0.02 7?(4 m 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

-0. 04
-0. 06 / /

-0.18

a=0.3 a=0.4 a=0.45 a=0.5

a=0.05 a=0.1 a=0.2
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{Kemad Graph 4: [f(n)-f(n+1)] at a=0.1

nmax

0. 005 \ :
0
2 1//6,78 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
-0. 005 /
-0. 01 /
-0.015 I
-0.02 I

-0. 025

-0.03

-0. 035

We can find the following from (Graph 3) and (Graph 4).
1.3.1  The maximum value of |f(n)-f(n+1)| is T(3)-f(2) at same value of a.
1.3.2 With increase of n the sign of [f(n)-f(n+1)] changes from “-” +to
“+”7 at n=npax (N=Nnaxt1) When npax is even(odd) number
1.3.3 After that the value reaches the maximum value {kmx} and the value

decreases to zero through n—oo.

2 Verification of A>B (f(nmy) is even—-numbered term.)
Hereafter a is fixed within 0<a<1/2 to find the condition for A>B. T (Nuay

is even—-numbered term as fol lows.

Fa) = fQ-f@)+f () -F®)+f(6)- ——-
{f (2) -f (3) } + {f (4) -f (5) } T+ {f (nmax_s) -f (nmax_z) } + {f (nmax_1) -f (nmax) }

+ {f (nmax+1 ) -f (nmax+2) } + {f (nmax+3) -f (nmax+4) } + {f (nmax+5) -f (nmax+6) } +

We can have A and B as fol lows.

B = {f (3) -f (2) } + {f (5) -f (4) } + {f (7) -f (6) } -+ {f (nmax_z) -f (nmax_s) } + {f (nmax) -f (nmax_1) }
A= {f (nmax+1) -f (nmax+2) }+ {f (nmax+3) -f (nmax+4) } + {f (nmax+5) -f (nmax+6) } +

2.1 Condition for B
We define as fol lows.
{ } is included within B.
{ '} is not included within B.
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We have the following equation

f (nmax) -f (2) = {f (nmax) -f (nmax_1) } + {f (nmax_1 ) -f (nmax_z) } + {f (nmax_z) -f (nmax_s) } + —
+H{ED-FO@) 1+ {f@)-FO)}+{fO)-T@}+{fA-FQR)}+{fR)-F(2)}

And we have the following inequalities from (graph 3) and (graph 4).

{fR-T@I>{HA-TAI>{FE-FAI>{FO)-FO)}>{f(N-T®)} >——
> {f (nmax_z) -f (nmax_3) } > {f (nmax_1 ) -f (nmax_z) } > {f (nmax) -f (nmax_1) } >0

From above equation and inequality we have the following (41).

T (Nnad) =T (2) +{F (3)-F (2) }
= {f (3) —f (2) } + {f (5) -f (4) } + {f (7) -f (6) } + {f (nmax_z) -f (nmax_3) } + {f (nmax) -f (nmax_n }

Il A A A A —Value comparison
+ {f (3) —f (2) } + {f (4) -f (3) } + {f (6) -f (5) } + {f (nmax_3) -f (nmax_4) } + {f (nmax_1 ) -f (nmax_z) }

>2B (51)

Due to [Total sum of upper row of (51) = B < Total sum of lower row of (51)],
we have the following inequality.

 (Nnax) =T (2) + {f (3)-f(2) } >2B (52)

2.2 Condition for A ({kmx} is included within A.)
We abbreviate {f (Npaxtk) =T (Nmaxtk+1)} to {k} for easy description. (k=0, 1,2, 3-

———) All {k} have positive value as shown in item 1.2. We define as follows.
{ } is included within A.

{ } is not included within A.
{knax} has the maximum value in all {k}.

{knax} is included within A. Then value comparison of {k} is as follows from
item 1.3.

