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Abstract

In this paper I discuss Question 8 from the Chalkdust 2019 Christmas card. In
particular I investigate the ratio of the number of trailing zeros of a factorial to its
number of digits.

The Puzzle
I set problems, that I find interesting, for colleagues at work. Recently I set a problem
based on question 8 from the 2019 Chalkdust Christmas card [1], which basically asked
for the number of trailing zeros of 243! (my version, as I wanted to use a larger factorial,
asked for the trailing zeros of 1253!).

Such problems, if you know how, are reasonably simple to solve, though in this case
I received no solutions. Each trailing zero arises from the pairing off of 2s and 5s in the
prime decomposition of the factorial. There are always more 2s than 5s in this (which
though obvious I prove as Lemma 2 below), so we are really just counting the 5s in the
decomposition. This of course implicitly assumes the Fundamental Theorem of Arith-
metic, that any positive integer may be written as a product of primes in essentially
one way, see Hardy and Wright [3] (I am obliged to use this as a reference rather than
any other of the innumerable possibilities as Hardy is my great grand supervisor at least
according to the Maths Genealogy Project [2]).That is, any positive integer n > 1 may
be written n = pα1

1 p
α2
2 ...p

αN
N , pi prime, p1 < p2 < ... < pN , αi > 0 where the ps and αs

are unique for n. I will refer to αi as the number of times that pi appears in the prime
decomposition of n, and also as the exponent of pi in the decomposition.

In order to provide more interesting information in the solution I wanted to include
the number of digits in 1253! At which point I noticed that for this factorial the number
of trailing zeros was about 10% of the number of digits. This lead to the question: what
fraction of the digits of a factorial are trailing zeros. This fraction is plotted in figure 1,
and the limit for large factorials is answered by Theorem 3, below.

In the following sections I provide proofs that there are more 2s than 5s in the prime
decomposition of a factorial, and the general solution to such puzzles and develop appro-
priate bounds for the number of trailing zeros and digits of a factorial which allow me to
determine the limit of the ratio of these.

Mathematical Analysis of the Puzzle
Lemma 1: In the prime decomposition of the factorial of a positive integer n the expo-
nent, or the number of times it appears in the product, of a prime p ≤ n is :

Ep(n) =

blogp(n)c∑
k=1

bn/pkc
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where bxc denotes the floor function at x (the greatest integer less than or equal to x)

Proof: The first term in the sum counts the number of elements of 1, 2, ..n that are
divisible by p, the second term the number of elements divisible by p2, and so on up to
the maximum power of p that divides n!. Summing these gives the exponent of p in the
prime decomposition of n!. That is it counts each number in the factorial of the form
apk where p - a exactly k times.�

Lemma 2: For any positive integer n The exponent of 2 in the prime decomposition of
n! is larger than the exponent of 5 in the decomposition.

Proof: For n ≥ 2 truncating the series for E2(n) at the first term we see that the
exponent of 2 in the prime decomposition of n! : E2(n) ≥ bn/2c. Also:

E5(n) =

blog5(n)c∑
k=1

bn/5kc ≤
blog5(n)c∑
k=1

n/5k <
∞∑
k=1

n/5k = n/4 . . . (1)

But n/4 < bn/2c when n ≥ 2. So for n ≥ 2 the exponent of 2 in n! is greater than that
of 5. The case for n = 1 can be confirmed by hand.�

We may observe in numerical experiments that as n → ∞ the ratio of 2s to 5s appears
goes to 4.

Theorem 1: The number of trailing zeros of n!:

Z(n) = E5(n) =

blog5(n)c∑
k=1

bn/5kc . . . (2)

Proof: This follows directly from Lemma 2. �

So for the problem as I set it, we have:

Z(1253) = b1253/5c+ b1253/52c+ b1253/53c = 250 + 50 + 10 + 2 = 312

which may be checked with Wolfram Alpha [4] using the query "number of trailing zeros
of 1253!"

As an extension of Lemma 2, we may ask for any primes p, q what is limit of the ratio
of Ep(n)/Eq(n) as n→∞. This is addressed by Theorem 2.

