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Abstract
This paper is a trial to prove Riemann hypothesis which says “All non-trivial
zero points of Riemann zeta function ¢ (s) exist on the line of Re(s)=1/2.”
according to the following process
1 We create the infinite number of infinite series from the following (1) that
gives & (s) analytic continuation to Re(s) >0 and the following (2) and (3)
that show non-trivial zero point of ¢& (s).

1-275435-4 5455675+ ——— = (1-2'%) & (s) ()
So= 1/2+asbi @
$i = 1-8 = 1/2-a-bi (3)

2 We find that the value of the following F(a) must be zero from the above
infinite number of infinite series

F(a) = f(2)-f@)+f(4)-f(5)+f (6)- —— (15)
1 1
f(n) = m_m =0 (n:2, 3, 4, 51 6, —— ) (8)

3 We find that F(a)=0 has only one solution of a=0. Therefore zero point of

& (s) must be 1/2+bi and other zero point does not exist.

1 Introduction
The following (1) gives Riemann zeta function ¢ (s) analytic continuation to
Re(s) >0. “+ —— means a series with infinite terms in all equations in this
paper.
1-2754375-4"54575-6 54+ ———— = (1-2"%) ¢ (s) €
The following (2) shows non-trivial zero point of & (s). So is the zero points of
the left side of (1) and also zero points of & (s).
So = 1/2+a+bi )
The range of a is 0=a<1/2 by the critical strip of & (s). The range of b is
b>0 due to the following reasons. And i is V-1
1.1 There is no zero point on the real axis of the critical strip
1.2 [Conjugate complex number of So] = 1/2+a-bi is also zero point of & (s).

Therefore b>0 is necessary and sufficient range for investigation.



The following (3) shows also zero points of ¢ (s) by the functional equation of

¢ (s).
Si = 1-8 = 1/2-a-bi 3)
We have the following (4) and (5) by substituting So for s in the left side of
(1) and putting both the real part and the imaginary part of the left side of (1)

at zero respectively

cos(blog?) cos(blog3) cos(blogd) cos(blogh) cos(blogh)
- Vora  alza T gz iz e )
2 3 4 5 6
_ sin(blog2) sin(blog3) sin(blogd) sin(blogd) sin(blogb)
g1/2va - 31/2+a * 4177 B 51/2a * 61727 B (%)

We also have the following (6) and (7) by substituting S; for s in the left side
of (1) and putting both the real part and the imaginary part of the left side of (1)

at zero respectively

_ cos(blog2) cos(blog3) cos(blogd) cos(blogd) cos(blogb)
T T e g * e g * N (6)
_ sin(blog2) sin(blog3) sin(blog4) sin(blogd) sin(blogb)
T T e gz * N " N (7)

2 Infinite number of infinite series

We define f(n) as follows.

1 1
f) = 7 20 (n=2,3,4,5,6, ———- ) @)

We have the following (9) from (4) and (6) with the method shown in item 1 of
[Appendix 1: Equation construction]
0 = f(2)cos(blog2)-T (3) cos (blog3)+f (4) cos (blogd) -f (5) cos (blogh) + ———— 9
We have also the following (10) from (5) and (7) with the method shown in item 2
of [Appendix 1: Equation construction].
0=F@)sin(blog2)-f(3)sin(blog3)+f(4)sin(blogd)—f(5)sin(blogh)+ —— (10)
We can have the following (11) (which is the function of real number x) from the
above (9) and (10) with the method shown in item 3 of [Appendix 1: Equation
construction]. And the value of (11) is always zero at any value of x.
0 cosx{right side of (9)}+sinx{right side of (10)}
= cosx{f (2) cos (blog2)-f (3) cos (blog3) +f (4) cos (blogd) —f (5) cos (bl ogh) + ———- }
+ sinx{f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blogd)-f (5)sin(blogh)+ ———- }
= f(2)cos (blog2-x)-T (3) cos (blog3-x) +f (4) cos (blogd-x) - (5) cos (blogh-x) + —-

an



We have (12-1) by substituting blogl for x in (11).
0 = f(2) cos (blog2-blogl)—-f (3)cos (blog3-blogl)+f (4) cos (blogd-blogl)
—f (5) cos (blogh-blogl)+f (6) cos (blogb-blogl)+ ——— (12-1)
We have (12-2) by substituting blog2 for x in (11).
0 = f(2)cos (blog2-blog2)—f (3) cos (blog3-blog2)+f (4) cos (blogd-blog2)
—f (5) cos (blogh-blog2) +f (6) cos (blogb-blog2) + ——— (12-2)
We have (12-3) by substituting blog3 for x in (11).
0 = f(2)cos (blog2-blog3)—f (3) cos (blog3-blog3)+f (4) cos (blogd-blog3)
—f (5) cos (blogh-blog3) +f (6) cos (blogb-blog3)+ ——— (12-3)
In the same way as above we can have (12-n) by substituting blogn for x in
(11). (n=4,56,7,8 —— )
0 = f(2)cos (blog2-blogn)—f (3) cos (blog3-blogn)+ f (4)cos (blogd-blogn)
- (5) cos (blogh-blogn) + ———- (12-n)

3 Verification of F(a)=0
We define g(k) as follows. (k =2,3,45 6 ——- )
g (k) = cos(blogk-blogl)+cos (blogk-blog2)+cos (blogk-blog3)+cos (blogk-blogd)+ —-
= cos (blogl1-blogk) +cos (blog2-blogk) +cos (blog3-blogk) +cos (blogd-blogk) + ——
= cos (blog1/k) +cos (blog2/k) +cos (blog3/k) +cos (b logd/k) +cos (blogh/k) + ———— (13)
We can have the following (14) from infinite equations of (12-1), (12-2), (12-3),
—————————— , (12-n), ————————— with the method shown in item 4 of [Appendix 1:
Equation construction]
0 = f(2) {cos (blog2-blog1)+cos (blog2-blog2) +cos (blog2-blog3) +cos (blog2-blogd) + —-
- (3) {cos (blog3-blog1)+cos (blog3-blog2) +cos (blog3-blog3) +cos (blog3-blogd) + ——
+f (4)
- (5)
+f (6) {cos (blogb-blogl)+cos (blogb-blog?2) +cos (blogb-blog3)+cos (blogb-blogd)+ ——

}
}
cos (blogd-blogl)+cos (blogd—blog2) +cos (blogd-blog3) +cos (blogd—blogd) + ——-}
cos (blogb-blog1)+cos (blogh—blog2) +cos (blogh-blog3) +cos (blogh-blogd) + ——-}

}

{
{
{
{

=f2)g@)-TQ3)g@)+f (4 g -T(5)g®B)+f(6)gB)-F(Ng(N+ —— (14)
g(2)#0 and gk)/g(2)=1 (k=3,4,5,6,7 ——) are true as shown in [Appendix 2:
Proof of g(2) #20] and [Appendix 3: Proof of gk)/g(2)=1]
Here we define F(a) as follows
Fa) = f(2)-f@)+f(4)-F(5)+f(6)- —— (15)
From (14), g2) #0, gk)/g(2)=1 (k=3,4,5,6,7 ———) and (15) we have the fol lowing
(16) .



f(3)g(3) +1‘(4)g(4) _T(5)g®) +f(6)g(6) (e
g(2) g(2) g(2) g(2) g(2)

g(2) {F(2)F (3)+F (4)F () +F (6)- —— |
g(2)F (a) 16)
In (16) F(a)=0 must be true because of g(2) 0.