{1} < {2} < {3} < < {kmax_s} < {kmax_z} < {kmax_1} < {kmax} > {kmax+1} > {kmax+2} > {kmax+3} >

We have the following equation.

f (nmax+1) = {f (nmax+1 ) -f (nmax+2) } + {f (nmax+2) i (nmax+3) } + {f (nmax+3) -f (nmax+4) }
+ {f (nmax+4) —f (nmax+5) } A

= {1}+{2}+{3}+{4}+ - +{kmax_3}+{kmax_2}+{kmax_1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ _____

From the above equation
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f (nmax+1 ) - {kmax_1 }
= {1 } + {2} + {3} + {4} +—— + {kmax_3} + {kmax_Z} + {kmax} + {kmax+1 } + {kmax+2} + {kmax+3} R —
Range 1 | Range 2

(Range 1) and (Range 2) are determined as above.

In (Range 1) value comparison is as fol lows.

{1} < {2} < {3} < {4} _____ {kmax_4} < {kmax_s} < {kmax_z}

And
Total sum of { } = {1} + {3} + {6} + {I}+ —————- + {Knax—4} + {Knax—2}
\% vV V V V <«value comparison
Total sum of { } = {2} + {4} + {6} + ———— + {Knax=5} + {Knax—3}

Therefore Total sum of { } > Total sum of { } holds

In (Range 2) value comparison is as fol lows.
{kmax} > {kmax+1} > {kmax+2} > {kmax+3} > {kmax+4} > {kmax+5} _____

And

Total sum of { } = {kmax} + {kmax+2} + {kmax+4} + {kmax+6}+ _________

\Y \% \Y \% —value comparison

Total sum of { } = {kmax+1} + {kmax+3} + {kmax+5} + {kmax+7}+ ________

Therefore  Total sum of { } > Total sumof { } holds
In (Range 1)+ (Range 2) we have [A=Total sum of { } >Total sum of { }]. So

we have the following inequality.

f (nmax+1) - {kmax_” <2A (53)

2.3 Condition for A ({kmx} is not included within A.)

We have the following equations. {km} is not included within A.

f (nmax+1) = {f (nmax+1 ) -f (nmax+2) } + {f (nmax+2) i (nmax+3) } + {f (nmax+3) i (nmax+4) }
+ {f (nmax+4) -f (nmax+5) } A —
= {1 } + {2} + {3} + {4} +— + {kmax_3} + {kmax_Z} + {kmax_1 } + {kmax} + {kmax+1 } + {kmax+2} + {kmax+3} L —

f(nmax+1)_ {kmax}
= {1}+{2}+{3}+{4}+ - +{kmax_3}+{kmax_2}+{kmax_1}+{kmax"']}+{kmax+2}+{kmax+3}+{kmax+4}+ _____
Range 1 | Range 2 ——————————
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(Range 1) and (Range 2) are determined as above.

In (Range 1) value comparison is as follows.

{1} < {2} < {3} < {4} < _____ < {kmax_3} < {kmax_z} < {kmax_1}

And
Total sum of { } = {1} + {8} + {6} + {7}+ ———— + {Knax=3} + {Knax—1}
\% vV Vv \Y V «<value comparison
Total sum of { } = {2} + {4} + {6} + - +{kmax_4}+{kmax_2}

Therefore Total sum of { } > Total sum of { } holds.

In (Range 2) value comparison is as fol lows.
{kmax+1} > {kmax+2} > {kmax+3} > {kmax+4} > {kmax+5} > {kmax+6} _____
And

{kmax+1 } + {kmax+3} + {kmax+5} + {kmax+7} A —
\% \% \Y \% <—value comparison
{kmax+2} + {kmax+4} + {kmax+6} + {kmax+8} A —

Total sum of { }

Total sum of { }

Therefore Total sum of { } > Total sum of { } holds.
In (Range 1)+(Range 2) we have [A=total sum of { } >Total sum of { }]. So

we have the following inequality.
f(nmax+1)_ {kmax} <2A (54)
2.4 Condition for A>B
From (63) and (54) we have the following inequality.
f(“max+1)_[{kmax} or {kmax_1}]<2A

As shown in item 1.3.1 {f(3)-f(2)} has the maximum value in all |{ }|. The

following inequalities holds.

