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Abstract. — In this book, I present my collection of 23 papers written, with
different approaches to try to resolve the abc conjecture and others conjectures
related to it like c < rad2(abc).

This monograph can give an idea about the advancement of the comprehension
of the conjectures related to the problem cited above.

**********************************************

Résumé (Collection d’Articles Essayant de Résoudre la Conjecture abc
(Novembre 2018 - Novembre 2020))
Dans ce monograph, nous présentons 23 différents articles écrits pour essayer de

résoudre la conjecture abc et d’autres en relation comme celle de c < rad2(abc).

Ce recueil peut donner une idée sur l’avancement de la compréhension des con-
jectures objet du problème.
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CHAPTER 1

FERMAT’S LAST THEOREM =⇒ PROOF OF THE

ABC CONJECTURE

1.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(1) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We denote:

(2) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph OEsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 1. — (ABC Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(3) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

This paper about this conjecture is written after the publication of an article in

Quanta magazine about the remarks of professors Peter Scholze of the University

of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of

Shinichi Mochizuki [2]. I try here to give a simple proof that can be understood by

undergraduate students.

Our proof will use the Fermat’s Last Theorem approved by Andrew John Wiles in

1993 [3].

We recall the Fermat’s Last Theorem:
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Theorem 1. — The equation :

(4) xn + yn = zn

has no solutions with x, y, z all nonzero, relatively prime integers with n > 2 a

positive integer.

The negation of the last theorem is:

It exists A, B, C relatively prime integers and n > 2 a positive integer so that :

(5) An +Bn = Cn

1.2. Methodology of the proof

We denote :

A: Fermat’s Last Theorem(6)

B: ABC Conjecture(7)

and we use the following property (the contra-positive law, [4]) :

(8) A(False) =⇒ B(False) ⇐⇒ B(True) =⇒ A(True)

From the right equivalent expression in the box above, as A (FLT) is true, then B

(ABC Conjecture ) is true.

1.3. Proof of the conjecture

(33) We suppose that FLT is false, then it exists A, B, C positive coprime integers

and m a positive integer > 2 such:

(9) Am +Bm = Cm

the integers A, B, C, m are supposed large integers. We consider in the following

that A > B. Now, we use the ABC conjecture for equation (9). We choose the value

of ǫ ≈ 0.001, then it exists the constant K(ǫ) > 0, we want to find if :

Cm ?
< K(ǫ)rad(Am.Bm.Cm)1+ǫ

Cm ?
< K(ǫ) (rad(A).rad(B).rad(C))1+ǫ(10)

But rad(A) ≤ A < C, rad(B) ≤ B < C and rad(C) ≤ C, then we write (10) as :

(11) Cm ?
< K(ǫ) (rad(A).rad(B).rad(C))1+ǫ =⇒ Cm ?

< K(ǫ)C3.(1+ǫ)
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1.3.1. Case K(ǫ) ≤ 1

In this case, we obtain:

(12) Cm ?
< C3.(1+ǫ)

As ǫ ≪ 1 =⇒ 3(1 + ǫ) ≪ m, then Cm > K(ǫ)rad(Am.Bm.Cm)1+ǫ and the ABC

conjecture is false. Using the right member of the property (8), we obtain:

(13) ABC Conjecture True =⇒ FLT True

But as FLT holds, hence ABC Conjecture is true.

1.3.2. Case K(ǫ) > 1 and Cm > K(ǫ)

In this case, Let ǫ ≈ 0.001 and we suppose that K(ǫ) > 1. As FLT is supposed false,

we consider that it exits a solution of (9) such that Cm > K(ǫ) with Cm ≫C K(ǫ)

that means ∃ λ a positive constant depending of C such Cm = λ.K(ǫ) and λ ≈ Ch

with (m − h) <
m

2
. Then :

(14) Cm ?
< K(ǫ)C3(1+ǫ)

The last equation can be written as :

(15) λ
?
< C3(1+ǫ)

The equation (15) indicates that we can write λ ≈ C3 =⇒ m

2
< 3 =⇒ m < 6, then

the contradiction with 6≪ m. Hence :

Cm > K(ǫ)rad(Am.Bm.Cm)1+ǫ

and the ABC conjecture is false. Using the right member of the property (8), we

obtain:

(16) ABC Conjecture True =⇒ FLT True

But as FLT holds, hence ABC Conjecture is true.

1.3.3. Case K(ǫ) > 1 and Cm < K(ǫ)

We consider ǫ = 0.001 and we suppose that K(ǫ) > 1. As FLT is supposed false, we

consider that it exits a unique solution of (9) such that Cm < K(ǫ):

(17) Cm = Am +Bm

We obtain that:

(18) Cm < K(ǫ)rad(Am.Bm.Cm)1+ǫ

and the ABC conjecture is true for Cm = Am + Bm, but there is a contradiction

because the hypothesis of the beginning used for the proof is false, then this case is
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to reject.

The proof of the ABC conjecture is achieved.

1.4. Conclusion

In the mathematical literature, the ABC conjecture, assumed true, is used to ap-

prove the Fermat’s Last Theorem, in our paper, we have given a proof that the

ABC conjecture is true using the Fermat’s Last Theorem. We can announce the

important theorem:

Theorem 2. — For each ǫ > 0 , there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, then :

(19) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.
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CHAPTER 2

THE ABC CONJECTURE: A PROOF OF

C < rad2(ABC)

To the memory of my Father who taught me arithmetic.

2.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(20) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(21) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) ([1]). It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given above:

Conjecture 2. — ( ABC Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then:

(22) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ. We know that numerically,
Logc

log(rad(abc))
≤ 1.616751 ([2]). Here we will give a proof that:

(23) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain a proof of the veracity of the ABC

conjecture.
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2.2. A Proof of the condition (23)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a.

If c ≤ rad(ab) then we obtain:

(24) c ≤ rad(ab) < rad2(abc)

and the condition (23) is verified.

In the following, we suppose that c > rad(ab).

2.2.1. Case c = a+ 1

(25) c = a+ 1 = µarad(a) + 1
?
< rad2(ac)

2.2.1.1. µa = 1

In this case, a = rad(a), it is immediately truth that :

(26) c = a+ 1 < 2a < rad(a)rad(c) < rad2(ac)

Then (25) is verified.

2.2.1.2. µa Ó= 1 , µa < rad(a)

we obtain :

(27) c = a+ 1 < 2µa.rad(a)⇒ c < 2rad2(a)⇒ c < rad2(ac)

Then (25) is verified.

2.2.1.3. µa ≥ rad(a)

We have c = a + 1 = µa.rad(a) + 1 ≤ µ2
a + 1

?
< rad2(ac). We suppose that

µ2
a + 1 ≥ rad2(ac) =⇒ µ2

a > rad2(a).rad(c) ≥ 3rad2(a) =⇒ µa >
√
3rad(a) ≥

2rad(a) then µa > 2rad(a), that is the contradiction with µa ≥ rad(a). We deduce

that c ≤ µ2
a + 1 < rad2(ac) =⇒ c < rad2(ac) and the condition (25) is verified.

2.2.2. c = a+ b

We can write that c verifies:

c = a+ b = rad(a).µa + rad(b).µb = rad(a).rad(b)

(
µa

rad(b)
+

µb

rad(a)

)

=⇒

c = rad(a).rad(b).rad(c)

(
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)k

)

(28)
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We can write also:

(29) c = rad(abc)

(
µa

rad(b).rad(c)k
+

µb

rad(a).rad(c)

)

To obtain a proof of (25), one method is to prove that :

(30)
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)
< rad(abc)

2.2.2.1. µa = µb = 1

In this case, it is immediately truth that :

(31)
1

rad(ai
+

1

rad(bj
≤ 5

6
< rad(c).rad(abc)

Then (25) is verified.

2.2.2.2. µa = 1 and µb > 1

As b < a =⇒ µbrad(b) < rad(a) =⇒ µb

rad(a)
<

1

rad(b)
, then we deduce that:

(32)
1

rad(b)
+

µb

rad(a)
<

2

rad(b)
< rad(c).rad(abc)

Then (25) is verified.

2.2.2.3. µb = 1 and µa ≤ (b = rad(b))

In this case we obtain:

(33)
1

rad(a)
+

µa

rad(b)
≤ 1

rad(a)
+ 1 < rad(c).rad(abc)

Then (25) is verified.

2.2.2.4. µb = 1 and µa > (b = rad(b))

As µa > rad(b), we can write µa = rad(b) + n where n ≥ 1. We obtain:

(34)

c = µarad(a) + rad(b) = (rad(b) + n)rad(a) + rad(b) = rad(ab) + nrad(a) + rad(b)

We verify that n < b, then:

c < 2rad(ab) + rad(b) =⇒ c < rad(abc) + rad(abc) < rad2(abc)

=⇒ c < rad2(abc)(35)

2.2.2.5. µa.µb Ó= 1, µa < rad(a) and µb < rad(b)

we obtain :

(36) c = µcrad(c) = µa.rad(a) + µb.rad(b) < rad2(a) + rad2(b) < rad2(abc)
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2.2.2.6. µa.µb Ó= 1 , µa ≤ rad(a) and µb ≥ rad(b)

We have:

(37) c = µa.rad(a) + µb.rad(b) < µaµbrad(a)rad(b) ≤ µbrad2(a)rad(b)

Then if we give a proof that µb < rad(b)rad2(c), we obtain c < rad2(abc). As

µb ≥ rad(b) =⇒ µb = rad(b) + α with α a positive integer ≥ 0. Supposing that

µb ≥ rad(b)rad2(c) =⇒ µb = rad(b)rad2(c) + β with β ≥ 0 a positive integer. We

can write:

rad(b)rad2(c) + β = rad(b) + α =⇒ β < α

α − β = rad(b)(rad2(c)− 1) > 3rad(b) =⇒ µb = rad(b) + α > 4rad(b)(38)

Finally, we obtain:

(39)

{

µb ≥ rad(b)

µb > 4rad(b)

Then the contradiction and the hypothesis µb ≥ rad(b)rad2(c) is false. Hence:

(40) µb < rad(b)rad2(c) =⇒ c < rad2(abc)

2.2.2.7. µa.µb Ó= 1 , µa ≥ rad(a) and µb ≤ rad(b)

The proof is identical to the case above.

2.2.2.8. µa.µb Ó= 1 , µa ≥ rad(a) and µb ≥ rad(b)

We write:

(41)

c = µarad(a) + µbrad(b) ≤ µ2
a + µ2

b < µ2
a.µ2

b

?
< rad2(a).rad2(b).rad2(c) = rad2(abc)

As µa ≥ rad(a) and µb ≥ rad(b), we can write that :

µa = rad(a) +m

µb = rad(b) + n

with m, n ≥ 0 two positive integers. Let F (x, y) the function :

(42)

F (x, y) = (x+rad(a))(y+rad(b))−rad(abc), (x, y) ∈ I =]−rad(a),+∞[×]−rad(b),+∞[

The set of points M(x, y) ∈ I verifying F (x, y) = 0 is the hyperbola C given by :

(43) y =
−rad(b).x+ rad(abc)− rad(ab)

x+ rad(a)

The curve C intersects the axis x = 0 and y = 0 at the two points M1(0, y1 =

rad(b)(rad(c)− 1)) and M2(x2 = rad(a)(rad(c)− 1), 0). The region below the curve
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C verifies F (x, y) < 0. F (m, n) = µa.µb − rad(abc) < 0 if we have m < x2 ⇒ m <

rad(a)(rad(c)− 1) and n < y1 ⇒ n < rad(b)(rad(c)− 1). We suppose now that:

m ≥ rad(a)(rad(c)− 1) =⇒ m > rad(a) =⇒ µa > 2rad(a) =⇒ a > 2rad2(a)

n ≥ rad(b)(rad(c)− 1) =⇒ n > rad(b) =⇒ µb > 2rad(b) =⇒ b > 2rad2(b)

then c > 2(rad2(a) + rad2(b)) > 4rad(ab) =⇒ c > 4rad(ab)(44)

The last inequality c > 4rad(ab) gives the contradiction with the condition

c > rad(ab) supposed above. Then we obtain F (m, n) < 0 =⇒ µa.µb − rad(abc) <

0 =⇒ c < rad2(abc).

We announce the theorem:

Theorem 3. — Let a, b, c positive integers relatively prime with c = a+b and b < a,

then c < rad2(abc).
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CHAPTER 3

THE ABC CONJECTURE: THE END OF THE

MYSTERY

3.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(45) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(46) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 3. — ( ABC Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then:

(47) c < K(ǫ).rad1+ǫ(abc)

where K is a constant K depending only of ǫ. This paper about this conjecture

is written after the publication of an article in Quanta magazine about the remarks

of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe

University Frankfurt concerning the proof of Shinichi Mochizuki [2]. I try here to

give a simple proof that can be understood by undergraduate students.

3.2. Proof of the conjecture (3)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a,

we can write that a verifies:

(48) c = a+ b ⇒ c(a − b) = a2 − b2 < e4a2
=⇒ c <

e4a2

a − b
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We can write also:

(49) c <
e4a2

a − b
.
K(ǫ).rad(abc)1+ǫ

K(ǫ).rad(abc)1+ǫ

We propose the constant K(ǫ) depending of ǫ as :

(50) K(ǫ) =
2

ǫ2

it is a decreasing function so that limǫ−→0K(ǫ) = +∞ and limǫ−→+∞K(ǫ) = 0. We

write (49) as:

(51) c <
e4a2

ǫ2

a − b
.

1

2rad(abc)1+ǫ
.K(ǫ).rad(abc)1+ǫ

It is known that 2 ≤ rad(q) for ∀ q a positive integer ≥ 2, then 23 ≤ rad(abc) =⇒
1

rad(abc)
≤ 1

23
. As 1 + ǫ < 1 +

4a2ǫ

3Log2
, we obtain:

(52) c <
e4a2

ǫ2

a − b
.

1

2
4+ 4a2ǫ

Log2

.K(ǫ).rad(abc)1+ǫ

Let:

(53) G(ǫ, a, b) =
e4a2

ǫ2

a − b
.

1

2
4+ 4a2ǫ

Log2

=
e4a2

ǫ2

a − b
.
1

16e4a2ǫ

Then, equation (52) is written as:

(54) c < G(ǫ, a, b).K(ǫ).rad(abc)1+ǫ

If we can give a proof that G(ǫ, a, b) < 1 independently of a, b, ǫ, we will obtain:

(55) c < G(ǫ, a, b).K(ǫ).rad(abc)1+ǫ < K(ǫ).rad(abc)1+ǫ

then the ABC conjecture holds with proposing the expression of the constant K(ǫ) =
2

ǫ2
.

3.2.1. The Proof

We write:

G(ǫ, a, b) =
e4a2

ǫ2

a − b
.
1

16e4a2ǫ

?
︷︸︸︷

< 1⇒ (a − b)16e4a2ǫ − e4a2
ǫ2

?
︷︸︸︷

> 0

As a > b, the minimum value of a − b is equal to 1, then we must verify if :

(56) 16e4a2ǫ − e4a2
ǫ2

?
︷︸︸︷

> 0
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We call:

φ(ǫ) = 16e4a2ǫ − e4a2
ǫ2 ⇒ φ′(ǫ) = 2(32a2e4a2ǫ − e4a2

ǫ)(57)

φ”(ǫ) = 2(128a4e4a2ǫ − e4a2
) > 0 ∀ǫ > 0 and a ≥ 2(58)

Let us study the function φ”(ǫ):

φ”(ǫ1) = 0 =⇒ ǫ1 =
1

4a2
Log

(

e4a2

128a4

)

=⇒

ǫ1 = 1− 7

4a2
Log2− Loga

a2
< 1; max ǫ1(a) = ǫ1(2) = 0.6534

φ′(ǫ1) =
e4a2

2a2

(

1− Log

(

e4a2

128a4

))

(59)

If we write the table of variations of the function φ when ǫ ∈ [0,+∞[, we obtain
successively φ”(ǫ) > 0, φ′(ǫ) > 0 and φ(ǫ) > 0 for ∀a ≥ 2, we deduce that ∀ǫ > 0, a ≥
2 :

16e3a2ǫ − e4a2
ǫ2 > 0 =⇒ (a − b)16e3a2ǫ − e4a2

ǫ > 0 =⇒

(a − b)16e3a2ǫ − e4a2
ǫ =⇒ 1 >

e4a2
ǫ2

(a − b)24+3a2ǫ
=⇒ G(ǫ, a, b) < 1(60)

Then we obtain the important result of the paper:

(61)

c < K(ǫ).rad(abc)1+ǫ ∀ǫ > 0

with the constant K(ǫ) =
2

ǫ2

Q.E.D

3.3. Examples

In this section, we are going to verify some numerical examples.

3.3.1. Example of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(62) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(63) K(ǫ) =
2

ǫ2
=

2

10−4



18 CHAPTER 3. THE ABC CONJECTURE: THE END OF THE MYSTERY

Let us verify (55):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< 2.104.(3× 109× 2× 23)1.01 =⇒

6436343 < 186142827.83(64)

Hence (55) is verified.