0=g@{f)-

4 Riemann hypothesis shown from F(a)=0
F(a)=0 has the only one solution of a=0 as shown in [Appendix 4: Solution for
F(@=0 (1)1 or [Appendix 5: Solution for F(a)=0 (2)]. a has the range of 0=a<
1/2 by the critical strip of & (s). But a cannot have any value but zero because a
is the solution for F(a)=0.
So = 1/2+a+bi 2
Si = 1-8 = 1/2-a-bi 3
Due to a=0 non-trivial zero point of Riemann zeta function ¢& (s) shown by the
above 2 equations must be 1/2=%bi and other zero point does not exist. Therefore
Riemann hypothesis which says “All non-trivial zero points of Riemann zeta function
& (s) exist on the line of Re(s)=1/2.” is true.

In (16) F(a)=0 must be true and F(a) is a monotonically increasing function as
shown in [Appendix 5: Solution for F(a)=0 (2)]. So F(a)=0 has the only one solution
If the solution were not a=0, there would not be any zero points on the line of
Re(s)=1/2. This assumption is contrary to the following (Fact 1) or (Fact 2).
Therefore the only one solution for F(a)=0 must be a=0 and Riemann hypothesis must
be true.

Fact 1: In 1914 G. H.Hardy proved that there are infinite zero points on the

line of Re(s)=1/2

Fact 2: All zero points found until now exist on the line of Re(s)=1/2.



Appendix 1: Equation construction

We can construct (9), (10), (11) and (14) by applying the fol lowing existing theorem
1(x).

Theorem 1: On condition that the following (Series 1) and (Series 2) converge,

the following (Series 3) and (Series 4) are true.

(Series 1) = aj+artazrastast ———— = A
(Series 2) = bi+by+thgtbstbst ———— - B

(Series 3) = (ay+hy) + (ax+thy) + (az+bs) + (as+by) + (as+hs) + ——— = A+B
(Series 4) = (a;~by)+ (ay-by) + (as=bs) + (as—bs) + (as—bs) + ———— — A-B

1 Construction of (9)
We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series
1) and (Series 2) respectively.

cos(blog2) _ cos(blogl) N cos(blogd) ~ cos(blogb) . cos(blogb) ~

(Series 1)= = N NG L= = =1 (6)
) cos(blog?) cos(blog3) cos(blogd) cos(blogh) cos(blogb)
(Series 2)= 21/2+a B 31/2+a * 41/2+a - 51/2+a * 61/2+a N il @
(Series 4)= (2)cos(blog2)-f (3)cos (blog3)+f (4) cos (blogd)—f (5) cos (blogh) + ———
=1-1=0 9)
o 1 > B
Here f(n) = T e 2 0 (n=2,3,4,5 6, —— ) (8)

2 Construction of (10)

We can have the following (10) as (Series 4) by regarding (7) and (b) as
(Series 1) and (Series 2) respectively.

sin(blog2)_sin(blog3)+sin(blog4)_sin(blog5)+sin(blog6)_

(Series1) = e §1/22 N 5l/2-a 6/2a =0

e = 1D SOl S Sl S

(Series 4) = f(2)sin(blog2)~f (3)sin(blogd)+f (4)sin(blogd)—f (5)sin(blogh)+ ——-
=0-0=0 (10)

(%) : Please refer to page 22 in “Introduction to infinite series” by Yukio

Kusunoki, published in 2004, (written in Japanese)




3 Construction of (11)
We can have the following (11) as (Series 3) by regarding the following
equations as (Series 1) and (Series 2).
(Series 1) = cosx{right side of (9)}
= cosx {f (2) cos (blog2)-T (3) cos (blog3) +f (4) cos (blogd) —f (5) cos (blogh) + ———— } =0
(Series 2) = sinx{right side of (10)}
= sinx{f(2)sin(blog2)-f(3)sin(blog3)+f (4)sin(blogd)-f (5)sin(blogh)+ —— } =0
(Series 3) = f(2)cos (blog2-x)-T (3) cos (blog3—-x) +f (4) cos (blogd-x)—f (5) cos (blogh—x) +
—— = 0+0 (11)

4  Construction of (14)
4.1 We can have the following (12-1%2) as (Series 3) by regarding (12-1) and
(12-2) as (Series 1) and (Series 2) respectively.
(Series 1) = f(2)cos (blog2-blogl)—f (3)cos (blog3-blogl)+f (4) cos (blogd-blogl)

—-f (5) cos (blogh-blogl) +f (6) cos (blogb-blogl) + ——— =0 (12-1)
(Series 2) = f(2)cos (blog2-blog2)—f (3)cos (blog3-blog2)+f (4) cos (blogd-blog2)
- (5) cos (blogh-blog2) +f (6) cos (blogb-blog2) + ———— =0 (12-2)

(Series 3) = T(2) {cos (blog2-blogl)+cos (blog2-blog2)}
- (3) {cos (blog3-blogl)+cos (blog3-blog2) }
+f (4) {cos (blogd-blogl)+cos (blogd-blog2)}
- (5) {cos (bloghb-blogl)+cos (blogh-blog2) }
+f (6) {cos (blogb-blog1)+cos (blogb-blog2) }- ——— = 0+0 (12-1%2)
4.2 We can have the following (12-1%3) as (Series 3) by regarding (12-1%2)
and (12-3) as (Series 1) and (Series 2) respectively
(Series 2) = f(2)cos (blog2-blog3)-f (3)cos (blog3-blog3)+f (4) cos (blogd-blog3)
—f (5) cos (blogh-blog3) +f (6) cos (blogb-blog3)+ ——— =0 (12-3)
(Series 3) = T(2) {cos (blog2-blogl)+cos (blog2-blog2) +cos (blog2-blog3)}
- (3) {cos (blog3-blogl)+cos (blog3-blog?2) +cos (blog3-blog3)}
+f (4) {cos (blogd-blogl) +cos (blogd-blog2) +cos (blogd-blog3) }
- (5) {cos (blogh-blogl)+cos (blogh-blog2) +cos (blogh-blog3)}
+f (6) {cos (blogb-blogl)+cos (blogb-blog2)+cos (blogb-blog3)}
- = 0+0 (12-1%3)
4.3 We can have the following (12-1%4) as (Series 3) by regarding (12-1%3)
and (12-4) as (Series 1) and (Series 2) respectively
(Series 2) = (2)cos (blog2-blog4)-f (3) cos (blog3-blogd)+f (4) cos (blogd-blog4)
—-f (5) cos (blogh-blogd) +f (6) cos (blogb-blogd) + —— =0 (12-4)



