A Note on L^p -Convergence and Almost Everywhere Convergence

Yu-Lin Chou*

Abstract

It is a classical but relatively less well-known result that, for every given measure space and every given $1 \le p \le +\infty$, every sequence in L^p that converges in L^p has a subsequence converging almost everywhere. The typical proof is a byproduct of proving the completeness of L^p spaces, and hence is not necessarily "application-friendly". We give a simple, perhaps more "accessible" proof of this result for all finite measure spaces.

Keywords: almost everywhere convergence; convergence in L^p ; subsequences

MSC 2020: 28A20; 60F25; 60F15

1 Introduction

There is the classical result: For every measure space and every $1 \leq p \leq +\infty$, every sequence in L^p that converges in L^p has a subsequence converging almost everywhere. In contrast with the classical result that every sequence of measurable functions converging in measure has a subsequence converging almost everywhere, the result under consideration may be relatively less well-known.

In Rudin [1], the concerned result (Theorem 3.12) follows from the given proof of the completeness of L^p spaces. Rudin's proof may be considered technical, and hence need not be as readily graspable for application-oriented purposes.

However, for finite measures spaces, a non-technical proof by basic means is available; we find it worth sharing.

2 Proof

Thoughout, we consider precisely real-valued functions.

^{*}Yu-Lin Chou, Institute of Statistics, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.; Email: y.l.chou@gapp.nthu.edu.tw.

For clarity, what we should like to prove is the following

Theorem. Let $(\Omega, \mathscr{F}, \mathbb{M})$ be a finite measure space; let $1 \leq p \leq +\infty$; let $f, f_1, f_2, \dots \in L^p(\mathbb{M})$. If $f_n \to_{L^p} f$, then there is some subsequence $(f_{n_j})_{j \in \mathbb{N}}$ of $(f_n)_{n \in \mathbb{N}}$ such that $f_{n_j} \to_{a.e.} f$ as $j \to \infty$.

Proof. If (f_k) is a sequence of \mathscr{F} -measurable functions, then $f_k \to_{a.e.} f$ if and only if

$$\mathbb{M}(\limsup_{k \to \infty} \{ |f_k - f| > l^{-1} \}) = 0 \text{ for all } l \in \mathbb{N}.$$
 (1)

This follows directly from the definition of almost everywhere convergence. Since M is a finite measure by assumption, the continuity of M implies that (1) is equivalent to

$$\lim_{J \to \infty} \sum_{k>J} \mathbb{M}(|f_k - f| > l^{-1}) = 0 \text{ for all } l \in \mathbb{N},$$

which is equivalent to

$$\sum_{k} \mathbb{M}(|f_k - f| > l^{-1}) < +\infty \text{ for all } l \in \mathbb{N}.$$
(2)

With the above fact in mind, if $1 \le p < +\infty$, then

$$\mathbb{M}(|f_n - f| > l^{-1}) = \mathbb{M}(|f_n - f|^p > l^{-p}) \le l^p \int |f_n - f|^p d\mathbb{M}$$
 (3)

for all n, l. By the L^p -convergence assumption, for every $j \in \mathbb{N}$ there is some $n_j \in \mathbb{N}$ such that $(n_j)_j$ is strictly increasing and

$$\int |f_{n_j} - f|^p \, \mathrm{d}\mathbb{M} < 2^{-j};$$

and so

$$\sum_{j} l^{p} \int |f_{n_{j}} - f|^{p} dM = l^{p} \sum_{j} \int |f_{n_{j}} - f|^{p} dM < +\infty$$

for all l. Now (3) and (2) together imply that $f_{n_j} \to_{a.e.} f$.

There remains the case where $p = +\infty$. With $|f_n - f|_{L^{\infty}}$ denoting the L^{∞} -norm of $f_n - f$ for each n, we have

$$\mathbb{M}(|f_n - f| > l^{-1}) \le \mathbb{M}(|f_n - f|_{L^{\infty}} > l^{-1}) \le l \cdot |f_n - f|_{L^{\infty}} \cdot \mathbb{M}(\Omega) \tag{4}$$

for all n, l. The convergence assumption again implies that for every $j \in \mathbb{N}$ there is some $n_j \in \mathbb{N}$ such that $(n_j)_j$ is strictly increasing and

$$|f_{n_j} - f|_{L^\infty} < 2^{-j},$$

and hence

$$\sum_{i} l \cdot |f_{n_{j}} - f|_{L^{\infty}} \cdot \mathbb{M}(\Omega) = l \cdot \mathbb{M}(\Omega) \cdot \sum_{i} |f_{n_{j}} - f|_{L^{\infty}} < +\infty$$

for all l. It then follows from (4) and (2) that $f_{n_j} \to_{a.e.} f$; this completes the proof. \square

References

[1] Rudin, W. (1987). Real and Complex Analysis, (international) third edition. McGraw-Hill.