3.3.2. Example of A. Nitaj

3.3.2.1. Case 1

The example of Nitaj about the ABC conjecture [3] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(65)

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.10−4.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 5.53103686332861264803638e+ 1355

then (55) is verified.

3.3.2.2. Case 2

We take ǫ = 0.000001 = 10−6, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.1012.(2.3.5.7.11.13.41.79.311.953)1.000001 =⇒

613 474 845 886 230 468 750 < 57 658 458 237 370 924 700 998 757.17498

We obtain that (55) is verified.

3.3.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 1 662 145 872 249 552 942 316 264 200
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Ouf!

3.4. Conclusion

This is an elementary proof of the ABC conjecture, confirmed by four numerical

examples. We can announce the important theorem:

Theorem 4. — For each ǫ > 0 , there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, then ::

(66) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ equal to
2

ǫ2
.
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CHAPTER 4

A COMPLETE PROOF OF THE ABC

CONJECTURE

4.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(67) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(68) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 4. — ( ABC Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then : :

(69) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.616751 [2]. A conjecture was

proposed that c < rad2(abc) [3]. Here we will give a proof of it.

Conjecture 5. — Let a, b, c positive integers relatively prime with c = a+ b, then:

(70) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain a proof of the veracity of the ABC

conjecture.
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4.2. A Proof of the conjecture (5)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a.

If c < rad(ab) then we obtain:

(71) c < rad(ab) < rad2(abc)

and the condition (70) is verified.

In the following, we suppose that c ≥ rad(ab).

4.2.1. Case c = a+ 1

(72) c = a+ 1 = µarad(a) + 1
?
< rad2(ac)

4.2.1.1. µa = 1

In this case, a = rad(a), it is immediately truth that :

(73) c = a+ 1 < 2a < rad(a)rad(c) < rad2(ac)

Then (72) is verified.

4.2.1.2. µa Ó= 1 , µa < rad(a)

we obtain :

(74) c = a+ 1 < 2µa.rad(a)⇒ c < 2rad2(a)⇒ c < rad2(ac)

Then (72) is verified.

4.2.1.3. µa ≥ rad(a)

We have c = a+ 1 = µa.rad(a) + 1 ≤ µ2
a + 1

?
< rad2(ac). We suppose that µ2

a + 1 ≥
rad2(ac) =⇒ µ2

a > rad2(a).rad(c) > rad2(a) as rad(c) > 1, then µa > rad(a), that

is the contradiction with µa ≥ rad(a). We deduce that c < µ2
a + 1 < rad2(ac) and

the condition (72) is verified.

4.2.2. c = a+ b

We can write that c verifies:

c = a+ b = rad(a).µa + rad(b).µb = rad(a).rad(b)

(
µa

rad(b)
+

µb

rad(a)

)

=⇒ c = rad(a).rad(b).rad(c)

(
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)

)

(75)
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We can write also:

(76) c = rad(abc)

(
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)

)

To obtain a proof of (70), one method is to prove that :

(77)
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)
< rad(abc)

4.2.2.1. µa = µb = 1

In this case, it is immediately truth that :

(78)
1

rad(a)
+

1

rad(b)
≤ 5

6
< rad(c).rad(abc)

Then (70) is verified.

4.2.2.2. µa = 1 and µb > 1

As b < a =⇒ µbrad(b) < rad(a) =⇒ µb

rad(a)
<

1

rad(b)
, then we deduce that:

(79)
1

rad(b)
+

µb

rad(a)
<

2

rad(b)
< rad(c).rad(abc)

Then (70) is verified.

4.2.2.3. µb = 1 and µa ≤ (b = rad(b))

In this case we obtain:

(80)
1

rad(a)
+

µa

rad(b)
≤ 1

rad(a)
+ 1 < rad(c).rad(abc)

Then (70) is verified.

4.2.2.4. µb = 1 and µa > (b = rad(b))

As µa > rad(b), we can write µa = rad(b) + n where n ≥ 1. We obtain:

(81)

c = µarad(a) + rad(b) = (rad(b) + n)rad(a) + rad(b) = rad(ab) + nrad(a) + rad(b)

We have n < b, if not n ≥ b =⇒ µa ≥ 2b =⇒ a ≥ 2brad(a) =⇒ a ≥ 3b =⇒ c > 3b,

then the contradiction with c > 2b. We can write:

(82)

c < 2rad(ab) + rad(b) =⇒ c < rad(abc) + rad(abc) < rad2(abc) =⇒ c < rad2(abc)

4.2.2.5. µa.µb Ó= 1 , µa < rad(a) and µb < rad(b)

we obtain :

(83) c = µcrad(c) = µa.rad(a) + µb.rad(b) < rad2(a) + rad2(b) < rad2(abc)



26 CHAPTER 4. A COMPLETE PROOF OF THE ABC CONJECTURE

4.2.2.6. µa.µb Ó= 1 , µa ≤ rad(a) and µb ≥ rad(b)

We have:

(84) c = µa.rad(a) + µb.rad(b) < µaµbrad(a)rad(b) ≤ µbrad2(a)rad(b)

Then if we give a proof that µb < rad(b)rad2(c), we obtain c < rad2(abc). As

µb ≥ rad(b) =⇒ µb = rad(b) + α with α a positive integer ≥ 0. Supposing that

µb ≥ rad(b)rad2(c) =⇒ µb = rad(b)rad2(c) + β with β ≥ 0 a positive integer. We

can write:

rad(b)rad2(c) + β = rad(b) + α =⇒ β < α

α − β = rad(b)(rad2(c)− 1) > 3rad(b) =⇒ µb = rad(b) + α > 4rad(b)(85)

Finally, we obtain:

(86)

{

µb ≥ rad(b)

µb > 4rad(b)

Then the contradiction and the hypothesis µb ≥ rad(b)rad2(c) is false. Hence:

(87) µb < rad(b)rad2(c) =⇒ c < rad2(abc)

4.2.2.7. µa.µb Ó= 1 , µa ≥ rad(a) and µb ≤ rad(b)

The proof is identical to the case above.

4.2.2.8. µa.µb Ó= 1 , µa ≥ rad(a) and µb ≥ rad(b)

We write:

(88)

c = µarad(a) + µbrad(b) ≤ µ2
a + µ2

b < µ2
a.µ2

b

?
< rad2(a).rad2(b).rad2(c) = rad2(abc)

Supposing that µa.µb ≥ rad(abc), we obtain:

µa.µb ≥ rad(abc)⇒ rad(a).rad(b).µa.µb ≥ rad2(ab)rad(c) =⇒
ab ≥ rad2(ab).rad(c)⇒ a2 > ab ≥ rad2(ab).rad(c)

⇒ a > rad(ab)
√

rad(c) ≥ rad(ab)
√
7⇒







c >
√
7rad(ab) ≥ 3rad(ab)

c ≥ rad(ab)

(89)

The inequality c ≥ 3rad(ab) gives the contradiction with the condition c ≥ rad(ab)

supposed at the beginning of this section. Then we obtain µa.µb − rad(abc) < 0 =⇒
c < rad2(abc).

We announce the theorem:
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Theorem 5. — Let a, b, c positive integers relatively prime with c = a + b and

1 ≤ b < a, then c < rad2(abc).

4.3. The Proof of the abc conjecture (4)

We denote R = rad(abc).

4.3.1. Case: ǫ ≥ 1

Using the result of the theorem above, we have ∀ǫ ≥ 1:

(90) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

, ǫ ≥ 1

4.3.2. Case: ǫ < 1

4.3.2.1. Case: c ≤ R

In this case, we can write :

(91) c ≤ R < R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

, ǫ < 1

and the ABC conjecture is true.

4.3.2.2. Case: c > R

In this case, we confirm that :

(92) c < K(ǫ).R1+ǫ, K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triplets (a, b, c) checking c > R and:

(93) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒
R1−ǫ0 .c ≥ R2.K(ǫ0) > c.K(ǫ0) =⇒ R1−ǫ0 > K(ǫ0)(94)

As c > R, we obtain:

(95) c1−ǫ0 > K(ǫ0) =⇒ c > K(ǫ0)

(
1

1− ǫ0

)

We deduce that it exists an infinity of triples (a, b, c) verifying (93), hence the contra-

diction. Then the proof of the ABC conjecture is finished. We obtain that ∀ǫ > 0,
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c = a+ b with a, b, c relatively coprime:

(96) c < K(ǫ).rad(abc)1+ǫ with K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

Q.E.D

4.4. Examples

In this section, we are going to verify some numerical examples.

4.4.1. Example of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(97) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(98) K(ǫ) = 61.01e9999.99 = 1.8884880155640644914779227374022e+ 4343

Let us verify (96):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343≪ K(0.01)× 15042(99)

Hence (96) is verified.

4.4.2. Example of A. Nitaj

4.4.2.1. Case 1

The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79(100)

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311(101)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953(102)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(103)

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 6101e−99.9999.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 8.2558649305610435609546415285004e+ 48
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then (96) is verified.

4.4.2.2. Case 2

We take ǫ = 0.5, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(104)

613 474 845 886 230 468 750
?
< 61.5.e3.5.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 75 333 109 597 556 257 182 261.66(105)

We obtain that (96) is verified.

4.4.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 62.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 29 918 625 700 491 952 961 692 755 600(106)

We obtain that (96) is verified.

4.4.3. Example of Ralf Bonse

The example of Ralf Bonse about the ABC conjecture [2] is:

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(107)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1, 5683959920004546031461002610848e+ 33(108)

For example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

K(ǫ) = 61.01.e9999.99 = 5.2903884296336672264108948608106e+ 4343

Let us verify (96):

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

61.01.e9999.99.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.01

=⇒ 3.4136998783296235160378273576498e+ 44 <

1.7819595478010681971905561514574e+ 4377(109)

The equation (96) is verified.



30 CHAPTER 4. A COMPLETE PROOF OF THE ABC CONJECTURE

Ouf, end of the mystery!

4.5. Conclusion

This is an elementary proof of the ABC conjecture, confirmed by four numerical

examples. We can announce the important theorem:

Theorem 6. — For each ǫ > 0 , there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, then :

(110) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ equal to 61+ǫ.e

(
1

ǫ2
− ǫ

)

.
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CHAPTER 5

THE END OF THE MYSTERY OF THE ABC

CONJECTURE

5.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(111) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(112) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 6. — ( ABC Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then : :

(113) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.616751 [2]. A conjecture was

proposed that c < rad2(abc) [3]. Here we will give the proof of it.

Conjecture 7. — Let a, b, c positive integers relatively prime with c = a+ b, then:

(114) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain a proof of the veracity of the ABC

conjecture.
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5.2. A Proof of the conjecture (7)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a.

If c < rad(ab) then we obtain:

(115) c < rad(ab) < rad2(abc)

and the condition (114) is verified.

If c = rad(ab), then a, b, c are not relatively coprime. In the following, we suppose

that c > rad(ab). We can write :

c
?
< rad2(abc) =⇒ µc.rad(c)

?
< rad2(abc) =⇒

µc
?
< rad2(ab)rad(c) =⇒ µc

rad(c)

?
< rad2(ab) < c2 =⇒

µc

rad(c)

?
< c2 =⇒ µc

?
< c2rad(c) =⇒ µcrad(c)

?
< c2rad2(c) =⇒

c
?
< c2rad2(c) =⇒ 1 < c.rad2(c)(116)

Then c < rad2(abc). We announce the theorem:

Theorem 7. — Let a, b, c positive integers relatively prime with c = a + b and

1 ≤ b < a, then c < rad2(abc).

5.3. The Proof of the abc conjecture (6)

We denote R = rad(abc).

5.3.1. Case: ǫ ≥ 1

Using the result of the theorem above, we have ∀ǫ ≥ 1:

(117) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

, ǫ ≥ 1
We verify easily that K(ǫ) > 1 for ǫ ≥ 1.

5.3.2. Case: ǫ < 1

5.3.2.1. Case: c < R

In this case, we can write :

(118) c < R < R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the ABC conjecture is true.
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5.3.2.2. Case: c > R

In this case, we confirm that :

(119) c < K(ǫ).R1+ǫ, K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triplets (a, b, c) checking c > R and:

(120) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒
R1−ǫ0 .c ≥ R2.K(ǫ0) > c.K(ǫ0) =⇒ R1−ǫ0 > K(ǫ0)(121)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 > K(ǫ0) =⇒

c1−ǫ0 > K(ǫ0) =⇒ c > K(ǫ0)

(
1

1− ǫ0

)

(122)

We deduce that it exists an infinity of triples (a, b, c) verifying (120), hence the

contradiction. Then the proof of the ABC conjecture is finished. We obtain that

∀ǫ > 0, c = a+ b with a, b, c relatively coprime:

(123) c < K(ǫ).rad(abc)1+ǫ with K(ǫ) = 61+ǫe

(
1

ǫ2
− ǫ

)

Q.E.D

5.4. Examples

In this section, we are going to verify some numerical examples.

5.4.1. Example of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(124) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(125) K(ǫ) = 61.01e9999.99 = 1.8884880155640644914779227374022e+ 4343
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Let us verify (123):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343≪ K(0.01)× 15042(126)

Hence (123) is verified.

5.4.2. Example of A. Nitaj

5.4.2.1. Case 1

The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(127)

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 6101e−99.9999.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 8.2558649305610435609546415285004e+ 48

then (123) is verified.

5.4.2.2. Case 2

We take ǫ = 0.5, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(128)

613 474 845 886 230 468 750
?
< 61.5.e3.5.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 75 333 109 597 556 257 182 261.66(129)

We obtain that (123) is verified.

5.4.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 62.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 29 918 625 700 491 952 961 692 755 600(130)

We obtain that (123) is verified.
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5.4.3. Example of Ralf Bonse

The example of Ralf Bonse about the ABC conjecture [2] is:

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(131)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e+ 33(132)

For example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

K(ǫ) = 61.01.e9999.99 = 5.2903884296336672264108948608106e+ 4343

Let us verify (123):

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

61.01.e9999.99.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.01

=⇒ 3.4136998783296235160378273576498e+ 44 <

1.7819595478010681971905561514574e+ 4377(133)

The equation (123) is verified.

Ouf, end of the mystery!

5.5. Conclusion

This is an elementary proof of the ABC conjecture, confirmed by five numerical

examples. We can announce the important theorem:

Theorem 8. — For each ǫ > 0 , there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, then :

(134) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ equal to 61+ǫ.e

(
1

ǫ2
− ǫ

)

.
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CHAPTER 6

A PROOF OF THE ABC CONJECTURE: THE

END OF MYSTERY

6.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(135) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(136) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 8. — ( ABC Conjecture): Let a, b, c positive integers relatively

prime with c = a+ b, then for each ǫ > 0, there exists K(ǫ) such that :

(137) c < K(ǫ).rad(abc)1+ǫ

We know that numerically,
Logc

Log(rad(abc))
≤ 1.616751 [2]. Here we will give a

proof that:

(138) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain a proof of the veracity of the ABC conjecture.

6.2. A Proof of the condition (138)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a.

If c < rad(ab) then we obtain:

(139) c < rad(ab) < rad2(abc)
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and the condition (138) is verified.

In the following, we suppose that c ≥ rad(ab).

6.2.1. Case c = a+ 1

(140) c = a+ 1 = µarad(a) + 1
?
< rad2(ac)

6.2.1.1. µa = 1

In this case, a = rad(a), it is immediately truth that :

(141) c = a+ 1 < 2a < rad(a)rad(c) < rad2(ac)

Then (140) is verified.

6.2.1.2. µa Ó= 1 , µa < rad(a)

we obtain :

(142) c = a+ 1 < 2µa.rad(a)⇒ c < 2rad2(a)⇒ c < rad2(ac)

Then (140) is verified.

6.2.1.3. µa ≥ rad(a)

We have c = a+ 1 = µa.rad(a) + 1 ≤ µ2
a + 1

?
< rad2(ac). We suppose that µ2

a + 1 ≥
rad2(ac) =⇒ µ2

a > rad2(a).rad(c) > rad2(a) as rad(c) > 1, then µa > rad(a), that

is the contradiction with µa ≥ rad(a). We deduce that c < µ2
a + 1 < rad2(ac) and

the condition (140) is verified.

6.2.2. c = a+ b

We can write that c verifies:

c = a+ b = rad(a).µa + rad(b).µb = rad(a).rad(b)

(
µa

rad(b)
+

µb

rad(a)

)

=⇒ c = rad(a).rad(b).rad(c)

(
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)

)

(143)

We can write also:

(144) c = rad(abc)

(
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)

)

To obtain a proof of (138), one method is to prove that :

(145)
µa

rad(b).rad(c)
+

µb

rad(a).rad(c)
< rad(abc)
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6.2.2.1. µa = µb = 1

In this case, it is immediately truth that :

(146)
1

rad(ai
+

1

rad(bj
≤ 5

6
< rad(c).rad(abc)

Then (138) is verified.

6.2.2.2. µa = 1 and µb > 1

As b < a =⇒ µbrad(b) < rad(a) =⇒ µb

rad(a)
<

1

rad(b)
, then we deduce that:

(147)
1

rad(b)
+

µb

rad(a)
<

2

rad(b)
< rad(c).rad(abc)

Then (138) is verified.