(Series 3) = T(2) {cos(blog2-blog1)+cos (blog2-blog2)+cos (blog2— blog3)+cos (blog2-blogd)}
- (3) {cos (blog3-blogl)+cos (blog3-blog2) +cos (blog3-blog3) +cos (blog3-blogd) }
+f (4) {cos (blogd-blogl)+cos (blogd-blog2) +cos (blogd-blog3) +cos (blogd-blogd) }

- (5) {cos (bloghb-blog1)+cos (blogh-blog2) +cos (blogh-blog3) +cos (blogh-blogd) }
+f (6) {cos (blogb-blogl)+cos (blogb-blog2) +cos (blogb-blog3) +cos (blogb-blogd) }
- = 0+0 (12-1x4)
4.4 In the same way as above we can have (12-1xn) as (Series 3) by regarding
(12-1*n-1) and (12-n) as (Series 1) and (Series 2) respectively. If we
repeat this operation infinitely i.e. we do n—oo, we can have
(12-1%00) =(14)



Appendix 2: Proof of g(2) #0

1 Proof (1)
1.1 Investigation of g(2)
We define g(2,N) as the partial sum from the first term of g(2) to the N-th
term of g(2). (N=1,2, 3,45 —— ) From (15) g(2,N) is as follows. Nllglog(z, N)
means g(2).
g(2,N) = cos(blog1/2)+cos (blog2/2)+cos (blog3/2)+cos (blogd/2)+cos (blogh/2)
+ ——— +cos (blogN/2)

= N(%) [cos{blog(%)(g)}+cos{b|og<§><g>}+cos{blog<%><g>}+cos{blog<%>(g)}
+cos{b|0g<;><g)}+ ————— +cos{b|og<%)<g>}]

= N(1/N) {cos (blog1/N+blogN/2)+cos (blog2/N+blogN/2) +cos (blog3/N+blogN/2)

+cos (blogd/N+blogN/2) +cos (blogh/N+blogN/2)+ ——— +cos (blogN/N+blogN/2)}
= N(1/N) {cos (blogN/2)} {cos (blog1/N)+cos (blog2/N) +cos (blog3/N)+ ——— +cos (blogN/N) }
- N(/N) {sin(blogN/2)} {sin(blog1/N)+sin(blog2/N)+sin(blog3/N)+ ——— +sin(blogN/N)}

Here we do N—oo as follows.

Nllmog(Z, N)=g(2)

= Nl_iﬂl {Ncos(blogN/Z)}NIéig]c> (1/N) {cos (blog1/N)+cos (blog2/N) +cos (blog3/N) + ——— +cos (blogN/N) }
_Nl_iﬂl {Nsin(blogN/Z)}NIéig]c> (1/N) {sin(blog1/N)+sin(blog2/N)+sin (blog3/N)+ ——— +sin(blogN/N)}
1 1
:NI im {Ncos(blogN/Z)}f cos (blogx) dx —NI im {Nsin(blogN/Z)}f sin(blogx) dx (21)
— 00 0 — 00 0

We define A and B as fol lows.
1 1
A= f cos (blogx) dx B = fsin(blogx)dx
0 0

We calculate A and B.
A = [xcos(blogx)], +bB =1+ bB

B = [xsin(blogx)], - bA = -bA
Then we can have the values of A and B from the above equations as fol lows.
A= 1/01+b? B = -b/(1+b?)
We have the following (22) by substituting the above values of A and B for
f(:cos(blogx)dx and stin(bIogx)dx in (21).



g(2) = |im (Ncos (blogN/2)} {1/ (1+b")}~ lim (Nsin(blogN/2)} {-b/ (1+b")]

Nuomo N{cos (blogN/2)+bsin(blogN/2)} NULTIO Nsin{blogN/2+tan™ (1/b)}

2

(22)
1+b 1+b?

(Graph 1) shows the value of [Nsin{blogN/2+tan™ (1/b)} /N 1+b?  at b=1]. The

scale of horizontal axis is logiN and the scale of vertical axis is
=+ logio|Nsin(logN/2+ 7 /4) /N2|. =+ is subject to the sign of sin(logN/2+7 /4).

Graph 1 : Nsin(logN/2+ /4) /J 2
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+logio|Nsin(logN/2+ 7 /4)//2|

1.2 Verification of sin{blogN/2+tan™" (1/b) } #0

If we assume sin{blogN/2+tan”' (1/b)}=0  (N=3,4,5,6,7, ———— ), the following
(23) is supposed to be true.
blogN/2+tan™" (1/b) = kn k=1,2,3,4,—— ) (23)

In (23) k is natural number because of 0<{left side of (23)} that is due to
0<b, 0<logN/2 and 0<tan'(1/b) <7 /2 as shown in item 1.2.1.

1.2.1 tan” (1/b) has the value of Lz as shown in (Table 1) and the range of
L is 0<L<1/2.



Table 1 : Value of tan™” (1/b)

b 0 1//3 1 \ﬂ§
tan™' (1/b) /2 n/3 n/4 /6
1.2.2 From (23)
blogN/2 + Lt =k«
logh/2 = (k_t)” = Mr
k-L>1/2 due to 1=k and 0<L<1/2. (k-L) 7 /b=M>0 due to 0<b and k-L>1/2.
N/2 = elr
N = 2e'r (24)
1.2.3 N is natural number. (24) has impossible formation |ike

(natural number) = (irrational number). Therefore (24) is false and (23)

(which is the original formula of (24) ) is also false. Now we can have

the following (25).

sin{blogN/2+tan' (1/b)} # 0 (25)

(N=3,4,5,6,7, —— )

1.3 Verification of g(2) #0
|im Nsin{blogN/2+ tan™'(1/b)}

g2) ==
V1+b?

The above inequality is true due to the following reasons.