{f (3) —f (2) } > [ {kmax} or {kmax_1 } ]
{f (3) —f (2) } >f (nmax) -f (nmax+1)

We have the following inequality from the above conditions.

2A>f (nmax+1 ) - [ {kmax} or {kmax_1 } ] >f (nmax+1 ) - {f (3) -f (2) }
> (M) —{F @) T }-{FfB)-F (2} = ) -2{f3)-F(2)} (55)
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We have the following condition for A>B from (52) and (55).
2A> f (Npax) =2 {f (3) =T (2) } > (M) —F () +{f (3) - (2)} >2B (56)
From (56) we can have the final condition for A>B as fol lows.

4/3)f(2) >f(3) (67)

(Graph 6) shows (4/3)f(2)-f(3) = (4/3) (221/2-21/2) - (Ja-1/2-3-a"1/2)

Graph 6:(4/3)f(2)—f(3)
0.008

0.007
0. 006 ”///’/' ﬂ\\\\\\
0. 005
0.004 ////, \\\\
0.003
0.002 ’/// \\\
0. 001
o L \

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Table 1: The values of (4/3)f(2)-f(3)

a= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
(4/3)f(2)-f(3) 0.001903| 0.003694| 0.005257| 0.00648) 0.007246] 0.007437[ 0.006933| 0.005611]| 0.003343 0

o
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(Graph 7) shows [differentiated (4/3)f(2)-f(3) regarding a] i.e.
4/3)f()-f" () = (4/3) {log2 (2"/2427212) } - {]0g3 (3= /2+37=1/2) }

Graph 7: (4/3)f (2)-f (3)
0.06

0.04

0.02 _—_———__—__—--‘---""“~“\\\\\\\\\\‘
0
0 005 01 015 02 02 03~_03 04 045 05
-0.02 \
004 \\\\\\\
~0.06 \\\\\\

-0.08

-0.1

Table 2 : The values of (4/3)f (2)-f (3)

a= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
(4/3)f(2)-f'(3) | 0.038443| 0.037313]| 0.033921| 0.02825| 0.020277( 0.009967| -0.00272| -0.01785| —0.03547| —0.05567| —0.07852

From (Graph 6) and (Graph 7) we can find [(4/3)T(2)-f(3) >0 in 0<a<1/2]
that means A>B i.e. F(a)>0 in 0<a<1/2.

3 Verification of A>B (f(nmy) is odd-numbered term.)

f (hmax) 1S odd-numbered term as fol lows.

F(a) = f(2)-f(@Q)+f(4)-f(5)+f(6)- ——-
{f <2) -f (3) } + {f (4) -f (5) } + — + {f (nmax_4) -f (nmax_3) } + {f (nmax_Z) i (nmax_1) }

+ {f (nmax) i (nmax+1) } + {f (nmax+2) —f (nmax+3) } + o———

And

B = {f (3) i (2) } + {f (5) i (4) } +— + {f (nmax_3) i (nmax_4) } + {f (nmax_1) i (nmax_z) }
A= {f (nmax) —f (nmax+1) } + {f (nmax+2) -f (nmax+3) } + {f (nmax+4) i (nmax+5) } +
f (nmax) = {f (nmax) i (nmax+1) } + {f (nmax+1 ) -f (nmax+2) } + {f (nmax+2) i (nmax+3) } + {f (nmax+3) i (nmax+4) } +

After the same process as in item 2 we can have the following condition.
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f (Mpax=1) -F ) +{f (3)-F(2)} >2B (58)

As shown in item 1.3.1 {f(3)-f(2)} has the maximum value in all |{ }|. The

following inequalities hold.