Theorem 2: For any primes p and q, the limit of the ratio of the number times p appears
in the prime decomposition of n! to the number of times q appears in the decomposition:

lim
n→∞

Ep(n)

Eq(n)
=
q − 1

p− 1

Proof: As we may write x = bxc+ θx where θx ∈ [0, 1) we have:

Ep(n) =

blogp(n)c∑
k=1

bn/pkc =

blogp(n)c∑
k=1

n/pk

− θn,p × blogp(n)c
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where θn,p ∈ [0, 1). Then:

Ep(n)

Eq(n)
=

(∑blogp(n)c
k=1 1/pk

)
− θn,p × blogp(n)c/n(∑blogq(n)c

k=1 1/qk
)
− θn,q × blogq(n)c/n

. . . (3)

Now, as limx→∞ loga(x)/x = 0, for any a a positive integer, and
∑∞

k=1 1/x
k = 1/(x −

1),when x > 1, the limits as n→∞ of both the numerator and denominator on the right
in (3) above, exist and are equal to 1/(p − 1) and 1/(q − 1) respectively. Therefore the
limit of their ratio exists, and is equal to the ratio of the limits:

lim
n→∞

Ep(n)

Eq(n)
=
q − 1

p− 1
�

Hence, We may observe that as n→∞ the ratio of 2s to 5s in the prime decomposition
of n! goes to 4, which agrees with what numerical experiments lead me to expect.

Analysis of the Puzzle Extension
In order to provide more interesting information in the solution I wanted to include the
number of digits in 1253!. As this was before I realised that Wolfram Alpha provided
this information by default for factorials I decided to see what I could do with Stirling’s
formula ( Abramowitz and Stegun 6.1.38 [5]):

n! =
√
2π nn+1/2 exp(−n+

θ

12n
)

where n > 0 and θ ∈ (0, 1).

Lemma 3:The number of digits d(n), of a positive integer n is:

d(n) = blog10(n)c+ 1

Proof: Any k digit number n may be written:

n = 10k−1x+ y

where x ∈ {1, 2, ..., 9} is the leading digit of n, and y < 10k−1. So 10k−1 ≤ n < 10k, and
k − 1 ≤ log10(n) < k, so:

blog10(n)c = k − 1.

Which gives d(n) = blog10(n)c+ 1 �

By Lemma 3, the number of digits of n!, D(n) is:

D(n) = b1
2
log10(2π) + (n+ 1/2) log10(n) + log10(e)(−n+

θ

12n
)c+ 1

Since for large n, 0 < log10(e)
θ

12n
� 1, if we let:

D∗(n) = b1
2
log10(2π) + (n+ 1/2) log10(n)n− n log10(e)c+ 1
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we have
D∗(n) ≤ D(n) ≤ D∗(n) + 1 . . . (4)

and usually D∗(n) = D(n). We may also note that:

D∗(n) < (n+ 1/2) log10(n)n− n log10(e) . . . (5)

Putting n = 1253 gives D∗(n) = 3340, also D(1253) has the same value for all θ ∈ (0, 1)
and so D(n) = D∗(n) = 3340. Which agrees with the value for the number of digits
given by Wolfram Alpha.

At this point I noticed that Z(1253) ≈ D(1253)/10 and started wondering about what
happened to Z(n)/D(n) as n→∞. Initially I used a numerical package to calculate and
plot this ratio (see figure 1). Then proceeded with the following analysis.

Theorem 3. The limit of R(n) = Z(n)/D(n) as n→∞ is zero.

Proof: Combining (1) and (2) we have for all n ≥ 2

0 ≤ Z(n) <
n

4

And combining (4) and (5):

D(n) ≥ D∗(n) > (n+ 1/2) log10(n)− n log10(e)

So:
0 < R(n) <

1

4(log10(n)− log10(e))
=

1

4 log10(n/e)

And as limn→∞ log10(n) =∞ this implies that:

lim
n→∞

R(n) = 0 �
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Figure 1: Plot of R(n) the Ratio of Number of Trailing Zeros to Number of Digits of n!
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