#0

1.3.1 NI_i)g]osin{blogN/2+tan"(1/b)} fluctuates between —1 and 1 during N—oo.

So NuE]oNsin{bIogN/2+tan" (1/b) } diverges to *=oo as shown in (Graph 1) in

the previous page. Therefore g(2) does not converge to zero.

1.3.2 g(2) cannot be zero during N—oo due to the above (25) as verified in

item 1.2.

2  Proof (2)
IT we assume g(2)=0, the following (26) is supposed to be true from (22).

g2 = |im {Ncos (blogh/2)} {1/ (1+b")}- |im {Nsin(blogN/2)} {-b/ (1+b")} = 0 (26)

The following (27) and (28) are true because of the following reasons.

2.1 Nlig {Ncos (blogN/2)} and qui[)no {Nsin(blogN/2)} diverge to oo and does
not converge to zero.

10



2.2 In (N=3,4,56,7 —— ) we can confirm sin(blogN/2) #0 by putting L=0
in item 1.2. Hence &ig}{Nsin(blogN/Z)} cannot be zero during N—oo.

In (N=3,4,5,6,7 ——— ) we can confirm
cos (blogN/2) = sin(blogN/2+7 /2) #0

by putting L=1/2 in item 1.2. Hence NIig){Ncos(bIogN/Z)} cannot be zero

during N—oo.

(N=3,4,5,6, 7, ———— ) lim {Ncos (blogN/2)} {1/ (1+b%)} = 0

N—

Lim {Nsin(blogh/2)} {-b/ (1+6%)} # 0
From (26), (27) and (28) we have the following (29).

Jim INsin(blogh/2)} {-b/ (1+b?)}

&ig){Ncos(blogN/Z)}{1/(1+b2)}

From (29) we have the following (30).
{Nsin(blogN/2)} _ Alg{sin(blogN/Z)}  lintan Glogh/2) - :l
dig{Ncos(blogN/Z)} dlg{cos(blogN/Z)} Noco b
But tangent function fluctuates between —co and +oco during N—oo and
converge to the fixed value. So (30) is false and (26) (which is the

formula of (30) ) is also false. Therefore we can confirm g(2) #0.

[im
N—oo

1

27

(28)

(29)

(30)

does not

original



Appendix 3: Proof of g(k)/g(2)=1

1. Introduction
We can have the following equation for g(k) by calculating in the same way as
that for g(2) in item 1.1 of Appendix 2.

limNsin {blogN/k+tan™'(1/b)}
gk) = == (k=3,4,5,6,7 —-) (31)
1+b?
We define h(2,N) and h(k,N) as follows
h(2,N) = blogN/2 + tan"(1/b)
h(k,N) = blogN/k + tan™(1/b)
We have the following 2 equations from the above definition

Iimh(Z,N) . blogN/2 + tan™' (1/b) i 1-log2/logN+tan™' (1/b) /blogN -1
N-oo h (K, N) N*°°b|ogN/k +tan”' (1/b) N - logk/logN+tan™" (1/b) /blogN

. h@ )™ PN GICAD .
NJL"onJL“o{h k. N)} Nm{h (k. N)} T

We have the following (32) from the above equation

h(2 N2 1/h k. N) 2n-1 I|mI|m{1/h(k N) 1)
I|mI|m{ } :IimIim{————i——} = Mo noo =1 (32)
N |1 k. N) Nooonen | 1/h (2, N) limlim (1/h(2,0)""")

From (22), (31) and (32) g(k)/g(2) is calculated as follows.

g) _ LimNsiniblog/krtan™ (/b)) lim sin{blogN/k+tan' (1/b)]

g(2) Jim Nsin{blogN/2+tan™" (1/b)} Jim sin{blogN/2+tan™" (1/b)}

Limsinth( W] lim lim {1/h &, N) 21y Limsin{h ()]
imsinh@ W T jim lim (17020 ") I|m3|n{h(2 N) )

lim [sin{h(k, N)}/1imh(k, N) 2]
— Noo n—-oo T (33)
imCsin{h(2,N) }/1imh (2, N) "

sinh@ N} _ . D™ 0

2 verification of |im 2T oo (2n-1)1

N—oo nl_lglh 2,N)

The denominator of (33) is calculated by performing Mclaughlin expansion for
sinfh(2,N)} as follows.

12



sinfh(2,N)}
[im

N—oo r!_l)onc]’h (2’ N) 2n-1
h(2 N) e’ hew’ EDhEe ™ @0 n
o i 2, W0 51 71 ey T Ol
N—oo U)th (2’ N) 2n-1
he - h(2 N) Lhen® hen’ LEDh N D he
i 51 71 2n-3)]1 -1
N—ocon—co h(z N)Zn—1
) gon RN h@ N he N D2h@E, N )
B T R ¢ o) y e by L
on RN @ N K NED 1)"2h (2, N) 2
S im th @ ) g+ T )
+limli —( 1)n-1
N (O=T) 1
o h2N™ h2N™ h@Q N -1)™!
e 4 linin G
im im0 n"
N =) 1
( 1)n—1
Gy T 34

The 6™ equal sine (=) of (34) is true due to Nlitpoh(Z, N) =0

sinfh@ N} _ . D™ @

3 verification of |im 2T oo (2n-1) 1

N—co nl_'>210h 2,N)

From the 3" formula(x) of (34) we have the following (35).

son RN RN hNED D"2h@,N) 2 (=)
wim lim h 2, N 3T 5 7 o= TR v YL
ey w h@Q,N™ h@,N™ h@N™
‘NI_',L"o{h(Z'N) B + BT T ]
=0 (35)
Here we exchange Nlﬁi[)n° with nl_i,L"o each other in the 3 formula(¥) of (34) as
fol lows.
pon NN h@2 N2 h &2 ED"heE N2 1)
limlimh (2, K) 3 5l TR = e ey
0 (- 1)n—I
T 2D T
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=0 (36)
The 1st equal sign (=) of (36) is true due to NL1£|1(2,N) =00,

We can have the following (37) from (35) and (36) as follows.

h@ N h@ N he nED -D2h @2 N2 (=)
Lim lim (h(2, N) 22— + - - + + } ()
N 31 51 71 (2n-3)1 2n-1)1
9o h(2,N) 4-2n h(2,N) 6-2n h(2,N) 8-2n (_1)n—2h @.N) -2 (_1)n—1
=dimlinth @ N+ = I T= L
=0 @7

We can have the following (38) from (34), (36) and (37).