{f (3) i (2) } > [ {kmax} or {kmax_1 } ]
f (nmax) >f (nmax_1)

We have the following inequality from the same process as in item 2 and the

above conditions.
2A > f(Nmax) = [kmaxd OF {kimax= 11> Hma) = {f(3)-F(2)} > fnma=1) — {f(3)-(2)} (59)
We have the following condition for A>B from (68) and (59).
2A> f (Nuax=1) = {f 3)—F (2) } > (= 1) -F () +{f (3) - (2)} >2B (60)
From (60) we can have the final condition for A>B as fol lows.
@/2)f(2)>f(@3) (61)

In the inequality of [(3/2)f(2) > (4/3)f(2) >f(3)>01, B/2)T(2)>(4/3)f(2) is
true self-evidently and in item 2.4 we already confirmed that the following (57)
is true in 0<a<1/2.

4/3)F(2) >f(3) (57)
Therefore (61) is true in 0<a<1/2.
4 Conclusion

F(a)=0 has the only one solution of a=0 due to
[0<a<1/2], [F(0)=0] and [F(a)>0 in 0<a<1/2].

26



Appendix 5 : Solution for F(a)=0 (2)

1 Investigation of F(a)y

f) = = = o 20 (n=2,3,4,5,——— ) 8
F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- ——— (19)
F(a,N): the partial sum from the first term of F(a) to the N-th term of F(a)

a=0 is the solution for F(a)=0 because of f(n)=0 at a=0. F(a) is the
alternating series. So F(a,N) repeats increase and decrease by f(n) with increase
of N. NIinoF(a, N) converges to F(a) due to nI_i)omof(n)zo )

(Graph 1) shows F(0.1,N) from N=1 to N=5,000. The upper edge of blue area
shows F(0.1,2N-1) and lower edge of blue area shows F(0.1,2N). ((Graph 1) is line

graph. Graph has so many data points that the area surrounded by data points
becomes blue.)

Graph 1:F(0.1,N) from N=1 to N=5,000

0.14

0.12 F(0.1,4999)

0.1 F(0.1,2N-1)
F.1)
F(0.1,5000)

F (0.1, 2N)
-0.06

Upper-right point of blue area, F(0.1,4999) decreases to F(0.1) through N—
oo and lower-right point of blue area, F(0.1,5000) increases to F(0.1) through
N—oo. F(0.1) can be approximated with {F(0.1,4999)+ F (0.1, 5000)}/2.

But {F(a,N-1)+F(a,N)}/2 is also the partial sum of alternating series. It
repeats increase (decrease) of {f(n)-f(n-1)}/2 and decrease (increase) of {f(n+1)-
f(n)}/2 when n is even(odd) number. So we approximate F(a) with the average of

{F(a,N-1)+F(a,N)}/2 i.e. F(a)y for better accuracy according to the following
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(71).

F(a, N) +F (a, N-1) + F (a, N+1)+F (a, N)
2 2

= F(an (1)

Left side of (71) converges to F(a) through N—oo. If N is large number, we
can have the accurate F(a)y from F(a,N). (Graph 2) shows F(a)y calculated at 3
cases of N=500, 1000, 5000.

Graph 2: F(a), at 3 cases
0.25

0.2

0.15 //
0.1 /
0.05 /
0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
——N=500 ——N=1,000 ——N=5,000

Table 1: The values of F(a)y

a 0 0.05 0. 0.15 02 0.25 03 035 04 045 05
N=500 01 0.01932876| 0.03865677) 0.05798326| 0.0773074| 0.09662832) 0.11594507] 0.13525658| 0.15456168] 0.17385904| 0.19314718
N=1,000 01 0.01932681| 0.03865282) 0.05797725| 0.0772993| 0.09661821) 011593325 0.13524382| 015454955 0.17385049| 0.19314743
N=5,000 01 0.01932876] 0.03865676] 0.05798324] 0.07730738] 0.09662829) 0.11594504] 0.13525695] 0.15456165] 0.17385902| 0.19314718