6.2.2.3. µb = 1 and µa ≤ (b = rad(b))

In this case we obtain:

(148)
1

rad(a)
+

µa

rad(b)
≤ 1

rad(a)
+ 1 < rad(c).rad(abc)

Then (138) is verified.

6.2.2.4. µb = 1 and µa > (b = rad(b))

As µa > rad(b), we can write µa = rad(b) + n where n ≥ 1. We obtain:

(149)

c = µarad(a) + rad(b) = (rad(b) + n)rad(a) + rad(b) = rad(ab) + nrad(a) + rad(b)

We have n < b, if not n ≥ b =⇒ µa ≥ 2b =⇒ a ≥ 2brad(a) =⇒ a ≥ 3b =⇒ c > 3b,

then the contradiction with c > 2b. We can write:

(150)

c < 2rad(ab) + rad(b) =⇒ c < rad(abc) + rad(abc) < rad2(abc) =⇒ c < rad2(abc)

6.2.2.5. µa.µb Ó= 1 , µa < rad(a) and µb < rad(b)

we obtain :

(151) c = µcrad(c) = µa.rad(a) + µb.rad(b) < rad2(a) + rad2(b) < rad2(abc)

6.2.2.6. µa.µb Ó= 1 , µa ≤ rad(a) and µb ≥ rad(b)

We have:

(152) c = µa.rad(a) + µb.rad(b) < µaµbrad(a)rad(b) ≤ µbrad2(a)rad(b)
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Then if we give a proof that µb < rad(b)rad2(c), we obtain c < rad2(abc). As

µb ≥ rad(b) =⇒ µb = rad(b) + α with α a positive integer ≥ 0. Supposing that

µb ≥ rad(b)rad2(c) =⇒ µb = rad(b)rad2(c) + β with β ≥ 0 a positive integer. We

can write:

rad(b)rad2(c) + β = rad(b) + α =⇒ β < α

α − β = rad(b)(rad2(c)− 1) > 3rad(b) =⇒ µb = rad(b) + α > 4rad(b)(153)

Finally, we obtain:

(154)

{

µb ≥ rad(b)

µb > 4rad(b)

Then the contradiction and the hypothesis µb ≥ rad(b)rad2(c) is false. Hence:

(155) µb < rad(b)rad2(c) =⇒ c < rad2(abc)

6.2.2.7. µa.µb Ó= 1 , µa ≥ rad(a) and µb ≤ rad(b)

The proof is identical to the case above.

6.2.2.8. µa.µb Ó= 1 , µa ≥ rad(a) and µb ≥ rad(b)

We write:

(156)

c = µarad(a) + µbrad(b) ≤ µ2
a + µ2

b < µ2
a.µ2

b

?
< rad2(a).rad2(b).rad2(c) = rad2(abc)

Supposing that µa.µb ≥ rad(abc), we obtain:

µa.µb ≥ rad(abc)⇒ rad(a).rad(b).µa.µb ≥ rad2(ab)rad(c) =⇒
ab ≥ rad2(ab).rad(c)⇒ a2 > ab ≥ rad2(ab).rad(c)

⇒ a > rad(ab)
√

rad(c) ≥ rad(ab)
√
7⇒







c >
√
7rad(ab) ≥ 3rad(ab)

c ≥ rad(ab)

(157)

The inequality c ≥ 3rad(ab) gives the contradiction with the condition c ≥ rad(ab)

supposed at the beginning of this section. Then we obtain µa.µb − rad(abc) < 0 =⇒
c < rad2(abc).

We announce the theorem:

Theorem 9. — (Abdelmajid Ben Hadj Salem, 2019) Let a, b, c positive inte-

gers relatively prime with c = a+ b and b < a, then c < rad2(abc).
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CHAPTER 7

A PROOF OF THE BEAL’S CONJECTURE

7.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(158) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(159) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

A paper about the proof of the ABC conjecture, is accepted [1]. We have obtained

the following theorem:

Theorem 10. — (ABC Theorem): For each ǫ > 0 , there exists K(ǫ) > 0 such

that if a, b, c positive integers relatively prime with c = a+ b, then :

(160) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ equal to 61+ǫe

(
1

ǫ2
− ǫ

)

.

In 1997, Andrew Beal [2] announced the following conjecture:

Conjecture 1: (Beal Conjecture)

Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

(161) Am +Bn = C l

then A, B, and C have a common factor.
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7.2. Methodology of the proof

We note :

A: Beal Conjecture(162)

B: ABC Theorem(163)

and we use the following property (the contrapositive law, [3]:

(164) A(False) =⇒ B(False) ⇐⇒ B(True) =⇒ A(True)

From the right equivalent expression in the box above, we obtain that B (ABC

Theorem) which is true implies A (Beal Conjecture) is true.

7.3. Proof of the conjecture (7.1)

We suppose that Beal conjecture is false, then it exists A, B, C positive coprime

integers and m, n, l positive integers > 2 such:

(165) Am +Bn = C l

the integers A, B, C, m, n, l are supposed large integers. We consider in the follow-

ing that Am > Bn. Now, we use the ABC theorem for equation (165) because

Am, Bn, Cm are relatively coprime. We obtain :

(166) C l < K(ǫ)rad(AmBnC l)1+ǫ =⇒ C l < K(ǫ) (rad(A).rad(B).rad(C))1+ǫ

As rad(A) ≤ A, rad(B) ≤ B and rad(C) ≤ C, the last equation becomes:

(167) C l <
2

ǫ2
(A.B.C)1+ǫ

But rad(A) ≤ A < C
l

m , rad(B) ≤ B < C
l
n , then we write (167) as :

(168)
ǫ2

2
< C

(

1 +
l

m
+

l

n

)

.(1 + ǫ)− l

7.3.1. Case m > l and n > l

In this case,

(

1 +
l

m
+

l

n

)

.(1 + ǫ) − l ≈ 3 − l + 3ǫ. We take ǫ = 1. As 6 ≪ l =⇒
1

C l−6
≪ 0.5, then the contradiction.

7.3.2. Case m < l and n < l

In this case, if C > A ⇒ Cm > Am > Bn ⇒ Cm > Bn ⇒ Cm > C l − Am ⇒
Am > C l − Cm ⇒ Am > Cm(C l−m − 1). As l > m ⇒ C l−m − 1 > 1, then
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Am > Cm =⇒ A > C that is a contradiction with C > A. Hence C < A. We

rewrite equation (167):

C l < K(ǫ)rad(AmBnC l)1+ǫ =⇒ C l < K(ǫ)(A.B.C)1+ǫ

⇒ Am < C l < K(ǫ)
(

A.A
m
n .A

)1+ǫ
(169)

Then:

(170) Am <
2

ǫ2
.A

(

2 +
m

n

)

(1 + ǫ)

7.3.2.1. Case n > m

If n > m, we have

(

2 +
m

n

)

(1 + ǫ) ≈ 3+3ǫ. We take ǫ = 1, as 6≪ m =⇒ 1

Am−6
≪

0.5, then the contradiction.

7.3.2.2. Case n < m

We have:

(171) C l < K(ǫ)(A.B.C)1+ǫ

As Am < C l, C < A and Bn < Am =⇒ B < Am/n, the last equation becomes:

(172)
ǫ2

2
< A(2 +m/n)(1 + ǫ)− m

We choose ǫ =
1

m
, we obtain :

(173)
1

2m2
< A

2− m+
2

m
+
1

n =⇒ 1

2m2
< A3−m

But 3≪ m and 1≪ A =⇒ 1

2m2
> A3−m, then the contradiction.

7.3.3. Case m < l and n > l

If C < A, as l < n ⇒ C l < An ⇒ 0 < Am < An − Bn then A > B. As

Cn > C l > Bn ⇒ Cn > Bn ⇒ C > B. So we obtain :

(174) B < C < A

Then the equation (167) becomes:

(175) C l ǫ
2

2
< (A.B.C)1+ǫ =⇒ C l ǫ

2

2
< (A.Al/n.A)1+ǫ ⇒ C l ǫ

2

2
< A(2 + l/n)(1 + ǫ)

As Am < C l, we arrive to:

(176)
ǫ2

2
< A3− 3m+ 3ǫ
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We take ǫ = 1/3 =⇒ A3m−4 < 18, then the contradiction because 18≪ A3m−4.

If A < C ⇒ Al < C l but Bn < Am ⇒ Al < 2Am ⇒ Al < Am+1 ⇒ l < m + 1, as

m < l ⇒ m + 1 ≤ l < m + 1 that is a contradiction, then C < A and this case is

studied above.

7.3.4. Case m > l and n < l

We have n < l < m. As Am < C l ⇒ A < C
l

m < C ⇒ A < C. The equation (167)

becomes:

(177) C l <
2

ǫ2

(

C l/m.C l/n.C
)1+ǫ

We take ǫ = 0.1, we obtain:

(178) 0.005 < C2.2+1.1 l
n

−l ≈ C3+ l
n

−l

But as 3≪ l =⇒ l > 3 + l
n , then the contradiction.

All the cases give contradiction, then ABC theorem is false. We deduce from :

Beal Conjecture (False) ⇒ABCTheorem (False) ⇔

ABCTheorem (True) ⇒ Beal Conjecture (True)

that Beal Conjecture is true.

The proof of the Beal conjecture is achieved(1).

7.4. Conclusion

From the ABC theorem, we have given a proof that the ABC conjecture is true.

We can announce the theorem:

Theorem 11. — (Abdelmajid Ben Hadj Salem, Andrew Beal, 2019): Let

A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

(179) Am +Bn = C l

then A, B, and C have a common factor.

(1)A paper giving another proof of Beal conjecture is under reviewing [4]
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CHAPTER 8

THE ABC CONJECTURE: THE END OF THE

MYSTERY

8.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(180) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(181) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 9. — ( ABC Conjecture): Let a, b, c positive integers relatively

prime with c = a+ b, then for each ǫ > 0 , there exists K(ǫ) such that :

(182) c < K(ǫ).rad(abc)1+ǫ

This paper about this conjecture is written after the publication of an article in

Quanta magazine about the remarks of professors Peter Scholze of the University

of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of

Shinichi Mochizuki [2]. I try here to give a simple proof that can be understood by

undergraduate students.

8.2. Proof of the conjecture (9)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a.

We propose for the constant K(ǫ) the formula:

(183) K(ǫ) =
2

ǫ2
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Function of ǫ, K(ǫ) is a decreasing function so that limǫ−→0K(ǫ) = +∞ and

limǫ−→+∞K(ǫ) = 0. It permits an equilibrium when rad(abc)1+ǫ ր with ǫ > 1

or rad(abc)1+ǫ ց with ǫ ց 0. We want to see if :

(184) c

?
︷︸︸︷

< K(ǫ).rad(abc)1+ǫ =
2

ǫ2
.e(1+ǫ)Log(rad(abc))

We denote:

R = Log(rad(abc)) > 0(185)

F (ǫ) = 2e(1+ǫ)R − c.ǫ2(186)

If we arrive to give a proof of F (ǫ) > 0 for ∀ǫ > 0, then we deduce that the ABC

conjecture is true and it is the end of the mystery of the ABC conjecture!

Let us study the function F (ǫ) with ǫ ∈ [0,+∞[. The function F (ǫ) is of class

C∞. We have F (0) = 2eR = 2rad(abc) ≥ 12, and limǫ−→+∞F (ǫ) = +∞ because

min(rad(abc)) > e ⇒ R > 1. We calculate F ′(ǫ):

(187)

F ′(ǫ) = 2.Log(rad(abc))e(1+ǫ)R − 2cǫ = 2.Re(1+ǫ)R − 2c −→ +∞, if ǫ −→ +∞

F”(ǫ) = 2.Log2(rad(abc))e(1+ǫ)R − 2 = 2R2e(1+ǫ)R − 2, F ′(ǫ) = 0 gives:

(188) 2.Log(rad(abc))e(1+ǫ)R = 2cǫ

Let :

α =
c

R2eR
(189)

X = Rǫ(190)

The equation (188) becomes:

(191) eX = αX

The equation above represents the determination of the coordinates (X, Y ) of the

points of the intersection of the two curves: Y = eX and Y = αX . The tangent

line to the curve Y = eX passing at the origin (0, 0) is represented by Y = eX.

Then three cases are to study:

- Case 1: α < e =⇒ c < e.rad(abc).Log2rad(abc), and eX Ó= αX and the

exponential curve is above the line Y = αX =⇒ F ′(ǫ) > 0 ∀ǫ > 0, then F (ǫ) > 0

and the ABC conjecture holds.

- Case 2 : α = e, the line Y = αX = eX is tangent to the curve Y = eX at the

point (1, e). α = e =⇒ c = e.rad(abc).Log2rad(abc). Supposing that eLog2rad(abc)

is an integer, we obtain that a, b, c are not relatively prime. Then the contradiction.
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- Case 3: α > e =⇒ c > e.rad(abc).Log2rad(abc), and eX = αX has one solution

X1 = Rǫ1 < 1 with ǫ1 < 1 and for ǫ > ǫ1, we obtain F ′(ǫ) < 0 =⇒ F (ǫ) is decreasing

for ǫ ∈ [ǫ1,+∞[, but limǫ−→+∞F (ǫ) = +∞ then the contradiction.

Finally, only the case 1 is correct and we obtain that the ABC conjecture is true.

Then we obtain the important result of the paper:

(192)

c < K(ǫ).rad(abc)1+ǫ ∀ǫ > 0

with the constant K(ǫ) =
2

ǫ2

Q.E.D

8.3. Examples

In this section, we are going to verify some numerical examples.

8.3.1. Example of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(193) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(194) K(ǫ) =
2

ǫ2
=

2

10−4

Let us verify (192):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< 2.104.(3× 109× 2× 23)1.01 =⇒

6436343 < 331213962.07(195)

Hence (192) is verified.
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8.3.2. Example of A. Nitaj

8.3.2.1. Case 1

The example of Nitaj about the ABC conjecture [3] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79(196)

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311(197)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953(198)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(199)

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.10−4.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 5.53103686332861264803638e+ 1355(200)

then (192) is verified.

8.3.2.2. Case 2

We take ǫ = 0.000001 = 10−6, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(201)

613 474 845 886 230 468 750
?
< 2.1012.(2.3.5.7.11.13.41.79.311.953)1.000001 =⇒

613 474 845 886 230 468 750 < 57 658 458 237 370 924 700 998 757 174 980.

We obtain that (192) is verified.

8.3.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 1 662 145 872 249 552 942 316 264 200.(202)

Ouf, end of the mystery!

8.4. Conclusion

This is an elementary proof of the ABC conjecture, confirmed by four numerical

examples. We can announce the important theorem:
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Theorem 12. — (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;

2019) For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive integers

relatively prime with c = a+ b, then :

(203) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ equal to
2

ǫ2
.
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CHAPTER 9

THE ABC CONJECTURE: THE END OF THE

MYSTERY

9.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(204) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(205) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The ABC conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the ABC conjecture is given below:

Conjecture 10. — ( ABC Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then ::

(206) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

This paper about this conjecture is written after the publication of an article in

Quanta magazine about the remarks of professors Peter Scholze of the University

of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of

Shinichi Mochizuki [2]. I try here to give a simple proof that can be understood by

undergraduate students.
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9.2. Proof of the conjecture (10)

Let a, b, c positive integers, relatively prime, with c = a+ b. We suppose that b < a.

We propose for the constant K(ǫ) the formula:

(207) K(ǫ) =
2

ǫ2

Function of ǫ, K(ǫ) is a decreasing function so that limǫ−→0K(ǫ) = +∞ and

limǫ−→+∞K(ǫ) = 0. It permits an equilibrium when rad(abc)1+ǫ ր with ǫ > 1

or rad(abc)1+ǫ ց with ǫ ց 0. We want to see if :

(208) c

?
︷︸︸︷

< K(ǫ).rad(abc)1+ǫ =
2

ǫ2
.e(1+ǫ)Log(rad(abc))

We denote:

R = Log(rad(abc)) > 0(209)

α =
c

2R2eR
(210)

X = Rǫ(211)

F (ǫ) = 2e(1+ǫ)R − c.ǫ2 = 2eR

(

eǫR − c

2R2eR
R2ǫ2

)

= 2eR(eX − αX2)(212)

G(X) = eX − αX2(213)

If we arrive to give a proof of F (ǫ) > 0 for ∀ǫ > 0 or G(X) > 0 for ∀X > 0, then

we deduce that the ABC conjecture is true and it is the end of the mystery of the

ABC conjecture!

Let us study the function G(X) with X ∈]0,+∞[. The function G(X) is of class

C∞. We have G(0+) = 1+, and limX−→+∞G(X) = +∞ because min(rad(abc)) >

e ⇒ R > 1. We calculate G′(X):

G′(X) = eX − 2αX, G′(X) −→ +∞, if X −→ +∞(214)

G”(X) = eX − 2α(215)

G”(X) = 0 gives:

(216) eX = 2α

- Case 1: As X > 0 ⇒ eX > 1. If 2α < 1 ⇒ c < R2eR ⇒ G”(X) > 0, ∀X > 0

(Fig.1), then G′(X) > 0, ∀X > 0 and G(X) is an increasing function from 1+ to

+∞ hence, F (ǫ) > 0, ∀ǫ > 0 then the ABC conjecture holds.