. sin{h@,N)}

e ™
4-2n 6-2n 4\n-2 -2 —4yn-1
-jintinhewe-tER D JCOPRED L D
2o h(2, N) 4-2n h(2, N) 6-2n (_1)n—2h @ N) -2 (_1)n—1
=limlimth 2Nt a1 T
( 1)n—l
g lyorry 38

3 Conclusion
From (34) or (38) we can have the following (39).

_sinfh@ N} D™
N'lo“lW = Gt (39)

The numerator of (33) is calculated in the same way as that for the denominator
of (33). The result is the following (40).

sinfh, N} D™
Niglnu&h(k' X Jim n-1)1 (40)

From (33), (39) and (40) we can have g(k)/g(2)=1 as fol lows.

ot n"’ n"'
g (k) Jlg[sin{h(k,N)}/Jigh(k,N) ] Jlgj(Zn N LT
= = = 1Im - =1lImil=
e@ linlsinth@ M }/1imh@ ML DT e ™ e
N—co noe noe (2N—-1) 1 N1
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Appendix 4 : Solution for F(a)=0 (1)

1 Preparation for verification of F(a) >0
1.1 Investigation of f(n)
1 1
f(n) = /2 - Y =0 (n=2,3,4,5, ——- ) ®)
F(a) = f(2)-f @) +f(4)-f(5)+f (6)- —— (15)
a=0 is the solution for F(a)=0 due to f(n) =0 at a=0. Hereafter we define

the range of a as 0<a<1/2 to verify F(a)>0. The alternating series F(a)
converges due to nllgf(n) =0 .

We have the following equation by differentiating f(n) regarding n.
df(n) _ 1/2+a 1/2-a _ 1/2+a{ _ <1/2—a> 23}

dn a2 32 pan2 1/2+a)"
The value of f(n) increases with the increase of n and reaches the maximum
value f(nmx) at n=nm . Afterward f(n) decreases to zero through n—oo.

1/2a

1/2+a)

Nmax 1S the nearest natural number to (I/Z—a

(Graph 1) shows f(n) in various value of a. At a=1/2 f(n) does not have f (Nuay)

and increases to 1 through n—oo due to nNnuay =o°.

Graph 1: f(n) in various a

2 5 811141720232629323538414447505356596265687174778083868992
a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 =——2a=0.5
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1.2 Verification method for F(a) >0

We define F(a,N) as the partial sum from the first term of F(a) to the N-th
term of F(a). (N=1,2,3,4,5 —— ) F(a,N) repeats increase and decrease by f(n)
with increase of N as shown in (Graph 2), because F(a) is the alternating series.
In (Graph 2) upper points mean F(a, 2N-1) and lower points mean F(a, 2N). F(a, 2N-

1) decreases and converges to F(a). F(a, 2N) increases and also converges to F(a)

due to nli@of(n) =0 .

0.05
0

-0. 05

|
Graph 2 : F(0.1,N) from 1st to 100th term F(a, 2N-1)

(-

I

I |
3 e N Hebin b wataivaraes

~ F(a, 2N)

to

F1(a, 2N) which is the partial sum from the first term of the following F1(a)
the 2N-th term of F1(a) is equal to F(a, 2N).

Fl(@ = {(fQ-f@}+{f@-FO)+{f @) -F(D}+{f @) -F(}+ ——
Therefore NI igl°F1 (a, 2N) also converges to F(a). That means F(a)=F1(a). We use

F1(a) instead of F(a) for verifying F(a)>0.

On the condition of nus=k or nmy=k+1 (k:odd number) , after enclosing 2 terms

of F(a) each from the first term with { } as follows, the inside sum of { }
from f(2) to f(k) is negative value and the inside sum of { } after f(k+1) is
positive value.

F(a) = F(Q-fQ)+f4)-FB)+f(6)-F(DN+ ——

=H{f@Q)-fQR I+ {f@D-FO)}+ — +{f (k-1)-F ) }+{f (k+1)-f (k+2)} + ——-
(inside sum of { })<0 < I — (inside sum of { })>0
(total sum of { }) = B <1 — (total sumof { }) = A
We define as fol lows.
[the partial sum from f(2) to f(k)] = -B <0
[the partial sum from f(k+1) to f(e0)] = A >0
F(a) = A-B
So we can verify F(a) >0 by verifying A>B.

16



1.3 Investigation of f(n)-f(n+1)
We have the following equation by differentiating [f(n)-f(n+1)] regarding n.

df(n) _ df(n+1) _ 1/2+a {1 _ ( n >3/2+a} . 1/2_a{1 ) ( n )3/2—a}

dn dn p3/2na n+l nd/2-a n+l

=G(n) - D(n)

“Convergence velocity to zero” of n®%2 is larger than that of n*®2. When n
is small number the value of [f(n)-f(n+1)] increases due to [C(n) >D(n)]. As n
increases the value reaches the maximum value {kmx} at C(n)=D(n). (n is natural
number. The situation cannot be C(n)=D(n).) After that the situation changes to
C(n) <D(n) and the value decreases to zero through n—oo. (Graph 3) shows the
value of [f(n)—f(n+1)] in various value of a. (Graph 4) shows the value of [f(n)-
f(n+1)] at a=0.1.

Graph 3: [f(n)-f(n+1)] in various a

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

-0.18

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5
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{Kemad Graph 4: [f(n)-f(n+1)] at a=0.1

nmax

0. 005 \ :
0
2 f//6,78 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
-0. 005 /
-0. 01 /
-0.015 I
-0.02 I

-0. 025

-0.03

-0. 035

We can find the following from (Graph 3) and (Graph 4).
1.3.1 The maximum value of |f(n)-f(n+1)| is f(3)-f(2) at same value of a.
1.3.2 In increasing of n the sign of [f(n)-f(n+1)] changes minus to plus at n=npa
(n=Nmax+1) when nmax is even(odd) number.
1.3.3 After that the value reaches the maximum value {knx} and the value decreases

to zero through n—oo.

2 Verification of A>B (f(nmx) is even-numbered term.)
Hereafter a is fixed within 0<a<1/2 to find the condition of A>B. f (Nn)
is even-numbered term as follows.
F(a) = f(2)-f(3)+f(4)-F(B)+f(6)- ———
= {f@Q-F@}+{f@-FG)}+ — +{f (nax=3) = (Mnax=2) } +{F (Npax=1) ~F (M) }
+{f (Mnaxt1) =F (Mnaxt2) }+ {F (Mt 3) =T (Mparct4) 1+ {F (N #5) = (Miy+6) }+ ————
We can have A and B as follows.
B={f@)-f@}+{fG)-FA}+{f(N-F6)}+ —— +{f (Nnax—2) —T (Npax=3) } + {F (Max) =T (Nrax=1) }
A = {F (Dt 1) =T (Nnaxt2) }+ {F (Naxct3) =F (Nt 4) 1+ {F (e t5) = (N +6) } + ———-

2.1 Condition of B
We define as fol lows.
{ } is included within B.
{ } is not included within B.

We have the following equation
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f(Mna) =T (2) = {F (Mna) =F (Max=1) 1+ {F (Max=1) =F (Nax=2) 1+ {F (Nax=2) =T (Nax=3) } + ——
+{f (D -F(6) }+{f (6)=F (B) }+{f (B)—F (A }+{Ff A -F@)}+{f3)-F(2)}

And we have the following inequalities from (graph 3) and (graph 4).