3 line graphs overlapped. Because F(a)y calculated at 3 cases of N=500, 1000
5000 are equal to 4 digits after the decimal point.
The range of a is 0=a<1/2. a=1/2 is not included in the range. But we added

F(1/2)y to calculation according to the following reason
[f(n) at a=1/2] is (1-1/n) and ntig(1—1/n) does not converge to zero. Therefore

F(1/2) fluctuates due to 4im;f00:1. But {F(a,N)+F(a,N-1)}/2 is partial sum of

alternating series with the term of {f(n+1)-f(n)}/2 and it can converge to the
fixed value on the condition of Jig{f(n+1)—f(n)}:0. Jiﬂ{f(n+1)—f(n)} converges

to zero due to f(n+t1)-f(n)=1/(n+n?).
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2 Investigation of F (a)n

We define as fol lows.

f (n)
F*(a)

df (n)/da = n*"2logn + n="2logn = n""2logn (1 + n?) > 0
£ @Q-f @)+ @-f (6) + ——

F'(a,N): the partial sum from the first term of F' (a) to the N-th term of F’ (a)

F*(a) converges due to limf (n)=0. We can calculate approximation of F (a)

n—o0

i.e. F'(a)y according to the following (72). JiﬂlF‘(a)N converges to F' (a).

F* (a, N)+F" (a, N-1) + F*(a, N+1)+F " (a, N)
2 2

= F (a)n (72)

(Graph 3) shows F'(a)y calculated by (72) at 5 cases of N=500, 1000, 2000,
5000, 10000. 5 line graphs overlapped. Because F" (a)y of 5 cases are equal to 6
digits after the decimal point.

Graph 3: F'(a)y at 5 cases
0. 3868

0. 3866

0.3864 \\
0.3862 \
0.386

0. 3858 \
N

0. 3856

0. 3854

0. 3852

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
——N=500 ——N=1, 000 N=2,000 ——N=5,000 ——N=10, 000

Table 2 : The values of F™ (a)y

a 0 0.06 0. 0.15 02 0.25 03 035 04 045 05
N=500 [ 0.38657754| 0.38657004| 0.38654734| 0.38650882] 0.38645348| (0.3863799] 0.8628625] 0.38617032| 0.3860295] 0.38586078) 0.38566075

N=1,000 | 0.38657764| 0.38657014| 0.38654743| 0.38650891) 0.38645355| 0.38637995| 0.38628627 03861703 0.3860294| 0.38586057 0.38566038

N=2,000 | 038657766/ 0.38657016| 0.38654745| 0.38650893) 038645357 0.38637996| 0.38628628| 0.3861703] 038602938 0.38586052] 0.38566029

N=0,000 | 0.38657766| 0.38657016( 0.38654745| 0.38650893| 0.38645358 0.38637997] 0.38628628| (0.3861703) 0.38602938 0.38586051) 0.38566026

N=10,000 | 0.38657766] 0.38657016] 0.38654745] 0.38650893 0.38645358] 0.38637997] 0.38628629] (0.3861703] 0.38602938] (.3858605] 0.38566026
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The range of a is 0=a<1/2. a=1/2 is not included in the range. But we
added F* (1/2)y to calculation according to the following reason.

[f'(n) at a=1/2] is (1+1/n) logn and nIqi£1)10(1+1/n) logn does not converge to
zero. F(1/2) diverges to oo due tonliomof‘(n):w . But {F (a,N)+F" (a,N-1)}/2
is partial sum of alternating series with the term of {f (n+1)-f (n)}/2 and
it can converge to the fixed value on the condition of nlimo {f(n+1)-T (n)}=0.

nliﬂ{f‘ (n+1)-1(n)}=0 is true as fol lows.

. . . . , . df (n) _ 1+n-logn
f (n) is the increasing function regarding n due to [ N >0].

It means [0 < f (n+1)-F (n)].