- Case 1.1: 2α = 1 =⇒ c = R2eR = Log2(rad(abc)).rad(abc). Supposing that

Log2rad(abc) is an integer, we obtain that a, b, c are not relatively coprime. Then
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Figure 1. Case 1

the contradiction, and the ABC conjecture holds.

- Case 2 : If 2α > 1 =⇒ c > R2eR, the equation eX = 2α has an unique solution

X1 = Log2α =⇒ X1 > 0. G′(X1) = eX1 − 2αX1 = 2α(1− X1).

- Case 2.1. If X1 = 1 =⇒ Log2α = 1 =⇒ 2α = e =⇒ c = eR2eR or

c = e.rad(abc).Log2rad(abc). Supposing that eLog2rad(abc) is an integer, we

obtain that a, b, c are not relatively coprime. Then the contradiction, and the ABC

conjecture holds.

- Case 2.2. If X1 < 1 =⇒ Log2α < 1 =⇒ 2α < e =⇒ c < eR2eR. G”(X1) =

0, G′(X1) > 0 and G(X) > 0, ∀X > 0 (Fig.2). Then F (ǫ) > 0∀ǫ > 0 and the ABC

conjecture holds.

- Case 2.3. If X1 > 1 =⇒ Log2α > 1 =⇒ 2α > e =⇒ α > e/2. We

obtain the condition that c > e.rad(abc).Log2rad(abc). We have eX1 = 2α,

G′(X1) = 2α(1 − X1) < 0 and G′(1) = e − 2α < 0, then ∃X3 < 1 < X1 so that

G′(X3) = 0 and X2 > X1 so that G′(X2) = 0 (Fig.3). For the case X1 > 1, we will

give a proof that c does not verify c > e.rad(abc).Log2rad(abc) and we will deduce

that the case X1 > 1 is to reject.

We verify easily that if c ≤ rad(abc), we obtain c < e.rad(abc).Log2rad(abc),

then the contradiction and the ABC conjecture holds. We suppose in the following

that c > rad(abc).



64 CHAPTER 9. THE ABC CONJECTURE: THE END OF THE MYSTERY

Figure 2. Case 2.2

Figure 3. Case 3

If we consider the first example cited in section (9.3):

310 × 109 + 2 = 235 = 6436343

a = 310.109 =⇒ rad(a) = 3× 109,
b = 2 =⇒ rad(b) = 2,

c = 235 = 6436343 =⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042 < c,

Log(rad(abc)) = Log(15042) = 9.618601⇒ 2.718 281×15042×92.517 485 197 201 =
245330.296812 < c. Then we have found a, b, c relatively coprime with c > rad(abc)

and c does not verify c > e.rad(abc).Log2(rad(abc)). We deduce that the case 2.3 is

to reject.
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Finally, only the cases 1, 1.1, 2.1 and 2.2 are corrects and we obtain that the ABC

conjecture is true. Then we obtain the important result of the paper:

(217)

c < K(ǫ).rad(abc)1+ǫ ∀ǫ > 0

with the constant K(ǫ) =
2

ǫ2

Q.E.D

9.3. Examples

In this section, we are going to verify some numerical examples.

9.3.1. Example of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(218) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(219) K(ǫ) =
2

ǫ2
=

2

10−4

Let us verify (217):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< 2.104.(3× 109× 2× 23)1.01 =⇒

6436343 < 331213962.07(220)

Hence (217) is verified.

9.3.2. Example of A. Nitaj

9.3.2.1. Case 1

The example of Nitaj about the ABC conjecture [3] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79(221)

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311(222)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953(223)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(224)
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we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.10−4.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 5.53103686332861264803638e+ 1355(225)

then (217) is verified.

9.3.2.2. Case 2

We take ǫ = 0.000001 = 10−6, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(226)

613 474 845 886 230 468 750
?
< 2.1012.(2.3.5.7.11.13.41.79.311.953)1.000001 =⇒

613 474 845 886 230 468 750 < 57 658 458 237 370 924 700 998 757 174 980.

We obtain that (217) is verified.

9.3.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 1 662 145 872 249 552 942 316 264 200.(227)

9.3.3. Example of Ralf Bonse

9.3.3.1. Case 1

The example of Ralf Bonse about the ABC conjecture [4] is:

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(228)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

For example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

K(ǫ) =
2

ǫ2
=

2

10−4
= 2.104
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Let us verify (217):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

c = 556.245983
?
< 2.104.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.01

=⇒ 3, 4136998783296235160378273576498e+ 44 <

6, 7365924884440287789307666776768e+ 37(229)

Ouf, end of the mystery!

9.4. Conclusion

This is an elementary proof of the ABC conjecture, confirmed by four numerical

examples. We can announce the important theorem:

Theorem 13. — (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;

2019) For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive integers

relatively prime with c = a+ b, then :

(230) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ equal to
2

ǫ2
.
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CHAPTER 10

THE FINAL PROOF OF THE ABC CONJECTURE

10.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(231) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(232) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the abc conjecture is given below:

Conjecture 11. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then : :

(233) c < K(ǫ).rad(abc)1+ǫ

K is a constant depending only of ǫ.

The idea to try to write a paper about this conjecture was born after after the

publication of an article in Quanta magazine about the remarks of professors Peter

Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt

concerning the proof of Shinichi Mochizuki [2]. I try here to give a simple proof

that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]. It is the key to resolve the abc conjecture. The paper

is organized as fellow: in the second section, we give for the case c = a+1 the proof

that c < rad2(ac). For the case c = a + b, the proof of c < rad2(abc) is given in
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the third section. The main proof of the abc conjecture is presented in section four.

The numerical examples are discussed in section five.

10.2. The Proof of the conjecture c < rad2(abc), Case : c = a + 1

Below is given the definition of the conjecture c < rad2(abc):

Conjecture 12. — Let a, b, c positive integers relatively prime with c = a+b, then:

(234) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

In the case c = a+ 1, the definition of the conjecture is:

Definition 10.1. — Let a, c positive integers, relatively prime, with c = a + 1,

then:

(235) c < rad2(ac) =⇒ Logc

Log(rad(ac))
< 2

1 - If c < rad(ac) then we obtain:

(236) c < rad(ac) < rad2(ac)

and the condition (235) is verified.

2 - If c = rad(ac), then a, c are not relatively coprime. Case to reject.

3 - In the following, we suppose that c > rad(ac) =⇒ c = rad(ac) + α, with α ≥ 1
an integer. We write:

rad2(ac)− c = (c − α)2 − cµa.rad(a) + 1
?
< rad2(a).rad2(c) =⇒ 0

?
<

rad2(c).rad2(a)− µa.rad(a)− 1

=⇒ 0
?
< rad2(a)− µa

rad2(c)
rad(a)− 1

rad2(c)
(237)

Let the function P (X) = X2 − µa

rad2(c)
X − 1

rad2(c)
. The discriminant of P (X) is:

(238) ∆ =
µ2

a

rad4(c)
+

4

rad2(c)
=

µ2
a

rad4(c)

(

1 +
4rad2(c)

µ2
a

)

> 0

The roots X1 < X2 of P (X) = 0 are given by:

X1 =
µa

2rad2(c)

(

1−
√

1 +
4rad2(c)

µ2
a

)

< 0

X2 =
µa

2rad2(c)

(

1 +

√

1 +
4rad2(c)

µ2
a

)

> 0(239)
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c verifies (237) =⇒ P (rad(a))
?
> 0 =⇒ rad(a)

?
> X2, we obtain:

rad(a)
?
>

µa

2rad2(c)

(

1 +

√

1 +
4rad2(c)

µ2
a

)

=⇒

2rad2(a)rad2(c)
?
> a

(

1 +

√

1 +
4rad2(c)

µ2
a

)

(240)

We denote R = rad(ac). We can write:

(241) 2R2 − a
?
> a

√

1 +
4R2

a2

On suppose that 2R2 − a > 0. We obtain:

(2R2 − a)2
?
> a2

(

1 +
4R2

a2

)

=⇒

4R4 − 4R2a+ a2 ?
> a2 + 4R2 =⇒ R2 − a

?
> 1 =⇒ R2 > c(242)

As R2 > c =⇒ R2 > a =⇒ 2R2 > 2a =⇒ 2R2 − a > a > 0 and the condition above

2R2 − a > 0 is justified.

We announce the theorem:

Theorem 14. — Let a, c positive integers relatively prime with c = a + 1, a ≥ 2,

then c < rad2(ac).

10.3. The Proof of the conjecture c < rad2(abc), Case: c = a + b

We denote R = rad(abc). Let a, b, c positive integers, relatively prime, with c =

a+ b =⇒ rad(a) =
c − b

µa
. Let us verify that :

(243) c
?
< rad2(a).rad2(bc)

We obtain :

c
?
<

(
c − b

µa

)2

.rad2(bc) =⇒

0
?
< c2 −

(

2b+
µ2

a

rad2(bc)

)

c+ b2(244)

Let P (X) = X2 −
(

2b+
µ2

a

rad2(bc)

)

X + b2. The discriminant ∆ of P (X) is:

(245) ∆ =
µ4

a

rad4(bc)

(

1 +
4brad2(bc)

µ2
a

)

> 0
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The roots X1 < X2 of P (X) are given by:

X1 =
1

2

[

2b+
µ2

a

rad2(bc)
− µ2

a

rad2(bc)

√

1 +
4b.rad2(bc)

µ2
a

]

X2 =
1

2

[

2b+
µ2

a

rad2(bc)
+

µ2
a

rad2(bc)

√

1 +
4b.rad2(bc)

µ2
a

]

(246)

If c will verify (244) =⇒ c > X2 or c < X1, we obtain:

c
?
< X1 =⇒ c

?
<
1

2



2b+
µ2

a

rad2(bc)
− µ2

a

rad2(bc)

√

1 +
4b.rad2(bc)

µ2
a



 =⇒

2a
?
<

µ2
a

rad2(bc)
− µ2

a

rad2(bc)

√

1 +
4b.rad2(bc)

µ2
a

(247)

As the right term of the above inequality is < 0 and 2a > 0, then c < X1 is to reject.

Now, we will see if c
?
> X2, we obtain:

c
?
> X2 =⇒ c

?
>
1

2



2b+
µ2

a

rad2(bc)
+

µ2
a

rad2(bc)

√

1 +
4b.rad2(bc)

µ2
a



 =⇒

2a
?
>

µ2
a

rad2(bc)
+

µ2
a

rad2(bc)

√

1 +
4b.rad2(bc)

µ2
a

=⇒

2arad2(abc)
?
> a2

(

1 +

√

1 + 4b
rad2(bc)

µ2
a

)

=⇒ 2rad2(abc)

a
− 1 ?

>

√

1 + 4b
rad2(bc)

µ2
a

We suppose that
2rad2(abc)

a
− 1 > 0, we obtain:

(

2rad2(abc)

a
− 1

)2
?
> 1 + 4b

rad2(abc)

a2
=⇒

rad2(abc)− a
?
> b =⇒ rad2(abc) > a+ b =⇒ rad2(abc) > c(248)

As rad2(abc) > c =⇒ 2rad2(abc)

a
−1 > 0, then the proof of c < rad2(abc) is justified.

We can announce the theorem:

Theorem 15. — Let a, b, c positive integers relatively prime with c = a+ b, b ≥ 2,
then c < rad2(abc).
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10.4. The Proof of the abc conjecture (11)

10.4.1. Case: ǫ ≥ 1

Using the result of the theorem c < rad2(abc), we have ∀ǫ ≥ 1:

(249) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 1
We verify easily that K(ǫ) > 1 for ǫ ≥ 1. Then the abc conjecture is true.

10.4.2. Case: ǫ < 1

10.4.2.1. Case: c < R

In this case, we can write :

(250) c < R < R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the ABC conjecture is true.

10.4.2.2. Case: c > R

In this case, we confirm that :

(251) c < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triplets (a, b, c) checking c > R and:

(252) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒
R1−ǫ0 .c ≥ R2.K(ǫ0) > c.K(ǫ0) =⇒ R1−ǫ0 > K(ǫ0)(253)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 > K(ǫ0) =⇒

c1−ǫ0 > K(ǫ0) =⇒ c > K(ǫ0)

(
1

1− ǫ0

)

(254)

We deduce that it exists an infinity of triples (a, b, c) verifying (394), hence the

contradiction. Then the proof of the abc conjecture is finished. We obtain that

∀ǫ > 0, c = a+ b with a, b, c relatively coprime, b ≥ 2:

(255) c < K(ǫ).rad(abc)1+ǫ with K(ǫ) = e

(
1

ǫ2

)
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Q.E.D

10.5. Examples

In this section, we are going to verify some numerical examples.

10.5.1. Example 1

The example is given by:

(256) 1 + 5× 127× (2× 3× 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2× 3× 5× 7× 127,
b = 1⇒ µb = 1 and rad(b) = 1,

c = 196 = 47 045 880 ⇒ rad(c) = 19. Then rad(abc) = rad(ac) = 2 × 3 × 5 × 7 ×
19× 127 = 506 730..
We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 880.

10.5.1.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 880
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(257) K(ǫ) = e
1

0.0001 = e10000 = 8, 7477777149120053120152473488653e+ 4342

We deduce that c ≪ K(0.01).506 7301.01 and the equation (255) is verified.

10.5.1.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2, 6879363309671754205917012128876e + 43 =⇒ c <

K(0.1)× 506 7301.01. And the equation (255) is verified.

10.5.1.3. Case ǫ = 1

K(1) = e =⇒ c = 47 045 880 < e.rad2(ac) = 697 987 143 184, 212. and the equation

(255) is verified.

10.5.1.4. Case ǫ = 100

K(100) = e0.0001 =⇒ c = 47 045 880
?
< e0.0001.506 730101 =

1, 5222350248607608781853142687284e+ 576

and the equation (255) is verified.
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10.5.2. Example 2

We give here the example of Eric Reyssat [1], it is given by:

(258) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(259) K(ǫ) = e9999.99 = 8, 7477777149120053120152473488653e+ 4342

Let us verify (255):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343≪ K(0.01)× 150421.01(260)

Hence (255) is verified.

10.5.3. Example 3

The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79(261)

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311(262)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953(263)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(264)

10.5.3.1. Case 1

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< e0.0001.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 2, 7657949971494838920022381186039e+ 1359

then (255) is verified.

10.5.3.2. Case 2

We take ǫ = 0.5, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(265)

613 474 845 886 230 468 750
?
< e4.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 8 450 961 319 227 998 887 403, 9993(266)

We obtain that (255) is verified.
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10.5.3.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< (2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 831 072 936 124 776 471 158 132 100(267)

We obtain that (255) is verified.

10.5.4. Example 4

It is of Ralf Bonse about the ABC conjecture [3] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(268)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e+ 33(269)

10.5.4.1. Case 1

For example, we take ǫ = 10, the expression of K(ǫ) becomes:

K(ǫ) = e0.01 = 1, 0078157404282956743204617416779

Let us verify (255):

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e0.01.(2.3.5.11.173.2543.182587.245983.2802983.85813163)11

=⇒ 3.4136998783296235160378273576498e+ 44 <

1, 4236200596494908176008120925721e+ 365(270)

The equation (255) is verified.

10.5.4.2. Case 2

We take ǫ = 0.4 =⇒ K(ǫ) = 12, 18247347425151215912625669608, then: The

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e6.25.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.4

=⇒ 3.4136998783296235160378273576498e+ 44 <

3, 6255465680011453642792720569685e+ 47(271)
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And the equation (255) is verified.

Ouf, end of the mystery!

10.6. Conclusion

We have given an elementary proof of the abc conjecture in the two cases c = a′+1

and c = a + b, confirmed by some numerical examples. We can announce the

important theorem:

Theorem 16. — (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;

2019) For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive integers

relatively prime with c = a+ b, then :

(272) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ proposed equal to e

(
1

ǫ2

)

.
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CHAPTER 11

TENTATIVE OF THE PROOF OF ABC

CONJ.-CASE c = a + 1

To the memory of my Father who taught me arithmetic

To the memory of my colleague and friend Dr.Eng. Chedly Fezzani

(1943-2019) for his important work in the field of Geodesy and the

promotion of the Geographic Sciences in Africa

11.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(273) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(274) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) ([1]). It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 13. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(275) c < K(ǫ).rad(abc)1+ǫ

K is a constant depending only of ǫ. We know that numerically,
Logc

Log(rad(abc))
≤

1.616751 ([2]). A conjecture was proposed that c < rad2(abc) ([3]). Here we will
give a proof of it in the case c = a+ 1.
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Conjecture 14. — Let a, b, c positive integers relatively prime with c = a+b, then:

(276) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain a proof of the veracity of the abc conjecture.

11.2. A Proof of the conjecture (14) Case c = a + 1

Let a, c positive integers, relatively prime, with c = a + 1. If c < rad(ac) then we
obtain:

(277) c < rad(ac) < rad2(ac)

and the condition (276) is verified.

In the following, we suppose that c ≥ rad(ac).