FRFDI>HF@A-FRI>HEG)-FDI>{FO®)-FO}>{FD-FO))>——

> {f (nmax_z) -f (nmax_3) } > {f (nmax_1 ) i (nmax_2> } > {f (nmax) -f (nmax_1) } >0
Then

f (nmax) -f (2) + {f (3) -f (2) }
= {f (3) _f (2) } + {f (5) _f (4) } + {f (7) _f (6) } + -+ {f (nmax_z) _f (nmax_3) } + {f (nmax) _f (nmax_1) }
| A A A A <—Value comparison

+ {f (3) -f (2) } + {f (4) -f (3) } + {f (6) -f (5) } -+ {f (nmax_3) -f (nmax_4) } + {f (nmax_1 ) -f (nmax_z) }

>2B (41)

Due to [Total sum of upper row of (41) = B < Total sum of lower row of (41)],
we have the following inequality.

f (Mna) —f () +{F (3)-F (2)} >2B (42)

2.2 Condition of A ({kmy} is included within A.)
We abbreviate {f (Nmaxtk)—T (Nmaxtk+1)} to {k} for easy description. (k=0, 1,2, 3—
—) All {k} is positive as shown in item 1.2.
We define as fol lows.
{ } is included within A.
{ '} is not included within A.
{knax} is the maximum value in all {k}.
{knax} is included within A. Then value comparison of {k} is as follows.
<2< 8t <—- < {knax=3} < {Knax—2} < {Knax=1} < {Knax} > {Knaxt1} > {Knaxt2} > {Kpaxt3} >-——
We have the following equation.
f(naxt1) = {F (Nnaxt1) =F (Naxt2) + {F (Nnaxt2) =F (Ngaxt3) 1+ {F (Nnext3) =F (e +4) }
+{f (Mnaxt4) =F (NpextD) }+ ————
= [11+(20+13)+ (81— + Do)+ (K2 + oo+ (Ko + Dot 1)+ (Kah2) + ot ) + ———-
From the above equation
 (Mnax+1) — {Knax—1}
= {1}+{2}+{3}+{4}+ —— +{Knax=3} + {Knax=2} + {Knax} + {Knaxt 1} + {Knax+2} + {Kpex+3} + ———-

Range 1 | Range 2
(Range 1) and (Range 2) are determined as above.

In (Range 1) value comparison is as fol lows.
{1} < {2} < {3} < {4} _____ {kmax_4} < {kmax_3} < {kmax_z}
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And

Total sum of { } = {1} + {3} + {6} + {7}+ ———— + {Knax—4} + {Knax—2]
\% vV VvV \Y V <value comparison
Total sum of { } = {2} + {4} + {6} + ——— + {Knax=5} + {Knax—=3}

Therefore Total sum of { } > Total sum of { }

In (Range 2) value comparison is as follows.
{Knax} > {Knaxt1} > {knaxt2} > {Knaxt3} > {Knaxt4} > {Knaxtd} ——-
And
Total sum of { }

{knax} + {knaxt2} + {knaxt4} + {Kpaxt6}+ —————
\% \% \Y \% «<—value compar ison
Total sum of { } = {kmat1} + {Knot3} + {Kmaxtd} + [Knaxt?}+ ———————
Therefore Total sum of { } > Total sum of { }

In (Range 1)+(Range 2) we have [A=Total sum of { } >Total sum of { 1}].
We have the fol lowing inequality.
f(nmax"']) - {kmax_1}<2A (43)

2.3 Condition of A ({kmx} is not included within A.)
We have the following equations. {kmx} is not included within A.
f(naxt1) = {F (Npaxt1) =F (Naxt2) }+ {F (Nnaxt2) =F (Ngaxt3) 1+ {F (Nnaxt3) =F (e +4) }
+{f (Mnaxt4) =F (NpextD) } + ———-
= {1}+{2}+ {3} + {4} + —— +{Knax=3} + {Knax—=2} + {Knax= 11 + {Kna} + {Knasct 1} + { K+ 2} + { K+ 3} +
f (Mnaxt1) = {Knax}
= {1}+{2}+ {3} +{4}+ —— +{Knax=3}+ {Knax=2} + {Knax—11 + {Knasct 1} + {Knax+2} + {Kax+3} + {Knax+4} +

(Range 1) and (Range 2) are determined as above.

In (Range 1) value comparison is as fol lows.
{1} < {2} < {3} < {4} < _____ < {kmax_3} < {kmax_z} < {kmax_1}
And

Range 1 | Range 2 ————————————

Total sum of { } = {1} + {8} + {6} + {7}+ ———— + {Knax=3} + {Knax—1}
\% vV Vv \Y V <value comparison
Total sum of { } = {2} + {4} + {6} + ———— + {Knax=4} + {Knax—2}

Therefore Total sum of { } > Total sum of { }
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In (Range 2) value comparison is as follows.
{kmax+1} > {kmax+2} > {kmax+3} > {kmax+4} > {kmax+5} > {kmax+6} _____

Total sum of { } = {kmax"’” + {kmax+3} + {kmax+5} + {kmax+7}+ _________

V \% \Y \% —value comparison

Total sum of { } = {kmax+2} + {kmax+4} + {kmax+6} + {kmax+8}+ ________

Therefore Total sum of { } > Total sum of { }

In (Range 1)+(Range 2) we have [A=total sum of { } >Total sum of { 1}].
We have the following inequality.
f(nmax"'])_ {kmax}<2A (44)

2.4 Condition of A>B

From (43) and (44) we have the following inequality.
f (Mnaxt1) = [Hknad or {Knax=1}1<2A
As shown in item 1.3.1 {f(3)-f(2)} is the maximum in all { }. Then
{f3)~F(2)} > [{knax} OF {knax=1}1
{fB)-F @} >F(Mmax) — T (Npaxt1)
We have the following inequality from the above conditions.
2A> T (Nnaxt1) = [ {knax} oF {Knax=1} 1> F (Npaxt1) = {f (3) T (2) }

> (M) —{F @) -F @ }-{FfB)-F(2)} = fma) -2{F 3)-T(2)} (45)
We have the following condition for A>B from (42) and (45).
2A> T (Nnay) =2 {F (3) =T (2) } > (na) T () +{f (3)-F (2)} >2B (46)
From (46) we can have the final condition as fol lows.
4/3)f(2) >f(3) 47

21



(Graph 6) shows (4/3)f(2)-f(3) = (4/3) (221/2-21/2) - (3a-1/2-3-a"1/2)

0.008
0.007
0. 006
0. 005
0.004
0.003
0.002
0. 001

0

Graph 6:(4/3)f(2)-f(3)

/ \

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Table 1: The values of (4/3)f(2)-f(3)

a=

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

(4/3)f(2)-f(3)

o

0.001903| 0.003694[ 0.005257| 0.00648)| 0.007246] 0.007437[ 0.006933| 0.005611]| 0.003343 0

(Graph 7) shows [differentiated (4/3)f(2)-f(3) regarding a] i.e.

