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Abstract 

The exact and explicit general periodic solution of polynomial differential 

equations of Duffing type is calculated as a power law of the cosine function. In 

doing so the solution of all Duffing equations of three terms like the cubic, 

quintic and heptic equations may be easily expressed in a straightforward 

fashion.  
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Theory 

Let us consider the second order nonlinear differential equation [1] 
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where a , b , α  and q  are arbitrary parameters, and overdot means derivative 

with respect to time. In [1] the problem to secure exact and sinusoidal periodic 

solution to (1) was solved under the conditions that 2> −q , 2+= qα , and 
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and all the solutions of (2) are periodic and expressed as a power law of a single 

sine function of time t  as 
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where  0>a . It was the first time such a feat has been reached for a Lienard 

equation with strong and high order nonlinearity in the world of mathematics. 

The equation (2) is of the general form 
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so one may see that to obtain the solution (3) it was necessary that the 

coefficients 1a  and 2a  are related in a precise relationship. Such a relation 

between 1a  and 2a  can be a restriction for the usefulness of equation (2). Now 

for 0>m  , that is a positive integer 0>nm = , the equation (4) reduces to Duffing 

type equation. As examples the cubic Duffing equation 
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is obtained for 3=n . The quintic Duffing equation 
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is ensured for 5=n . In the perspective of the polynomial differential equation of 

Duffing type (4) where 0>nm = , the problem to solve is to integrate (4) 

explicitly under the condition that 1a  and 2a  are general parameters. To do so, 

consider the equation (1). Let 2−=q  and n=α . Then the equation (1) becomes 
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The equation (7) is of the form (4) where  

ba −=1 , 
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 With these values the coefficients 1a  and 2a  are always general parameters. The 

corresponding first order differential equation may be written as [1] 
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from which one may get 
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The integration of (10) is immediate and yields the exact and explicit general 

solution of (7) in the form 
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where 0≠n , and K  an arbitrary constant. One may observe that all solutions of 

(7) are periodic with 0<a , and 0<b . For 2=n , the solution of the cubic Duffing 

equation   
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takes the form 
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The solution of the quintic Duffing equation 
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has the expression 
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 In conclusion the exact and explicit general solution of all polynomial 

differential equations of Duffing type with three terms may be obtained from the 

equation (11) easily. 
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