11.2.1. Notations

We note:

a =
∏

i

aαi
i =⇒ rad(a) =

∏

i

ai, µa =
∏

i

aαi−1
i , i = 1, Na(278)

c =
∏

j

c
βj

j =⇒ rad(c) =
∏

j

cj , µc =
∏

j

c
βj−1
j , j = 1, Nc(279)

with ai, cj prime integers and Na, Nc, α, β ≥ 1 positive integers. Let:
R = rad(a).rad(c) = rad(ac)(280)

R(x) =
Na∏

i

(x+ ai)
2.

Nc∏

j

(x+ cj) =⇒ R(x) > 0, ∀x ≥ 0(281)

F (x) = R(x)− µc(282)

From the last equations we obtain:

(283) F (0) = R(0)− µc = rad2(a).rad(c)− µc

Then, our main task is to prove that F (0) > 0 =⇒ R2 > c.

11.2.1.1. The Proof of c < rad2(ac)

From the definition of the polynomial F (x), its degree is 2Na +Nc. We have :

1. limx−→+∞F (x) = +∞,

2. limx−→+∞
F (x)

x
= +∞, F is convex for x large,

3. if x1 is the great real root of F (x) = 0, and from the points 1., 2. we deduce

that F”(x+
1 ) > 0,

4. if x1 < 0, then F (0) > 0.
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Let us study F ′(x) and F”(x). We obtain: ;

F ′(x) = R′(x)

R′(x) =
[
∏Na

i (x+ ai)
2
]′

.
∏Nc

j (x+ cj) +
∏Na

i (x+ ai)
2.

[
∏Nc

j (x+ cj)
]′
=⇒

[
∏Na

i (x+ ai)
2
]′
= 2

∏Na
i (x+ ai)

2.

(
∑

i

1

x+ ai

)

[
∏Nc

j (x+ cj)
]′
=

∏Nc
j (x+ cj)





j=Nb∑

j=1

1

x+ cj



 =⇒

R′(x) = R(x).




Na∑

i

2

x+ ai
+

Nc∑

j

1

x+ cj



 > 0, ∀x ≥ 0(284)

F ′(x) = R′ = R(x)




Na∑

i

2

x+ ai
+

Nc∑

j

1

x+ cj



 > 0, ∀x > 0 =⇒

F ′(0) = R(0).




Na∑

i

2

ai
+

Nc∑

j

1

cj



 = rad2(a).rad(c).





Na∑

i

2

ai
+

Nc∑

j

1

cj



 > 0

For F”(x), we obtain:

F”(x) = R” =

= R′(x)





Na∑

i

2

x+ ai
+

Nc∑

j

1

x+ cj



 − R(x)




Na∑

i

2

(x+ ai)2
+

Nc∑

j

1

(x+ cj)2



 =⇒

F”(x) = R(x).










Na∑

i

2

x+ ai
+

Nc∑

j

1

x+ cj





2

−
Na∑

i

2

(x+ ai)2
−

Nc∑

j

1

(x+ cj)2






=⇒ F”(x) > 0, ∀x ≥ 0(285)

We obtain also that F”(0) > 0.

Before we attack the proof, we take an example as: 1+8 = 9 =⇒ c = 9, a = 8, b =

1. We obtain rad(a) = 2, rad(c) = 3, µc = 3, R = rad(ac) = 2× 3 = 6 < (c = 9) and

c = 9 verifies c < (R2 = 62 = 36). We write the polynomial F (x) = (x+2)2(x+3)−
3 = x3 + 7x2 + 16x+ 9 > 0, ∀x > 0. Then F ′(x) = 3x2 + 14x+ 16, we verifies that

F ′(x) = 0 has not real roots and F ′(x) > 0, ∀x ∈ R. We have also F”(x) = 6x+ 14.

F”(x) = 0 =⇒ x = −7/3 ≈ −2.33 =⇒ F (−7/3) = −79/27 ≈ −2.92. The point

(−7/3, −79/27) is an inflexion point of the curve of y = F (x). We deduce that the

curve is convex for x ≥ −7/3. Let us now find the roots of F (x) = 0. As the degree

of F is three, the number of the real roots are 1 or 3. As there is one inflexion point,

we will find one real root.
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11.2.2. The Resolution of F (x) = 0

We want to resolve:

(286) F (x) = x3 + 7x2 + 16x+ 9 = 0

Let the change of variables x = t − 7/3, the equation (286) becomes:

(287) t3 − t

3
− 79
27
= 0

For the resolution of (287), we introduce two unknowns:

t = u+ v =⇒ (u+ v)(3uv − 1
3) + u3 + v3 − 79

27 = 0 =⇒






u3 + v3 =
79

33

uv =
1

32

(288)

Then u3, v3 are solutions of the equation:

(289) X2 − 79
33

X +
1

36
= 0

and given below:

u3 =
1

2
.
79 + 9

√
77

33
=⇒







u1 =
3

√
√
√
√
1

2

(

79 + 9
√
77

33

)

≈ 0.97515

u2 = j.u1, j = −1+i
√

3
2 = ei 2π

3

u3 = j2u1 = j̄.u1

v3 =
1

2
.
79 − 9

√
77

33
=⇒







v1 = 3

√
√
√
√

1

2

(

79 − 9
√
77

33

)

≈ 0.00016

v2 = j2.v1 = j̄.v1

v3 = j.v1

(290)

Finally, taking into account the second condition of (288), we obtain the real root

of (287):

t = u1 + v1 = 3

√
√
√
√

1

2

(

79 + 9
√
77

33

)

+ 3

√
√
√
√

1

2

(

79 − 9
√
77

33

)

≈ 0.97531

x1 = t − 7/3 ≈ −1.35802(291)

Then the first root of F (x) = 0 is x1 ≈ −1.358 < 0, the correction to the first root of

R(x) = (x+2)2(x+3) = 0 is dx = x1 − (−2) = −1.358− (−2) = +0.642. As in our

example F ′(x) > 0, the function F (x) is an increasing function having a parabolic
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branch as x −→ +∞, the curve y = F (x) intersects the line x = 0 in the half-plane

y ≥ 0 =⇒ F (0) > 0 =⇒ c < rad2(ac) which is verified numerically.

11.2.3. The General Case

Let us return to the general case c = a + 1. We denote q = min(ai, cj). If

we consider that F (x) = R(x), the equation F (x) = 0 =⇒ R(x) = 0 and the

first real root is x1 = −q, the product of all the roots is P =
∏

i

(xi)
2.

∏

j

(xj) =

(−1)2Na+Nc
∏

i

(ai)
2.

∏

j

(cj). But F (x) = R(x)− µc, the constant coefficient of F (x)

will be
∏

i

(ai)
2.

∏

j

(cj)−µc. The new product of the roots is P ′ =
∏

i

(x′
i)

2.
∏

j

(x′
j) =

(−1)2Na+Nc(
∏

i

(ai)
2.

∏

j

(cj) − µc). The first root x1 = −q becomes x′
1 = −q + dx.

To estimate dx, we can write to the order two that:

F (−q + dx) = R(−q + dx) − µc = 0 =⇒ R(−q + dx) = µc =⇒

R(−q) + dx.R′(−q) +
dx2

2
R”(−q) = µc(292)

Supposing that a1 = q = min(ai, cj), from the equations (281-284-285), we have :

R(−a1) = 0

R′(−a1) = 0

R”(−a1) = 2
Na∏

i=2

(ai − a1)
2.

Nc∏

j=1

(cj − a1) > 0 =⇒

dx2 =
µc

∏Na
i=2(ai − a1)2.

∏Nc
j=1(cj − a1)

(293)

We take the positive value of dx following the numerical example above, then we

obtain:

(294) dx =

√
µc

Na∏

i=2

(ai − a1).

√
√
√
√
√

Nc∏

j=1

(cj − a1)

As a1 = min(ai, cj)i=2,Na;j=1,Nc , we have a2 − a1 ≥ 1, a3 − a1 ≥ 2, · · · , aNa − a1 ≥
Na − 1, c1 − a1 ≥ 1, c2 − a1 ≥ 2, · · · , cNc − a1 ≥ Nc, then we can write:

(295) dx ≤
√

µc

(Na − 1)!.
√

Nc!

For the expression of N !, we can use the Stirling’s formula to two orders:

(296) N ! =
√
2πN

(
N

e

)N (

1 +
1

12N

)
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Figure 1

and we take c = a + 1 < 3a/2, µc =
c

rad(c)
<

3a

2aNc
1

. We obtain :

(297)

dx <

(

1 − 1

12(Na − 1)

) (

1 − 1

24Nc

)
e−(Na−1)Log Na−1

e
−( Nc

2
)Log Nc

e

√

2π(Na − 1)

√

3a

2
√
2πNca

Nc
1

As a, c are large positive integers, and 1 ≪ Na.Nc, |dx| ≪ ai, cj and the sign of the

first root x′
1 does not change. Then the curve of F (x) = R(x)−µc intersects the line

x = 0 and the equation of the tangent at the point x′
1 is y = F ′(x′

1)(x − x′
1). But if

x′
1 = −a+dx = ξ > 0, the equation of the tangent at the point ξ is y = F ′(ξ)(x−ξ),

in this case F ′(ξ) < F ′(x′
1) (see Fig. 1), and for x > −a1, F”(x) > 0 =⇒ F ′

is an increasing function. As x′
1 < ξ =⇒ F ′(x′

1) < F ′(ξ), then the contradiction

and we obtain that x′
1 = −a1 + dx < 0 =⇒ F (0) = rad2(a).rad(c) − µc > 0 =⇒

rad2(a).rad2(c) − c > 0 =⇒ c < R2.

11.2.3.1. Examples

In this section, we are going to verify the above remarks with a numerical example.

The example is given by:

1 + 5 × 127 × (2 × 3 × 7)3 = 196

rad(a) = 2 × 3 × 5 × 7 × 127 = 26 670

rad(c) = 19

c = 195 = 47 045 881, µc = 195 = 2476 099(298)

Using the notations of the paper, we obtain:

R(x) = (x + 2)2(x + 3)2(x + 5)2(x + 7)2(x + 127)2(x + 19)

F (x) = R(x) − µc



11.3. THE PROOF OF THE ABC CONJECTURE (??) CASE: C = A + 1 89

Let X = x + 2, the expression of R(x) becomes:

R(X) = X2(X + 1)2(X + 3)2(X + 5)2(X + 125)2(X + 17)

The calculations gives:

R(X) = X11 + 285.X10 + 24 808.X9 + 657 728.X8 + 7424 722.X7 + 42 772 898.X6

+134 002 080.X5 + 223 508 940.X4 + 187 753 125.X3 + 597 656 251.X2

We want to estimate the first root of F (x) = 0, we write:

R(X) − µc = 0 =⇒
X11 + 285.X10 + 24 808.X9 + 657 728.X8 + 7424 722.X7 + 42 772 898.X6

+134 002 080.X5 + 223 508 940.X4+

187 753 125.X3 + 597 656 251.X2 − 2 476 099 = 0(299)

If x = −2 =⇒ X = 0 =⇒ R(X) − µc < 0. If we take x1 = −1.936315 =⇒ X1 =

0.03685, then we obtain that:

(300) R(x1) − µc = R(X1) − µc ≈ 177.82 > 0

Then, ∃ ξ with −2 < ξ < x1 so that X ′ = −2+ξ verifies R(X ′)−µc = 0 and ξ is the

first root of F (x) = 0 and ξ < 0 =⇒ F (0) > 0 =⇒ rad2(a)rad(c)−µc > 0 =⇒ R2 > c

that is true. We have also ξ = −2 + dx = a1 + dx and 0 < dx < |a1|.

11.3. The Proof of The abc conjecture (13) Case: c = a + 1

We denote R = rad(ac).

11.3.1. Case: ǫ ≥ 1

Using the result of the theorem above, we have ∀ǫ ≥ 1:

(301) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 1

We verify easily that K(ǫ) > 1 for ǫ ≥ 1 and it is a decreasing function from e the

base of the neperian logarithm to 1.

11.3.2. Case: ǫ < 1

11.3.2.1. Case: c ≤ R

In this case, we can write :

(302) c ≤ R < R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the abc conjecture is true.
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11.3.2.2. Case: c > R

In this case, we confirm that :

(303) c < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triplets (a, 1, c) checking c > R and:

(304) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒
R1−ǫ0 .c ≥ R2.K(ǫ0) > c.K(ǫ0) =⇒ R1−ǫ0 > K(ǫ0)(305)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 > K(ǫ0) =⇒

c1−ǫ0 > K(ǫ0) =⇒ c > K(ǫ0)

(
1

1 − ǫ0

)

(306)

We deduce that it exists an infinity of triples (a, 1, c) verifying (304), hence the

contradiction. Then the proof of the abc conjecture in the case c = a+1 is finished.

We obtain that ∀ǫ > 0, c = a + 1 with a, c relatively coprime, 2 ≤ a < c :

(307) c < K(ǫ).rad(ac)1+ǫ with K(ǫ) = e

(
1

ǫ2

)

Q.E.D

11.4. Examples

In this section, we are going to verify some cases of one numerical example. The

example is given by:

(308) 1 + 5 × 127 × (2 × 3 × 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2 × 3 × 5 × 7 × 127,

b = 1 ⇒ µb = 1 and rad(b) = 1,

c = 196 = 47 045 880 ⇒ rad(c) = 19. Then rad(abc) = rad(ac) = 2 × 3 × 5 × 7 ×
19 × 127 = 506 730..

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 880.
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11.4.0.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 880
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(309) K(ǫ) = e
1

0.0001 = e10000 = 8, 7477777149120053120152473488653e + 4342

We deduce that c ≪ K(0.01).506 7301.01 and the equation (??) is verified.

11.4.0.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2, 6879363309671754205917012128876e + 43 =⇒ c <

K(0.1) × 506 7301.01. And the equation (307) is verified.

11.4.0.3. Case ǫ = 1

K(1) = e =⇒ c = 47 045 880 < e.rad2(ac) = 697 987 143 184, 212. and the equation

(307) is verified.

11.4.0.4. Case ǫ = 100

K(100) = e0.0001 =⇒ c = 47 045 880
?
< e0.0001.506 730101 =

1, 5222350248607608781853142687284e + 576

and the equation (307) is verified.

11.5. Conclusion

This is an elementary proof of the abc conjecture in the case c = a + 1. We can

announce the important theorem:

Theorem 17. — (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;

2019) For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive integers

relatively prime with c = a + b, then :

(310) c < K(ǫ).rad(ac)1+ǫ

where K is a constant depending of ǫ equal to e

(
1

ǫ2

)

.

Acknowledgements: The author is very grateful to Professors Mihăilescu

Preda and Gérald Tenenbaum for their comments about errors found in previous

manuscripts concerning proofs proposed of the abc conjecture.





BIBLIOGRAPHY

[1] Waldschmidt M.: On the abc Conjecture and some of its consequences presented

at The 6th World Conference on 21st Century Mathematics, Abdus Salam School

of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)

[2] Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture.

Bull. London Math. Soc. 46,6, 1156-1166 (2014).

[3] Mihăilescu P.: Around ABC. European Mathematical Society NewsletterN◦ 93,

September 2014. 29-34, (2014)





CHAPTER 12

LAST PROOF OF ABC CONJECTURE - CASE

c = a + 1

In this paper, we consider the abc conjecture in the case c = a+1. Firstly, we give

the proof of the first conjecture that c < rad2(ac) using the polynomial functions. It

is the key to the proof of the abc conjecture. Secondly, the proof of the abc conjecture

is given for ǫ ≥ 1, then for ǫ ∈]0, 1[ for the two cases: c ≤ rad(ac) and c > rad(ac).

We choose the constant K(ǫ) as K(ǫ) = e

(
1

ǫ2

)

. A numerical example is presented.

To the memory of my Father who taught me arithmetic

To the memory of my colleague and friend Dr.Eng. Chedly Fezzani

(1943-2019) for his important work in the field of Geodesy and the

promotion of the Geographic Sciences in Africa

12.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(311) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(312) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) ([1]). It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the abc conjecture is given below:
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Conjecture 15. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a + b, then :

(313) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.616751 ([2]). A conjecture was

proposed that c < rad2(abc) ([3]). Here we will give the proof of it, in the case

c = a + 1, using a polynomial function.

Conjecture 16. — Let a, b, c positive integers relatively prime with c = a+b, then:

(314) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain a proof of the veracity of the abc conjecture.

12.2. A Proof of the conjecture (16) Case c = a + 1

Let a, c positive integers, relatively prime, with c = a + 1. If c < rad(ac) then we

obtain:

(315) c < rad(ac) < rad2(ac)

and the condition (314) is verified.

In the following, we suppose that c ≥ rad(ac).

12.2.1. Notations

We note:

a =
∏

i

aαi
i =⇒ rad(a) =

∏

i

ai, µa =
∏

i

aαi−1
i , i = 1, Na(316)

c =
∏

j

c
βj

j =⇒ rad(c) =
∏

j

cj , µc =
∏

j

c
βj−1
j , j = 1, Nc(317)

with ai, cj prime integers and Na, Nc, α, β ≥ 1 positive integers. Let:

R = rad(a).rad(c) = rad(ac)(318)

R(x) =
Na∏

i

(x + ai)
2.