0 < f (n+tD)-f (n) = {1+1/(n+1)} log (n+1) — (1+1/n) logn
< (1+1/n) log(n+1) — (1+1/n) logn = (1+1/n) log(1+1/n)

From the above inequality we can have nlimo {f (n+1)-f (n)}=0 due to
nIqiomo{(1+1/n) log (1+1/n)}=0.
3 Approximation of F' (a)
F*(a)y calculated by (72) converges to F'(a) through N—oo. To confirm how
large N we need to approximate F (a) accurately, we calculated F (a)y with N
from N=500 to N=100,000. (Graph 4) shows F (a)n/F (a)s0 from N=500 to N=100, 000

in various a.

' 574:F(a)N/F'(a)gy,in various a

1.0000005 %
1 Il

0.9999995

0.999999

0.9999985

0.999998
N=500 1000 2000 5000 10000 50000 100000

a=0 a=0.1

a=0.2 a=0.3 a=0.4 a=0.5
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Table 3 : The values of F (a)y/F" (@) 50

a 0 0.1 0.2 0.3 0.4 0.5
N=500 1 1 1 1 1 1
1,000 1.000000242 1.000000232 1.000000189 1.000000061 0.999999745 0.999999051
2,000 1.000000294 1.000000284 1.000000234 1.000000082 0.999999692 0.999998811
5,000 1.000000306 1.000000296 1.000000246 1.000000089 0.999999681 0.999998743
10,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998734
50,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731
100,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731

We can find the following from (Graph 4) and (Table 3).

3.1 F (a)so,000/F (@)so0 and F (@) 100 000/F " (a)s00 have the same values. When N is
larger than N=50, 000 the values are same as at N=50, 000. So we can consider
F* (a)s0.00 = F ().

3.2 The differences between F™ (a)se0 and F (a)so 000 have the maximum value at
a=1/2. The maximum difference is [1-0.999998731 = 0.00013%] as shown in

(Table 3). Therefore F (a)so is almost equal to F (a)spo00 i.€. F (a).
N=500 is enough to obtain the accurate F (a).
From item 3.2 we can consider that (Graph 3) shows F (a) accurately. (Graph
3) illustrates [0.3866 > F (a) > 0.3856 in 0=a<1/2]. Therefore F(a) is the

monotonical ly increasing function in 0=a<1/2.

4 Conclusion
F(a)=0 has the only one solution of a=0 due to
[0=a<1/2], [F(0)=0] and
[ F(a) is the monotonically increasing function in 0=a<1/2.].
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Appendix 6: Sum of infinite series of sine waves

f(2)sin [blogN/2+tan™'(1/b)}-f (3)sin{blogN/3+tan™"(1/b)} +f (4) sin{blogN/4+tan' (1/b)} - —-
= f(2)sin {blogN-blog2+tan™"(1/b)} - (3) sin{blogN-blogd+tan™'(1/b)}

+f (4)sin{blogN-blogd+tan™' (1/b)} -f (5) sin{blogN-blogh+tan™'(1/b)}+ ——
= A(a,b)sin{blogN+B (a, b)+tan™ (1/b)} (18)

Sum of infinite series of sine waves in (18) converges to one sine wave |ike
the rightmost side of (18) due to the following reasons.

1 The general term of the infinite series in (18) is
(-1f(n)sin{blogN-blogn+tan”' (1/b)} (n=2,3,4,5, —— ). If n is large natural
number, the value of blogn increases very slowly with the increase of n and the
sign of sin{blogN-blogn+tan”(1/b)} does not change often. Therefore +term and
—term appear alternately and 2 +terms or 2 —terms appear in succession only when
the sign of sin{blogN-blogn+tan”(1/b)} changes. +term and —term in the above
explanation are defined as follows. ( blogN-blogn+tan™ (1/b)=a )

”

+term : +f(n)sina when the sign of sina is “+

“ o

-f(n)sina when the sign of sina is

“ o

-term : +f(n)sina when the signh of sina is
-f(n)sina when the sign of sina is “+”
On the condition of [sin{blogN-blogXo+tan™ (1/b)}=0] and [n¢+1>Xo>nol
[log (ng+1)—logno > logXe—logno>0] and [log(ne+1)—logne> log(ne+1)-logXe>0] are

true. Due to lim{log(no+1)-logne}=0 the following equations hold.