4/ @-F (3) = (4/3) (10g2(2="/=2+) }~{10g3 (324319}

0.06

0.04

0.02

-0. 02

-0. 04

-0. 06

-0. 08

-0.1

Graph 7: (4/3)f (2)-f" (3)

ﬁ——_-—_-----"“-‘
“‘-.\~\\\\\\\\

0 0.05 0.1 0.15 0.2 0.25 0. 0.35 0.4 0.45 0.5

~

Table 2 : The values of (4/3)f (2)-f (3)

a=

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

(4/3)f(2)-f'(3) | 0.038443| 0.037313]| 0.033921| 0.02825| 0.020277( 0.009967| -0.00272| -0.01785| —0.03547| —0.05567| —0.07852

From (Graph 6) and (Graph 7) we can find [(4/3)fT(2)-f(3) >0 in 0<a<1/2]

that means A>B i.e. F(a)>0 in 0<a<1/2.
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3 Verification of A>B (f(nmx) is odd-numbered term.)

f (Nmax) 1S odd-numbered term as fol lows.

f(2)-f(3)+f (4)-F(B)+f (6) - ——

{f@Q-F@}+{f@-FG) I+ — +{f (nax4) T (Nnax=3) } + {f (Mnax=2) =F (Mpax=1) }

+{f (Nnad) =F (Nt 1)} {F (Noarct2) =F (N #3) } + —————

And

B= {fR)-F@}+{f () -F@}+ — +{f (nax=3) =F (Nnax=4) } + {f (pax=1) =T (Npax=2) }

A = {F (Nnax) =T (Nt 1) }+{F (i t2) = (M t3) 1+ {F (N +4) —F (g #5) 1+ ————

f(mad = {F (Mnad) =F (Mt 1) }+ {F (Nt 1) =F (et 2) }+{F (Nt 2) =F (Nt 3) 1+ {F (Marct3) =F (Nan+4) T +

F(a)

After the same process as in item 2 we can have the following condition.

f (M=) -F(2)+{f (3)-F(2)} >2B (48)
As shown in item 1.3.1 {f(3)-f(2)} is the maximum in all { }. Then

{f3)~F (2} > [{kna or {Knax=1}]

 (Nnax) > (Npax—1)
We have the following inequality from the same process as in item 2 and the

above conditions.

2A> f(Nmax) = [{kmaxt OF tkmax=1H>fNmax) = {f3)—F(2)} > fnmax—1) — {f(3)-R(2)} (49)
We have the following condition for A>B from (48) and (49).
2A>F (Nnax=1) = {F B) =T ()} > F (Npax=1) =F (2) +{f (3) - (2) } >2B (50)
From (50) we can have the final condition as follows.
3/2)f(2) >f(3) (51)

In the inequality of (3/2)f(2)> (4/3)f(2)>f@)>0, (3/2)f(2)> 4/3)f(2) is
true self-evidently and in item 2.4 we already confirmed that the following (47)
is true in 0<a<1/2.

4/3)f(2) >3 47

Therefore (51) is true in 0<a<1/2.

4 Conclusion
F (a)=0 has the only one solution of a=0 due to
[0=<a<1/2], [F(0)=0] and [F(a)>0 in 0<a<1/2].
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Appendix 5 : Solution for F(a)=0 (2)

1 Investigation of F(a)y

f(n) = # - nn)W =0 (n=2,3,4,5, ——— ) (8)

F(a) = f(2)-f (3)+f(4)-f(5)+f (6)- ——— (15)
F(a,N): the partial sum from the first term of F(a) to the N-th term of F(a)

a=0 is the solution for F(a)=0 because of f(n)=0 at a=0. F(a) is the
alternating series. So F(a,N) repeats increase and decrease by f(n) with increase
of N. NugloF(a, N) converges to F(a) due to nllyof(n):o }

(Graph 1) shows F(0.1,N) from N=1 to N=5,000. The upper edge of blue area
shows F(0.1,2N-1) and lower edge of blue area shows F (0.1, 2N).

((Graph 1) is line graph. Graph has so many data points that the area

surrounded by data points becomes blue.)

Graph 1:F(0.1,N) from N=1 to N=5,000
0.14

0.12
0.1 F (0.1, 2N-1)

F(0.1,4999)

0.08
0.06

0.02

-0. 02

F(0.1,5000)

-0. 04

F(0.1,2N)

-0.06

Upper-right point of blue area, F(0.1,4999) decreases to F(a) through N—oo
and lower-right point of blue area, F(0.1,5000) increases to F(a) through N—co.
F(0.1) can be approximated with {F(0.1,4999)+ F(0.1,5000)}/2

But {F(a,N-1)+F(a,N)}/2 is also the partial sum of alternating series. It
repeats increase (decrease) of {f(n)—f(n-1)}/2 and decrease (increase) of {f(n+1)-

f(n)}/2 when n is even(odd) number. So we approximate F(a) with the average of
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{F(a,N-1)+F(a,N)}/2 i.e. F(a)y for better accuracy according to the following
(61).

F (a, N)+F (a, N-1) + F (a, N+1) +F (a, N)

2 > 2 = F(a)y 61)

Left side of (61) converges to F(a) through N—co. We can have the accurate
F(a)y from F(a,N) of large N. (Graph 2) shows F(a)y calculated at 3 cases of
N=500, 1000, 5000.