Nc∏

j

(x + cj) =⇒ R(x) > 0, ∀x ≥ 0(319)

F (x) = R(x) − µc(320)

From the last equations we obtain:

(321) F (0) = R(0) − µc = rad2(a).rad(c) − µc

Then, our main task is to prove that F (0) > 0 =⇒ R2 > c.
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12.2.1.1. The Proof of c < rad2(ac)

From the definition of the polynomial F (x), its degree is 2Na + Nc. We have :

1. limx−→+∞F (x) = +∞,
2. limx−→+∞

F (x)

x
= +∞, F is convex for x large,

3. if x1 is the great real root of F (x) = 0, and from the points 1., 2. we deduce

that F”(x+
1 ) > 0,

4. if x1 < 0, then F (0) > 0.

Let us study F ′(x) and F”(x). We obtain:

F ′(x) = R′(x)

R′(x) =
[
∏Na

i (x + ai)
2
]′

.
∏Nc

j (x + cj) +
∏Na

i (x + ai)
2.

[
∏Nc

j (x + cj)
]′
=⇒

[
∏Na

i (x + ai)
2
]′
= 2

∏Na
i (x + ai)

2.

(
∑

i

1

x + ai

)

[
∏Nc

j (x + cj)
]′
=

∏Nc
j (x + cj)





j=Nb∑

j=1

1

x + cj



 =⇒

R′(x) = R(x).





Na∑

i

2

x + ai
+

Nc∑

j

1

x + cj



 > 0, ∀x ≥ 0(322)

F ′(x) = R′ = R(x)





Na∑

i

2

x + ai
+

Nc∑

j

1

x + cj



 > 0, ∀x > 0 =⇒

F ′(0) = R(0).





Na∑

i

2

ai
+

Nc∑

j

1

cj



 =

rad2(a).rad(c).




∑Na

i

2

ai
+

Nc∑

j

1

cj



 > 0(323)

For F”(x), we obtain:

F”(x) = R” = R′(x)





Na∑

i

2

x + ai
+

Nc∑

j

1

x + cj



 − R(x)





Na∑

i

2

(x + ai)2
+

Nc∑

j

1

(x + cj)2





=⇒ F”(x) = R(x).










Na∑

i

2

x + ai
+

Nc∑

j

1

x + cj





2

−
Na∑

i

2

(x + ai)2
−

Nc∑

j

1

(x + cj)2






=⇒ F”(x) > 0, ∀x ≥ 0(324)

We obtain also that F”(0) > 0.
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Before we attack the proof, we take an example as: 1+8 = 9 =⇒ c = 9, a = 8, b =

1. We obtain rad(a) = 2, rad(c) = 3, µc = 3, R = rad(ac) = 2× 3 = 6 < (c = 9) and

c = 9 verifies c < (R2 = 62 = 36). We write the polynomial F (x) = (x+2)2(x+3)−
3 = x3 + 7x2 + 16x + 9 > 0, ∀x > 0. Then F ′(x) = 3x2 + 14x + 16, we verifies that

F ′(x) = 0 has not real roots and F ′(x) > 0, ∀x ∈ R. We have also F”(x) = 6x + 14.

F”(x) = 0 =⇒ x = −7/3 ≈ −2.33 =⇒ F (−7/3) = −79/27 ≈ −2.92. The point

(−7/3, −79/27) is an inflection point of the curve of y = F (x). We deduce that the

curve is convex for x ≥ −7/3. Let us now find the roots of F (x) = 0. As the degree

of F is three, the number of the real roots are 1 or 3. As there is one inflection

point, we will find one real root.

12.2.2. The Resolution of F (x) = 0

We want to resolve:

(325) F (x) = x3 + 7x2 + 16x + 9 = 0

Let the change of variables x = t − 7/3, the equation (325) becomes:

(326) t3 − t

3
− 79

27
= 0

For the resolution of (326), we introduce two unknowns:

t = u + v =⇒ (u + v)(3uv − 1
3) + u3 + v3 − 79

27 = 0 =⇒






u3 + v3 =
79

33

uv =
1

32

(327)

Then u3, v3 are solutions of the equation:

(328) X2 − 79

33
X +

1

36
= 0

and given below:

u3 =
1

2
.
79 + 9

√
77

33
=⇒







u1 = 3

√
√
√
√

1

2

(

79 + 9
√
77

33

)

≈ 0.97515

u2 = j.u1, j = −1+i
√

3
2 = ei 2π

3

u3 = j2u1 = j̄.u1

v3 =
1

2
.
79 − 9

√
77

33
=⇒







v1 = 3

√
√
√
√

1

2

(

79 − 9
√
77

33

)

≈ 0.00016

v2 = j2.v1 = j̄.v1

v3 = j.v1

(329)
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Finally, taking into account the second condition of (327), we obtain the real root

of (326):

t = u1 + v1 = 3

√
√
√
√

1

2

(

79 + 9
√
77

33

)

+ 3

√
√
√
√

1

2

(

79 − 9
√
77

33

)

≈ 0.97531

x1 = t − 7/3 ≈ −1.35802(330)

Then the first root of F (x) = 0 is x1 ≈ −1.358 < 0, the correction to the first root of

R(x) = (x+2)2(x+3) = 0 is dx = x1 − (−2) = −1.358− (−2) = +0.642. As in our

example F ′(x) > 0, the function F (x) is an increasing function having a parabolic

branch as x −→ +∞, the curve y = F (x) intersects the line x = 0 in the half-plane

y ≥ 0 =⇒ F (0) > 0 =⇒ c < rad2(ac) which is verified numerically.

12.2.3. The General Case

Let us return to the general case c = a + 1. We denote q = min(ai, cj). If

we consider that F (x) = R(x), the equation F (x) = 0 =⇒ R(x) = 0 and the

first real root is x1 = −q, the product of all the roots is P =
∏

i

(xi)
2.

∏

j

(xj) =

(−1)2Na+Nc
∏

i

(ai)
2.

∏

j

(cj). But F (x) = R(x)− µc, the constant coefficient of F (x)

will be
∏

i

(ai)
2.

∏

j

(cj)−µc. The new product of the roots is P ′ =
∏

i

(x′
i)

2.
∏

j

(x′
j) =

(−1)2Na+Nc(
∏

i

(ai)
2.

∏

j

(cj) − µc). The first root x1 = −q becomes x′
1 = −q + dx.

To estimate dx, we can write to the order two that:

F (−q + dx) = R(−q + dx) − µc = 0 =⇒ R(−q + dx) = µc =⇒

R(−q) + dx.R′(−q) +
dx2

2
R”(−q) = µc(331)

Supposing that a1 = q = min(ai, cj), from the equations (319-322-324), we have :

R(−a1) = 0

R′(−a1) = 0

R”(−a1) = 2
Na∏

i=2

(ai − a1)
2.

Nc∏

j=1

(cj − a1) > 0 =⇒

dx2 =
µc

∏Na
i=2(ai − a1)2.

∏Nc
j=1(cj − a1)

(332)

We suppose that c > rad2(ac) =⇒ µc > rad2(a).rad(c) =⇒ µc > R(0). We

deduce that F (0) < 0 and x′
1 = −a1 + dx > 0 =⇒ dx > 0. We take the positive



100 CHAPTER 12. LAST PROOF OF ABC CONJECTURE - CASE c = a + 1

value of dx, then we obtain:

(333) dx =

√
µc

Na∏

i=2

(ai − a1).

√
√
√
√
√

Nc∏

j=1

(cj − a1)

But µc = R(x′
1) =

Na∏

i

(x′
1 + ai)

2.
Nc∏

j

(x′
1 + cj), we can write:

µc = dx2.
Na∏

i=2

(dx + ai − a1)
2.

Nc∏

j

(dx + cj − a1) =⇒

µc > dx2.
Na∏

i=2

(ai − a1)
2.

Nc∏

j

(cj − a1)(334)

because all the terms ai − a1 and cj − a1 are positive numbers. Using the last

inequality and the expression of dx given by the equation (333), we obtain:

µc >
µc

Na∏

i=2

(ai − a1)
2.

Nc∏

j=1

(cj − a1)

.
Na∏

i=2

(ai − a1)
2.

Nc∏

j

(cj − a1) =⇒

1 > 1 =⇒ the contradiction =⇒ µc < rad2(a)rad(c)(335)

So, our supposition that c > rad2(ac) is false and we obtain the important result

that c < rad2(ac) and the conjecture (32) is verified.

12.2.3.1. Examples

In this section, we are going to verify the above remarks with a numerical example.

The example is given by:

1 + 5 × 127 × (2 × 3 × 7)3 = 196

rad(a) = 2 × 3 × 5 × 7 × 127 = 26 670

rad(c) = 19

c = 195 = 47 045 881, µc = 195 = 2476 099(336)

Using the notations of the paper, we obtain:

R(x) = (x + 2)2(x + 3)2(x + 5)2(x + 7)2(x + 127)2(x + 19)

F (x) = R(x) − µc

Let X = x + 2, the expression of R(x) becomes:

R(X) = X2(X + 1)2(X + 3)2(X + 5)2(X + 125)2(X + 17)
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The calculations gives:

R(X) = X11 + 285.X10 + 24 808.X9 + 657 728.X8 + 7424 722.X7 + 42 772 898.X6

+134 002 080.X5 + 223 508 940.X4 + 187 753 125.X3 + 597 656 251.X2(337)

We want to estimate the first root of F (x) = 0, we write:

R(X) − µc = 0 =⇒
X11 + 285.X10 + 24 808.X9 + 657 728.X8 + 7424 722.X7 + 42 772 898.X6

+134 002 080.X5 + 223 508 940.X4 + 187 753 125.X3 + 597 656 251.X2 − 2 476 099 = 0

If x = −2 =⇒ X = 0 =⇒ R(X) − µc < 0. If we take x1 = −1.936315 =⇒ X1 =

0.03685, then we obtain that:

(338) R(x1) − µc = R(X1) − µc ≈ 177.82 > 0

Then, ∃ ξ with −2 < ξ < x1 so that X ′ = 2+ ξ verifies R(X ′)− µc = 0 and ξ is the

first root of F (x) = 0 and ξ < 0 =⇒ F (0) > 0 =⇒ rad2(a)rad(c)−µc > 0 =⇒ R2 > c

that is true. We have also ξ = −2 + dx = a1 + dx and 0 < dx < a1.

12.3. The Proof of the abc conjecture (15) Case: c = a + 1

We denote R = rad(ac).

12.3.1. Case: ǫ ≥ 1

Using the result of the theorem above, we have ∀ǫ ≥ 1:

(339) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 1

We verify easily that K(ǫ) > 1 for ǫ ≥ 1 and it is a decreasing function from e the

base of the neperian logarithm to 1.

12.3.2. Case: ǫ < 1

12.3.2.1. Case: c ≤ R

In this case, we can write :

(340) c ≤ R < R1+ǫ < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the abc conjecture is true.
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12.3.2.2. Case: c > R

In this case, we confirm that :

(341) c < K(ǫ).R1+ǫ, K(ǫ) = e

(
1

ǫ2

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triplets (a, 1, c) checking c > R and:

(342) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒
R1−ǫ0 .c ≥ R2.K(ǫ0) > c.K(ǫ0) =⇒ R1−ǫ0 > K(ǫ0)(343)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 > K(ǫ0) =⇒

c1−ǫ0 > K(ǫ0) =⇒ c > K(ǫ0)

(
1

1 − ǫ0

)

(344)

We deduce that it exists an infinity of triples (a, 1, c) verifying (342), hence the

contradiction. Then the proof of the abc conjecture in the case c = a+1 is finished.

We obtain that ∀ǫ > 0, c = a + 1 with a, c relatively coprime, 2 ≤ a < c :

(345) c < K(ǫ).rad(ac)1+ǫ with K(ǫ) = e

(
1

ǫ2

)

Q.E.D

12.4. Examples

In this section, we are going to verify some cases of one numerical example. The

example is given by:

(346) 1 + 5 × 127 × (2 × 3 × 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2 × 3 × 5 × 7 × 127,

b = 1 ⇒ µb = 1 and rad(b) = 1,

c = 196 = 47 045 880 ⇒ rad(c) = 19. Then rad(abc) = rad(ac) = 2 × 3 × 5 × 7 ×
19 × 127 = 506 730..

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 880.
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12.4.0.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 880
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(347) K(ǫ) = e
1

0.0001 = e10000 = 8, 7477777149120053120152473488653e + 4342

We deduce that c ≪ K(0.01).506 7301.01 and the equation (345) is verified.

12.4.0.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2, 6879363309671754205917012128876e + 43 =⇒ c <

K(0.1) × 506 7301.01. And the equation (345) is verified.

12.4.0.3. Case ǫ = 1

K(1) = e =⇒ c = 47 045 880 < e.rad2(ac) = 697 987 143 184, 212. and the equation

(345) is verified.

12.4.0.4. Case ǫ = 100

K(100) = e0.0001 =⇒ c = 47 045 880
?
< e0.0001.506 730101 =

1, 5222350248607608781853142687284e + 576

and the equation (345) is verified.

12.5. Conclusion

This is an elementary proof of the abc conjecture in the case c = a + 1. We can

announce the important theorem:

Theorem 18. — For each ǫ > 0, there exists K(ǫ) > 0 such that if a, c positive

integers relatively prime with c = a + 1, then :

(348) c < K(ǫ).rad(ac)1+ǫ

where K is a constant depending of ǫ equal to e

(
1

ǫ2

)

.
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CHAPTER 13

A PROOF OF THE ABC CONJECTURE: CASE

c = a + 1

Abstract. — In this paper, we consider the abc conjecture, case c = a + 1. As

the conjecture c < rad2(abc) is less open, we give firstly the proof of a modified

conjecture that is c ≤ 2rad2(ac). The factor 2 is important for the proof of the new

conjecture that represents the key of the proof of the main conjecture. Secondly,

the proof of the abc conjecture is given for ǫ ≥ 1, then for ǫ ∈]0, 1[. We choose the

constant K(ǫ) as K(ǫ) = 2e

(
1

ǫ2

)

for ǫ ≥ 1 and K(ǫ) = e

(
1

ǫ2

)

for ǫ ∈]0, 1[. Some

numerical examples are presented.

13.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(349) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(350) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the abc conjecture is given below:

Conjecture 17. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a + b, then :

(351) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.
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The idea to try to write a paper about this conjecture was born after after the

publication of an article in Quanta magazine about the remarks of professors Peter

Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt

concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the

abc conjecture is due to the incomprehensibility how the prime factors are organized

in c giving a, b with c = a + b. So, I will give a simple proof in the case c = a + 1

that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [?]. It is the key to resolve the abc conjecture. In my

paper, I propose to give the proof that c ≤ 2rad2(ac) , it facilitates the proof of the

abc conjecture. The paper is organized as fellow: in the second section, we give the

proof of c ≤ 2rad2(ac). The main proof of the abc conjecture is presented in section

three. The numerical examples are discussed in section four.

13.2. The Proof of the conjecture c ≤ 2rad2(ac), Case : c = a + 1

Below is given the definition of the conjecture c ≤ 2rad2(abc):

Conjecture 18. — Let a, b, c positive integers relatively prime with c = a+b, then:

(352) c ≤ 2rad2(abc) =⇒ Logc

Log(rad(abc))
≤ 2 +

Log2

Lograd(abc)

In the case c = a + 1, the definition of the conjecture is:

Definition 13.1. — Let a, c positive integers, relatively prime, with c = a+1,a ≥ 2

then:

(353) c ≤ 2rad2(ac) =⇒ Logc

Log(rad(ac))
≤ 2 +

Log2

Lograd(ac)

1 - If c < rad(ac) then we obtain:

(354) c < rad(ac) < rad2(ac) < 2rad2(ac)

and the condition (353) is verified.

2 - If c = rad(ac), then a, c are not relatively coprime. Case to reject.

3 - We suppose that c > rad(ac) =⇒ µc > rad(a), we have also a > rad(ac) =⇒
µa > rad(c).

3a - Case µa ≤ rad(a): c = 1 + a ≤ 1 + rad2(a) < rad2(ac) < 2rad2(ac).

3b - Case µc ≤ rad(c): c = µcrad(c) ≤ rad2(c) < rad2(ac) < 2rad2(ac).
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3c - Case µa > rad(a) and µc > rad(c). As µa > rad(c), we can write that

µa = l.rad(c) + l′ with 1 ≤ l′ < rad(c) =⇒ µa < (l + 1)rad(c) =⇒ a < (l + 1)rad(c)

3c1 - We suppose that l + 1 ≤ rad(ac) =⇒ l < rad(ac) then a < (l + 1)rad(ac) ≤
rad2(ac) =⇒ a < rad2(ac) =⇒ c ≤ 2rad2(ac).

3c2 - We suppose that l = rad(ac) =⇒ µa = rad(a)rad2(c) + l′ < rad(c)(rad(ac) +

1) =⇒ a < rad(ac)(rad(ac) + 1) < 2rad2(ac) =⇒ a < 2rad2(ac) =⇒ c ≤ 2rad2(ac).