np—o0

[im log(ne+t1) = logXo= lim logno

ny—oo Ne— o0

lim sin{blogN-blog (ne+1)+tan'(1/b)} = sin{blogN-blogX,+tan™ (1/b)}

np—o0

= |lim sin{blogN-blognettan™ (1/b)} = 0

ny— o0
Therefore 2 +terms or 2 —terms ( =%=f(ng)sin{blogN-blogne+tan™(1/b)} and

Ff(ng+1) sin{blogN-blog(ny+1)+tan'(1/b)} ) which appear in succession only when

the sign of sin{blogN-blogn+tan™(1/b)} changes have almost the values of zero,

if nois large number. If we regard the sum of these 2 +terms or 2 —-terms that

exist in succession as one +terms or one -terms, we can consider this infinite

series as alternating series and this alternating series converges due to

lim f(n)=0.

n—oo
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2

f) = 7 e

1;0

(n=2,3,4,5,6, —— )

(8)

If we calculate sum or difference of 2 sine waves which have the same period,

the result becomes another sine wave which has the same period as shown
(Figure 1) and (Figure 2).

in

Figurel: Sum of 2 sine waves

T

0 (2+3),r‘

blogN+tan™'(1/b)

6(2)
6 (2)=-blog2
f(2)e?® #(2)sin 6(2) 6 (3)=-blogd
f(2+3)sin 6 (2+3)
%X
> — —
£(2+3)e1 02 @\\ )o@
&,
\6 @)
(3)sin 6 (3)
f(3)ei8(3)
Figure2: Difference of 2 sine waves
blogN+tan~'(1/b)
0 (2-3) )
62 f(2-3)e! 029 f(2-3)sin 6 (2-3)
—)
6 (2)=—blog2
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| Jo@ -
6(@3)
f(3)ei9(3)
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f(2)sin{blogN+8 (2)+tan” (1/b)} =f (3)sin{blogN+8 (3)+tan' (1/b)}
= f(2+3)sin{blogN+ O (2+3)+tan™' (1/b)} (711)

If we calculate sum or difference of 2 sine waves which have the same period and
obtain the new sine wave |ike the right side of the above (71), the amplitude f(2=+
3) and the phase 6 (2+3) of the new sine wave become as follows. Sum (difference)

of 2 sine waves takes +(-) sign in (71) and the following equations

f(2¢3)2\/f(2)2+f(3)2iZf(Z)f(3) cos{ 6 (2)-6 (3)}

L2 sin6(2) =f Q) sin 6 (3)

6 (2+3)=tan
f(2) cos B (2) =1 (3) cos 6 (3)

Therefore sum of infinite series of sine waves which have the same period becomes
one sine wave which has the same period as shown in the above (18). In (18) A(a,b)
and B(a,b) are constant which depends on a and b. If A(a,b)=0 is true, we have the

following (18-1) which is identity regarding N.

f(2)sin {blogN-blog2+tan™'(1/b)} -f (3) sin {blogN-blog3+tan™ (1/b)}
+f (4)sin{blogN-blogd+tan™' (1/b)} —F (5) sin{blogN-blog5+tan™' (1/b)}+ —
= A(a,b)sin{blogN+B(a, b)+tan”' (1/b)} = 0 (18-1)

For the value of the leftmost side of (18-1) to be zero at any value of N the
value of f(n) must be zero at any value of n like the following (8-1). In other word
a=0 must hold.

1 1

M = e =0 (92,3456, —— ) (8-1)

Now we can say if A(a,b)=0 is true, a=0 holds true and if A(a,b) #0 is true
0<a<1/2 holds true.

Reference
[1]: Yukio Kusunoki, Introduction to infinite series, Asakura syoten, 1972, page

22, (written in Japanese).
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