Graph 2: F(a), at 3 cases

0.25

0.2

0.15 //
0.1 /
0.05 /
0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
——N=500 ——N=1,000 ——N=5,000

Table 1: The values of F(a)y

a 0 0.05 0. 0.15 02 0.25 03 035 04 045 05
N=500 01 0.01932876| 0.03865677) 0.05798326| 0.0773074| 0.09662832) 0.11594507] 0.13525658| 0.15456168] 0.17385904| 0.19314718
0

0

N=1,000 0.01932681| 0.03865282| 0.06797725( 0.0772993| 0.09661821) 0.11593325/ 0.13524382| 015454955 0.17385049 0.19314743
N=5,000 0.01932876] 0.03865676] 0.05798324] 0.07730738] 0.09662829] 0.11594504] 0.13525695] 0.15456165] 0.17385902] 0.19314718

3 line graphs overlapped. Because F(a)y calculated at 3 cases of N=500, 1000
5000 are equal to 4 digits after the decimal point.
The range of a is 0=a<1/2. a=1/2 is not included in the range. But we added

F(1/2)y to calculation according to the following reason
[f(n) at a=1/2] is (1-1/n) and ntig(1—1/n) does not converge to zero. Therefore

F(1/2) fluctuates due to 4im;f00:1. But {F(a,N)+F(a,N-1)}/2 is partial sum of

alternating series with the term of {f(n+1)-f(n)}/2 and it can converge to the
fixed value on the condition of Jig{f(n+1)—f(n)}:0. Jiﬂ{f(n+1)—f(n)} converges

to zero due to f(n+t1)-f(n)=1/(n+n?).
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Investigation of F" (a)n
We define as fol lows.
f(n) = df(n)/da = n*"2logn + n="2logn = n*'"2logn (1 + n"2) > 0
Fi@ =f @-f @+ A4)-f () + ——
F'(a,N): the partial sum from the first term of F' (a) to the N-th term of F’ (a)

F*(a) converges due to Jiglf‘(n):o. F'(a) is alternating series. We can
calculate approximation of F (a) i.e. F (a)y according to the following (62).

Jim F* (a)y converges to F' (a).

F*(a, N)+F" (a, N-1) + F* (a,N+1)+F" (a, N)
2 2
2

(Graph 3) shows F (a)y calculated by (62) at 5 cases of N=500, 1000, 2000,
5000, 10000. 5 line graphs overlapped. Because F' (a)y of 5 cases are equal to 6

= F (a)n (62)

digits after the decimal point.

Graph 3: F'(a)y at 5 cases
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
—N=500 ——N=1,000 N=2,000 ——N=5,000 ——N=10, 000
Table 2 : The values of F' (a)y
a 0 0.05 0.1 015 02 (.25 03 (.35 04 045 05

N=500 | 0.38657754| 0.38657004] 0.38654734| 0.38650882 0.38645348| 0.3863799| 0.38628625( 0.38617032| 0.3860295] 0.38586078| 0.38566075
N=1,000 | 0.38657764| 0.38657014] 0.38654743| 0.38650891 0.38645355] 0.38637995| 0.38628627| 0.3861703| 0.3860294] 0.38586057| 0.38566038
N=2000 | 0.38657766| 0.38657016] 0.38654745| 0.38650893| 0.38645357] 0.38637996| 0.38628628| 0.3861703| 0.38602938] 0.38586052| 0.38566029
N=5,000 | 0.38657766| 0.38657016] 0.38654745| 0.38650893| 0.38645358| 0.38637997| 0.38628628| 0.3861703| 0.38602938] 0.38586051| 0.38566026
N=10,000 | 0.38657766/ 0.38657016] 0.38654745| 0.38650893 0.38645358| 0.38637997| 0.38628629| 0.3861703| 0.38602938] 0.3858605| 0.38566026
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The range of a is 0=a<1/2. a=1/2 is not included in the range. But we
added F* (1/2)y to calculation according to the following reason.
[f (n) at a=1/2] is (1+1/n) logn and nIﬁiomo(1+1/n) logn does not converge to zero.
F(1/2) diverges to oo due tonllmof‘(n):w )

But {F (a,N)+F" (a,N-1)}/2 is partial sum of alternating series with the
term of {f (n+1)-f (n)}/2 and it can converge to the fixed value on the
condition of nuLno{f‘ (n+1)=f(n)}=0. nIﬁiomo{f‘ (n+1)-f(n)}=0 is true as follows.

df (n) _ 1+n-logn
dn n2

f (n) is the increasing function regarding n due to [ > 0].

It means [0 < f (n+1)-f (n)].
0 < f (n+D)-f (n) = {1+1/(n+1) } log(n+1) - (1+1/n) logn
< (141/n) log(n+1) = (1+1/n) logn = (1+1/n) log (1+1/n)
From the above inequality we can have nlimo {f (n+1)-f (n)}=0 due to
nIqiomo{(1+1/n) log (1+1/n)}=0.
3 Approximation of F (a)
F*(a)y calculated by (62) converges to F'(a) through N—oo. To confirm how
large N we need to approximate F (a) accurately, we calculated F (a)y with N
from N=500 to N=100,000. (Graph 4) shows F (a)n/F (a)s0 from N=500 to N=100, 000

in various a.

Graph 4:F" (a)/F (@) in various a
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0. 9999995 \\
0.999999

\

0. 9999985

0.999998

N=500 1,000 2,000 5,000 10, 000 50, 000 100, 000
a=0 a=0.1 a=0.2 a=0.3 a=0.4 a=0.5
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Table 3 : The values of F (a)y/F" (@) 50

a 0 0.1 0.2 0.3 0.4 0.5
N=500 1 1 1 1 1 1
1,000 1.000000242 1.000000232 1.000000189 1.000000061 0.999999745 0.999999051
2,000 1.000000294 1.000000284 1.000000234 1.000000082 0.999999692 0.999998811
5,000 1.000000306 1.000000296 1.000000246 1.000000089 0.999999681 0.999998743
10,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998734
50,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731
100,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731

We can find the following from (Graph 4) and (Table 3).

3.1 F (a)s0,000/F (a)s00 and F~ (a) 100 000/F ~ (@) 500 have the same values. When N is
larger than N=50,000 the values are as same as at N=50,000. So we can
consider F (a)so,000 = F" (a).

3.2 The differences between F (a)s0 and F (a)s0,000 have the maximum value at
a=1/2. The maximum difference is [1-0.999998731 = 0.00013%] as shown in

(Table 3). Therefore F (a)soo is almost equal to F (a)soo00 i.€. F (a).
N=500 is enough to obtain the accurate F (a).
From item 3.2 we can consider that (Graph 3) shows F'(a) accurately. (Graph
3) illustrates [0.3866 > F (a) > 0.3856 in 0=a<1/2]. Therefore F(a) is the

monotonical ly increasing function in 0=a<1/2.

4 Conclusion
F (a)=0 has the only one solution of a=0 due to
[0=a<1/2], [F(0)=0] and
[ F(a) is the monotonically increasing function in 0=a<1/2.].
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