3c3 - Case l > rad(ac)

3c3 - 1 - Case l = rad(ac) + l” with 1 ≤ l” < rad(ac). Then, we write µa =

lrad(c)+l′ = rad(c)(rad(ac)+l”)+l′ =⇒ µa < rad(c)(rad(ac)+l”)+rad(c) =⇒ µa <

rad(c)(rad(ac) + l” + 1) ≤ 2rad(c)rad(ac) =⇒ a < 2rad2(ac) =⇒ c ≤ 2rad2(ac).

3c3 - 2 - Case l = q.rad(ac) + q′ with q, q′ ∈ N, q ≥ 2 and 0 < q′ < rad(ac). From

c = a+1 =⇒ c = µa.rad(a)+1 = (lrad(c)+ l′).rad(a)+1 = lrad(ac)+l′rad(a)+1 =

rad(ac)(q.rad(ac) + q′) + l′rad(a) + 1 = q.rad2(ac) + q′rad(ac) + l′rad(a) + 1. Let

R = rad(ac), we can write:

(355) q.R2 + q′R + l′rad(a) + 1 − c = 0

Let P (X) the polynomial P (X) = q.X2 + q′X + l′rad(a) + 1 − c = 0, it has a

positive integer root X1 = R, then its discriminant ∆ = q′2 − 4q(l′rad(a) + 1− c) =

q′2+4q(c−l′rad(a)−1) is a positive integer. Noting that as c > R =⇒ c−l′rad(a) >

0 =⇒ c ≥ l′rad(a) + 1, but c and a are coprime, then c − l′rad(a) − 1 > 0. As the

root X1 = R ∈ N, we can write that ∆ = m2 with m > 0 is an integer. We obtain

the equation:

(356) m2 − q′2 = 4q(c − l′rad(a) − 1) = N > 0

Hence, m, q′ are solutions of the Diophantine equation:

(357) x2 − y2 = N

The roots of P (X) = 0 are:

X1 = R =
−q′ + m

2q
=⇒ m − q′ = 2Rq(358)

X2 =
−q′ − m

2q
(359)

From m2 − q′2 = N and m − q′ = 2Rq, we obtain:

(360) m + q′ = 2l, N = 4qlR = 2qR.2l



110 CHAPTER 13. A PROOF OF THE ABC CONJECTURE: CASE c = a + 1

Let Q(N) indicate the number of the solutions of (357) and τ(N) the number of

ways representing N as product of its factors, then we have (see the theorem 27.3

in [4]):

- if N ≡ 2(mod 4), then Q(N) = 0;

- if N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2];

- if N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].

Let (u, v), u, v ∈ N another couple of solutions of the equation (357), then

u2−v2 = x2−y2 = N = 4qlR, butm = x and q′ = y verify the equation x−y = 2qR,

it follows that u, v verify also u − v = 2qR, that gives u + v = 2l, then u = x = m

and v = q′. If not, we have u − v = 2qR + λ, with λ Ó= 0 ∈ N =⇒ u = v + 2qR + λ,

from u2 − v2 = N , we obtain v =
N − (2qR + λ)2

2(2qR + λ)
=⇒ u =

N + (2qR + λ)2

2(2qR + λ)
, but

u + v =
N

2qR + λ
Ó= 2l

(

=
N

2qR

)

. So, we have given the proof of the uniqueness

of the solutions of the equation (357) with the condition m − q′ = 2qR. As

N = 4qlR ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2] = [τ(qlR)/2] > 1, because a, c are

not prime integers so we can suppose the case c > R, and we have I + K ≥ 4

the total number of ai, ck. But Q(N) = 1, then the contradiction, the condition

l > rad(ac) is false and we obtain considering the above results c ≤ 2rad2(ac).

3c3 -3 - Case l = q.rad(ac) with q ∈ N, q ≥ 2. From c = a+1 =⇒ c = µa.rad(a)+1 =

(lrad(c) + l′).rad(a) + 1 = lrad(ac) + l′rad(a) + 1 = q.rad2(ac) + l′rad(a) + 1. We

can write:

(361) q.rad2(c).rad2(a) + l′.rad(a) + 1 − c = 0

Let Q(Z) the polynomial Q(Z) = q.rad2(c)Z2+ l′Z −a = 0, it has a positive integer

root Z1 = rad(a), then its discriminant ∆ = l′2 + 4aqrad2(c) is a positive integer.

As the root Z1 = rad(a) ∈ N, we can write that ∆ = t2 with t > 0 is an integer. We

obtain the equation:

(362) t2 − l′2 = 4aqrad2(c) = M > 0

Hence, t, l′ are solutions of the Diophantine equation:

(363) x2 − y2 = M

The roots of Q(Z) = 0 are:

Z1 = rad(a) =
−l′ + t

2qrad2(c)
=⇒ t − l′ = 2qrad(a)rad2(c)(364)

Z2 =
−l′ − t

2qrad2(c)
(365)

From t2 − l′2 = M and t − l′ = 2qrad(a)rad2(c), we obtain:

(366) t + l′ = 2µa, M = 4aqrad2(c)
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Let S(M) indicate the number of the solutions of (363) and τ(M) the number of

ways representing M as product of its factors, using the theorem 27.3 in [4]:

- if M ≡ 2(mod 4), then S(M) = 0;

- if M ≡ 1 or M ≡ 3(mod 4), then S(M) = [τ(M)/2];

- if M ≡ 0(mod 4), then S(M) = [τ(M/4)/2].

As seen in the case 3c3-2, equation (363) has an unique solution (t, l′) and

M ≡ 0(mod 4), we find the same contradiction and the hypothesis l = qrad(ac) is

false and we obtain considering the above results c ≤ 2rad2(ac).

We announce the theorem:

Theorem 19. — Let a, c positive integers relatively prime with c = a + 1, a ≥ 2,

then c ≤ 2rad2(ac).

13.3. The Proof of The abc Conjecture (17) case c = a + 1

13.3.1. Case: ǫ ≥ 1

Using the result of the theorem c ≤ 2rad2(abc), we have ∀ǫ ≥ 1:

(367) c ≤ 2R2 ≤ 2R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = 2e

(
1

ǫ2

)

, ǫ ≥ 1

We verify easily that K(ǫ) > 2 for ǫ ≥ 1. Then the abc conjecture is true.

13.3.2. Case: ǫ < 1

13.3.2.1. Case: c < R

In this case, we can write :

(368) c < R < R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the abc conjecture is true.

13.3.2.2. Case: c > R

In this case, we confirm that :

(369) c < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the couple (a, c) checking c > R and:

(370) c ≥ R1+ǫ0 .K(ǫ0)
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are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒

R1−ǫ0 .c ≥ R2.K(ǫ0) ≥ c

2
K(ǫ0) =⇒ R1−ǫ0 ≥≥ K(ǫ0)

2
(371)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 ≥ K(ǫ0)

2
=⇒

c1−ǫ0 >
K(ǫ0)

2
=⇒ c >

(
K(ǫ0)

2

)

(
1

1 − ǫ0

)

(372)

We deduce that it exists an infinity of couples (a, c) verifying (370), hence the con-

tradiction. Then the proof of the abc conjecture is finished. We obtain that ∀ǫ > 0,

c = a + 1 with a, c relatively coprime, a ≥ 2:

(373) c < K(ǫ).rad(a)1+ǫ with







K(ǫ) = 2e

(
1

ǫ2

)

ǫ ≥ 1

K(ǫ) = e

(
1

ǫ2

)

0 < ǫ < 1

Q.E.D

13.4. Examples

In this section, we are going to verify some numerical examples. We find that

c < rad2(ac) =⇒ c ≤ 2rad2(ac) and our proposed conjecture is true.

13.4.1. Example 1

The example is given by:

(374) 1 + 5 × 127 × (2 × 3 × 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2 × 3 × 5 × 7 × 127, in this example, µa < rad(a).

c = 196 = 47 045 880 ⇒ rad(c) = 19. Then rad(ac) = rad(ac) = 2× 3× 5× 7× 19×
127 = 506 730.

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 880.

13.4.1.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 880
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(375) K(ǫ) = e
1

0.0001 = e10000 = 8, 7477777149120053120152473488653e + 4342
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We deduce that c ≪ K(0.01).506 7301.01 and the equation (373) is verified.

13.4.1.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2, 6879363309671754205917012128876e + 43 =⇒ c <

K(0.1) × 506 7301.01, and the equation (373) is verified.

13.4.1.3. Case ǫ = 1

K(1) = 2e =⇒ c = 47 045 880 < 2e.rad2(ac) = 2 × 697 987 143 184, 212 and the

equation (373) is verified.

13.4.1.4. Case ǫ = 100

K(100) = 2e0.0001 =⇒ c = 47 045 880
?
< 2e0.0001.506 730101 =

2 × 1, 5222350248607608781853142687284e + 576

and the equation (373) is verified.

13.4.2. Example 2

We give here the example 2 from https : //nitaj.users.lmno.cnrs.fr:

(376) 37 × 75 × 135 × 17 × 1831 + 1 = 230 × 52 × 127 × 353

a = 37 × 75 × 135 × 17 × 1831 = 424 808 316 456 140 799 ⇒ rad(a) = 3 × 7 × 13 ×
17 × 1831 = 8497671 =⇒ µa > rad(a),

b = 1, rad(c) = 2 × 5 × 127 × 353 Then rad(ac) = 849767 × 448310 =

3 809 590 886 010 < c. rad2(ac) = 14 512 982 718 770 456 813 720 100 > c, then

c ≤ 2rad2(ac). For example, we take ǫ = 0.5, the expression of K(ǫ) becomes:

(377) K(ǫ) = e1/0.25 = e4 = 54, 59800313096579789056

Let us verify (373):

c
?
< K(ǫ).rad(ac)1+ǫ =⇒ c = 424808316456140800

?
< K(0.5) × (3 809 590 886 010)1.5 =⇒

424808316456140800 < 405970304762905691174, 98260818045(378)

Hence (373) is verified.

Ouf, end of the mystery!

13.5. Conclusion

We have given an elementary proof of the abc conjecture in the case c = a + 1,

confirmed by some numerical examples. We can announce the important theorem:
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Theorem 20. — (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;

2019) For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive integers

relatively prime with c = a + b, then :

(379) c < K(ǫ).rad(ac)1+ǫ

where K is a constant depending of ǫ proposed as :






K(ǫ) = 2e

(
1

ǫ2

)

ǫ ≥ 1

K(ǫ) = e

(
1

ǫ2

)

0 < ǫ < 1
.
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CHAPTER 14

A FINAL PROOF OF THE abc CONJECTURE

Abstract. — In this paper, we consider the abc conjecture. As the conjecture

c < rad2(abc) is less open, we give firstly the proof of a modified conjecture that is

c < 2rad2(abc). The factor 2 is important for the proof of the new conjecture that

represents the key of the proof of the main conjecture. Secondly, the proof of the

abc conjecture is given for ǫ ≥ 1, then for ǫ ∈]0, 1[. We choose the constant K(ǫ) as

K(ǫ) = 2e

(
1

ǫ2

)

for ǫ ≥ 1 and K(ǫ) = e

(
1

ǫ2

)

for ǫ ∈]0, 1[. Some numerical examples

are presented.

To the memory of my Father who taught me arithmetic

To the memory of my colleague and friend Jamel Zaiem (1956-2019)

14.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(380) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(381) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the abc conjecture is given below:
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Conjecture 19. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a + b, then :

(382) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

The idea to try to write a paper about this conjecture was born after after

the publication of an article in Quanta magazine about the remarks of professors

Peter Scholze of the University of Bonn and Jakob Stix of Goethe University

Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a

proof of the abc conjecture is due to the incomprehensibility how the prime factors

are organized in c giving a, b with c = a + b. So, I will give a simple proof in the

two cases c = a+1 and c = a+b that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [?]. It is the key to resolve the abc conjecture. In my

paper, I propose to give the proof that c < 2rad2(abc) , it facilitates the proof of the

abc conjecture. The paper is organized as fellow: in the second and third section,

we give successively the proof of c < 2rad2(ac) and c < 2rad2(abc). The main proof

of the abc conjecture is presented in section four three for the two cases c = a + 1

and c = a + b. The numerical examples are discussed in sections five and six.

14.2. The Proof of the conjecture c < 2rad2(ac), case : c = a + 1

Below is given the definition of the conjecture c < 2rad2(abc):

Conjecture 20. — Let a, b, c positive integers relatively prime with c = a + b, a >

b, b ≥ 2, then:

(383) c < 2rad2(abc) =⇒ Logc

Log(rad(abc))
< 2 +

Log2

Log(rad(abc))

In the case c = a + 1, the definition of the conjecture is:

Definition 14.1. — Let a, c positive integers, relatively prime, with c = a+1,a ≥ 2

then:

(384) c < 2rad2(ac) =⇒ Logc

Log(rad(ac))
< 2 +

Log2

Log(rad(ac))

1 - If c < rad(ac) then we obtain:

(385) c < rad(ac) < 2rad2(ac)

and the condition (384) is verified.

2 - If c = rad(ac), then a, c are not relatively coprime. Case to reject.
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3 - We suppose that c > rad(ac) =⇒ µc > rad(a), we have also a > rad(ac) =⇒
µa > rad(c).

3a - Case µa ≤ rad(a): c = 1 + a ≤ 1 + rad2(a) < rad2(ac) < 2rad2(ac), and the

condition (384) is verified.

3b - Case µc ≤ rad(c): c = µcrad(c) ≤ rad2(c) < rad2(ac) < 2rad2(ac), and the

condition (384) is verified.

3c - Case µa > rad(a) and µc > rad(c). As µa > rad(c), we can write that

µa = l.rad(c)+ l′ with 1 ≤ l′ < rad(c) =⇒ µa < (l+1)rad(c) =⇒ a < (l+1)rad(ac)

3c1 - We suppose that l + 1 ≤ rad(ac) =⇒ l < rad(ac) then a < (l + 1)rad(ac) ≤
rad2(ac) =⇒ c < 2rad2(ac), and the condition (384) is verified.

3c2 - We suppose that l = rad(ac) =⇒ µa = rad(a)rad2(c) + l′ < rad(c)(rad(ac) +

1) =⇒ a < rad(ac)(rad(ac) + 1) < 2rad2(ac) =⇒ a < 2rad2(ac) =⇒ c ≤ 2rad2(ac).

As c can not be equal to 2rad2(ac), we obtain c < 2rad2(ac) and the condition

(384) is verified.

3c3 - Case: l > rad(ac). As µa = lrad(c) + l′ =⇒ µa > rad(a)rad2(c), we can write

that µa = m.rad(a)rad2(c) + r with m, r ∈ N, m ≥ 1 and 0 < r < rad(a)rad2(c).

Then:

µa = m.rad(a)rad2(c) + r =⇒ a = µa.rad(a) = m.rad2(a)rad2(c) + r.rad(a) =⇒
a < mrad2(ac) + rad2(ac) =⇒ a < (m + 1)rad2(ac) with m ≥ 1 =⇒

a < (1 + 1)rad2(ac) =⇒ a < 2rad2(ac) =⇒ a + 1 = c ≤ 2rad2(ac)(386)

As c can not be equal to 2rad2(ac), we deduce that c < 2rad2(ac) and the condition

(384) is verified.

We announce the theorem:

Theorem 21. — Let a, c positive integers relatively prime with c = a + 1, a ≥ 2,

then c < 2rad2(ac).

14.3. The Proof of the conjecture c < 2rad2(abc), case : c = a + b

Below is given the definition of the conjecture c < 2rad2(abc):

Conjecture 21. — Let a, b, c positive integers relatively prime with c = a + b, a >

b, b ≥ 2, then:

(387) c < 2rad2(abc) =⇒ Logc

Log(rad(abc))
< 2 +

Log2

Log(rad(abc))
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4 - If c < rad(abc) then we obtain:

(388) c < rad(abc) < rad2(abc) < 2rad2(abc)

and the condition (387) is verified.

5 - If c = rad(abc), then a, b, c are not relatively coprime. Case to reject.

6 - We suppose that c > rad(abc) =⇒ µc > rad(ab), we can write :

µc = lrad(ab) + l′, with 0 < l′ < rad(ab) =⇒
µc < lrad(ab) + rad(ab) = (l + 1)rad(ab) =⇒ c < (l + 1)rad(abc)(389)

6a - Case l + 1 ≤ rad(abc) =⇒ l < rad(abc), then c < rad2(abc) < 2rad2(abc) =⇒
c < 2rad2(abc) and the condition (387) is verified.

6b - Case l = rad(abc) : From c < (l + 1)rad(abc) =⇒ c < rad(abc)(rad(abc) + 1) <

2rad2(abc), then c < 2rad2(abc) and the condition (387) is verified.

6c - Case l > rad(abc): From µc = lrad(ab)+l′, we deduce that µc > rad2(ab)rad(c),

so we can write:

µc = mrad2(ab)rad(c) + r m ≥ 1, 0 < r < rad2(ab)rad(c) =⇒
µc < (m + 1)rad2(ab)rad(c), m ≥ 1 =⇒ c < (m + 1)rad2(abc)

Taking m = 1 =⇒ c < 2rad2(abc)(390)

And the condition (387) is verified.

We announce the theorem:

Theorem 22. — Let a, b, c positive integers relatively prime with c = a + b, a >

b, b ≥ 2, then c < 2rad2(abc).

14.4. The Proof of the abc conjecture

Let R = rad(ac) or R = rad(abc).

14.4.1. Case : ǫ ≥ 1

Using the result that c < 2rad2(ac) or c < 2rad2(abc), we have ∀ǫ ≥ 1:

(391) c < 2R2 ≤ 2R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = 2e

(
1

ǫ2

)

, ǫ ≥ 1

We verify easily that K(ǫ) > 2 for ǫ ≥ 1. Then the abc conjecture is true.
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14.4.2. Case: ǫ < 1

14.4.2.1. Case: c < R

In this case, we can write :

(392) c < R < R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the abc conjecture is true.

14.4.2.2. Case: c > R

In this case, we confirm that :

(393) c < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triplet (a, b, c) checking c > R and:

(394) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒

R1−ǫ0 .c ≥ R2.K(ǫ0) >
c

2
K(ǫ0) =⇒ R1−ǫ0 >

K(ǫ0)

2
(395)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 >
K(ǫ0)

2
=⇒

c1−ǫ0 >
K(ǫ0)

2
=⇒ c >

(
K(ǫ0)

2

)

(
1

1 − ǫ0

)

(396)

We deduce that it exists an infinity of triplets (a, b, c) verifying (394), hence the

contradiction. Then the proof of the abc conjecture is finished. We obtain that

∀ǫ > 0, c = a + b with a, b, c relatively coprime:

(397) c < K(ǫ).rad(abc)1+ǫ with







K(ǫ) = 2e

(
1

ǫ2

)

ǫ ≥ 1

K(ǫ) = e

(
1

ǫ2

)

0 < ǫ < 1

Q.E.D

In the two following sections, we are going to verify some numerical examples. We

find that c < rad2(abc) =⇒ c < 2rad2(abc) and our proposed conjecture is true.
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14.5. Examples : Case c = a + 1

14.5.1. Example 1

The example is given by:

(398) 1 + 5× 127× (2× 3× 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2× 3× 5× 7× 127, in this example, µa < rad(a).

c = 196 = 47 045 880⇒ rad(c) = 19. Then rad(ac) = rad(ac) = 2× 3× 5× 7× 19×
127 = 506 730.

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 880.

14.5.1.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 880
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(399) K(ǫ) = e
1

0.0001 = e10000 = 8, 7477777149120053120152473488653e+ 4342

We deduce that c ≪ K(0.01).506 7301.01 and the equation (397) is verified.

14.5.1.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2, 6879363309671754205917012128876e + 43 =⇒ c <

K(0.1)× 506 7301.01, and the equation (397) is verified.

14.5.1.3. Case ǫ = 1

K(1) = 2e =⇒ c = 47 045 880 < 2e.rad2(ac) = 2 × 697 987 143 184, 212 and the
equation (397) is verified.

14.5.1.4. Case ǫ = 100

K(100) = 2e0.0001 =⇒ c = 47 045 880
?
< 2e0.0001.506 730101 =

2× 1, 5222350248607608781853142687284e+ 576
and the equation (397) is verified.

14.5.2. Example 2

We give here the example 2 from https : //nitaj.users.lmno.cnrs.fr:

(400) 37 × 75 × 135 × 17× 1831 + 1 = 230 × 52 × 127× 353
a = 37 × 75 × 135 × 17 × 1831 = 424 808 316 456 140 799 ⇒ rad(a) = 3 × 7 × 13 ×
17× 1831 = 8497671 =⇒ µa > rad(a),
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b = 1, rad(c) = 2 × 5 × 127 × 353 Then rad(ac) = 849767 × 448310 =

3 809 590 886 010 < c. rad2(ac) = 14 512 982 718 770 456 813 720 100 > c, then

c ≤ 2rad2(ac). For example, we take ǫ = 0.5, the expression of K(ǫ) becomes:

(401) K(ǫ) = e1/0.25 = e4 = 54, 59800313096579789056

Let us verify (397):

c
?
< K(ǫ).rad(ac)1+ǫ =⇒ c = 424808316456140800

?
< K(0.5)× (3 809 590 886 010)1.5 =⇒

424808316456140800 < 405970304762905691174, 98260818045(402)

Hence (397) is verified.

14.6. Examples : Case c = a + b

14.6.1. Example 1

We give here the example of Eric Reyssat [1], it is given by:

(403) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,

c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(404) K(ǫ) = e9999.99 = 8, 7477777149120053120152473488653e+ 4342

Let us verify (397):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343≪ K(0.01)× 150421.01(405)

Hence (397) is verified.

14.6.2. Example 2

The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79(406)

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311(407)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953(408)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(409)
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14.6.2.1. Case 1

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2e0.0001.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 2× 2.7657949971494838920022381186039e+ 1359

then (397) is verified.

14.6.2.2. Case 2

We take ǫ = 0.5, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(410)

613 474 845 886 230 468 750
?
< e4.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 8 450 961 319 227 998 887 403, 9993(411)

We obtain that (397) is verified.

14.6.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< 2e.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 831 072 936 124 776 471 158 132 100× 2e(412)

We obtain that (397) is verified.

14.6.3. Example 3

It is of Ralf Bonse about the ABC conjecture [3] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(413)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e+ 33(414)
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14.6.3.1. Case 1

For example, we take ǫ = 10, the expression of K(ǫ) becomes:

K(ǫ) = 2e0.01 = 2.015631480856591348640923483354

Let us verify (397):

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

2e0.01.(2.3.5.11.173.2543.182587.245983.2802983.85813163)11

=⇒ 3.4136998783296235160378273576498e+ 44 <

2.8472401192989816352016241851442e+ 365(415)

The equation (397) is verified.

14.6.3.2. Case 2

We take ǫ = 0.4 =⇒ K(ǫ) = 12.18247347425151215912625669608, then: The

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e6.25.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.4

=⇒ 3.4136998783296235160378273576498e+ 44 <

3.6255465680011453642792720569685e+ 47(416)

And the equation (397) is verified.

Ouf, end of the mystery!

14.7. Conclusion

We have given an elementary proof of the abc conjecture, confirmed by some numer-

ical examples. We can announce the important theorem:

Theorem 23. — Let a, b, c positive integers relatively prime with c = a + b, then

for each ǫ > 0, there exists K(ǫ) such that :

(417) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ proposed as :







K(ǫ) = 2e

(
1

ǫ2

)

ǫ ≥ 1

K(ǫ) = e

(
1

ǫ2

)

0 < ǫ < 1

.
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CHAPTER 15

A DEFINITIVE PROOF OF THE ABC

CONJECTURE

Abstract. — In this paper, we consider the abc conjecture. Firstly, we give an
elementary proof the conjecture c < rad2(abc). Secondly, the proof of the abc

conjecture is given for ǫ ≥ 1, then for ǫ ∈]0, 1[. We choose the constant K(ǫ) as

K(ǫ) = e

(
1

ǫ2

)

. Some numerical examples are presented.

To the memory of my Father who taught me arithmetic

To the memory of my colleague and friend Jamel Zaiem (1956-2019)

15.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(418) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(419) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 22. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(420) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.
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The idea to try to write a paper about this conjecture was born after the
publication of an article in Quanta magazine about the remarks of professors Peter
Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt
concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the
abc conjecture is due to the incomprehensibility how the prime factors are organized
in c giving a, b with c = a+ b. So, I will give a simple proof that can be understood
by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]. It is the key to resolve the abc conjecture. In my
paper, I propose an elementary proof of it, it facilitates the proof of the abc conjec-
ture. In the second section, we give the proof that c < rad2(abc). We present the
proof of the abc conjecture in section three. The numerical examples are discussed
in sections four and five.

15.2. The Proof of the conjecture c < rad2(abc)

Below is given the definition of the conjecture c < rad2(abc):

Conjecture 23. — Let a, b, c positive integers relatively prime with c = a+ b, a >

b, b ≥ 2, then:

(421) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

We note R = rad(abc) in the case c = a+ b or R = rad(ac) in the case c = a+ 1.

As c is bounded, it exists an unique couple (m, n) ∈ Z+ ×N, n ≥ m+1 ≥ 1, so that:

(422) m.R2 < c < n.R2

We can write:

c = mR2 + r, 1 ≤ r < R2(423)

c = nR2 − r′, 1 ≤ r′ < R2(424)

But mR2 + r = nR2 − r′ =⇒ 2 ≤ r + r′ = (n − m)R2 < 2R2 =⇒ n − m < 2, we
deduce n = m or n = m + 1. The case n = m presents a contradiction. Hence
n = m+ 1. The equation (422) becomes:

(425) m.R2 < c < (m+ 1).R2, m ≥ 0

15.2.1. Proof that c < R2

** Case c < R: c < R < R2 and the condition (421) is verified.
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** Case c = R: case to reject.

** Case c > R: from (425), we obtain:

(426) mR2 < c < (m+ 1)R2

If m = 0, we deduce that :

(427) 0 < c < R2

and the condition (421) is verified.

We suppose now that m > 0. Let c = a+ b or c = a+ 1 so that:

mR2 < c < (m+ 1)R2

As c > mR2, we can write :

(428) c = mR2 +m′, m′ < R2

But c > R =⇒ c2 > R2, we obtain also:

(429) c2 = lR2 + l′, l′ < R2

From the above equations, we can write:

(430) (mR2 +m′)2 = lR2 + l′ =⇒ m2R4 + (2mm′ − l)R2 +m′2 − l′ = 0

From the last equation above, R2 is the positive root of the polynomial of the second
degree:

(431) F (T ) = m2T 2 + (2mm′ − l)T +m′2 − l′ = 0

The discriminant of F (T ) is:

(432) ∆ = (2mm′ − l)2 − 4m2(m′2 − l′)

As a real root of F (T ) exists, and it is an integer, ∆ is written as :

(433) ∆ = t2 ≥ 0, t ∈ Z+

** - Case ∆ = 0 and m′2−l′ Ó= 0: Then (2mm′−l)2 = 4m2(m′2−l′) =⇒ m′2−l′ = α2

,α ∈ N. In this case the equation (431 has a double root T1 = T2 =
l − 2mm′

2m2
=

R2 =⇒ l − 2mm′ = 2m2R2 > 0. But (l − 2mm′)2 = 4m4R4 = 4m2(m′2 − l′) =⇒
m′2 = m2R4 + l′ > R4 =⇒ m′ > R2. Then the contradiction as m′ < R2. The case
∆ = 0 and m′2 − l′ Ó= 0 is impossible.

** - Case ∆ = 0 and m′2 − l′ = 0: In this case, 2mm′ − l = 0 =⇒ R2 = 0. Then
the contradiction as R > 0. The case ∆ = 0 and m′2 − l′ = 0 is impossible.
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** - Case ∆ > 0 and m′2 − l′ = 0: The equation (431) becomes:

(434) F (T ) = m2T 2 + (2mm′ − l)T = 0 =⇒







T1 = 0

T2 =
l − 2mm′

m2
= R2

Then, we have:

l − 2mm′ = m2R2 =⇒ l = 2mm′ +m2R2

As m′ < R2 =⇒ l − m2R2 < 2mR2 =⇒ l < 2mR2 + m2R2, we obtain
lR2 < m(2 + m)R4. We deduce that c2 = lR2 + l′ < m(2 + m)R4 + R2.
We know that c < (m + 1)R2 =⇒ c2 < (m + 1)2R4. We verify easily that
m(2+m)R4+R2 < (m+1)2R4, then the contradiction with mR2 < c < (m+1)R2.
Hence, the case ∆ > 0 and m′2 − l′ = 0 is impossible.

** - Case ∆ > 0 and m′2 − l′ > 0: We have: ∆ = (2mm′ − l)2 − 4m2(m′2 − l′) =

t2 =⇒ t2 < (2mm′ − l)2. Let the case |2mm′ − l| = 2mm′ − l =⇒ t < 2mm′ − l. The
expression of the two roots are:

(435)







T1 =
l − 2mm′ + t

2m2b
< 0

T2 =
l − 2mm′ − t

2m2
< 0

As R2 > 0 is a root of F (T ) = 0, then the contradiction. Hence, the case ∆ > 0

and m′2 − l′ > 0 is impossible.

** - Case ∆ > 0 and m′2 − l′ < 0: From m′2 < l′ =⇒ (c − mR2)2 < c2 − lR2, it
gives m2R2 + l − 2mc < 0 =⇒ m2R2 + l < 2mc < 2m(m + 1)R2. Then we obtain
l < m2R2 + 2mR2 =⇒ lR2 < m(m + 2)R4 =⇒ c2 = lR2 + l′ < m(m + 2)R4 + R2.
We know that c < (m + 1)R2 =⇒ c2 < (m + 1)2R4. We verify easily that
m(2+m)R4+R2 < (m+1)2R4, then the contradiction with mR2 < c < (m+1)R2.
Hence, the case ∆ > 0 and m′2 − l′ < 0 is impossible.

All the cases for the resolution of the equation (431) have given contradictions
with the hypothesis c > mR2, m > 0. Then we obtain that m = 0 and 0 < c < R2.
Hence the condition (421) is verified.

We announce the theorem:

Theorem 24. — Let a, b, c positive integers relatively prime with c = a+ b, a > b,

then c < rad2(abc).



15.3. THE PROOF OF THE ABC CONJECTURE 133

15.3. The Proof of the abc conjecture

15.3.1. Case : ǫ ≥ 1

Using the result that c < R2, we have ∀ǫ ≥ 1:

(436) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 1
We verify easily that K(ǫ) > 1 for ǫ ≥ 1. Then the abc conjecture is true.

15.3.2. Case: ǫ < 1

15.3.2.1. Case: c < R

In this case, we can write :

(437) c < R < R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, ǫ < 1

here also K(ǫ) > 1 for ǫ < 1 and the abc conjecture is true.

15.3.2.2. Case: c > R

In this case, we confirm that :

(438) c < K(ǫ).R1+ǫ, with K(ǫ) = e

(
1

ǫ2

)

, 0 < ǫ < 1

If not, then ∃ǫ0 ∈]0, 1[, so that the triple (a, b, c) checking c > R and:

(439) c ≥ R1+ǫ0 .K(ǫ0)

are in finite number. We have:

c ≥ R1+ǫ0 .K(ǫ0) =⇒ R1−ǫ0 .c ≥ R1−ǫ0 .R1+ǫ0 .K(ǫ0) =⇒
R1−ǫ0 .c ≥ R2.K(ǫ0) > cK(ǫ0) =⇒ R1−ǫ0 > K(ǫ0)(440)

As c > R, we obtain:

c1−ǫ0 > R1−ǫ0 > K(ǫ0) =⇒

c1−ǫ0 > K(ǫ0) =⇒ c > (K(ǫ0))

(
1

1− ǫ0

)

(441)

We deduce that it exists an infinity of triples (a, b, c) verifying (439), hence the
contradiction. Then the proof of the abc conjecture is finished. We obtain that
∀ǫ > 0, c = a+ b with a, b, c relatively coprime:

(442) c < K(ǫ).rad(abc)1+ǫ with K(ǫ) = e

(
1

ǫ2

)

ǫ > 0
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Q.E.D

In the two following sections, we are going to verify some numerical examples.

15.4. Examples : Case c = a + 1

15.4.1. Example 1

The example is given by:

(443) 1 + 5× 127× (2× 3× 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2× 3× 5× 7× 127, in this example, µa < rad(a).
c = 196 = 47 045 881⇒ rad(c) = 19. Then rad(ac) = rad(ac) = 2× 3× 5× 7× 19×
127 = 506 730.

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 881.

15.4.1.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 881
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(444) K(ǫ) = e
1

0.0001 = e10000 = 8.7477777149120053120152473488653e+ 4342

We deduce that c ≪ K(0.01).506 7301.01 and the equation (694) is verified.

15.4.1.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2.6879363309671754205917012128876e + 43 =⇒ c <

K(0.1)× 506 7301.01, and the equation (694) is verified.

15.4.1.3. Case ǫ = 1

K(1) = e =⇒ c = 47 045 881 < e.rad2(ac) = 697 987 143 184, 212 and the equation
(694) is verified.

15.4.1.4. Case ǫ = 100

K(100) = e0.0001 =⇒ c = 47 045 881
?
< e0.0001.506 730101 =

1.5222350248607608781853142687284e+ 576

and the equation (694) is verified.
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15.4.2. Example 2

We give here the example 2 from https : //nitaj.users.lmno.cnrs.fr:

(445) 37 × 75 × 135 × 17× 1831 + 1 = 230 × 52 × 127× 353

a = 37 × 75 × 135 × 17 × 1831 = 424 808 316 456 140 799 ⇒ rad(a) = 3 × 7 × 13 ×
17× 1831 = 8497671 =⇒ µa > rad(a),
b = 1, rad(c) = 2 × 5 × 127 × 353 Then rad(ac) = 849767 × 448310 =

3 809 590 886 010 < c. rad2(ac) = 14 512 982 718 770 456 813 720 100 > c, then
c ≤ 2rad2(ac). For example, we take ǫ = 0.5, the expression of K(ǫ) becomes:

(446) K(ǫ) = e1/0.25 = e4 = 54.59800313096579789056

Let us verify (694):

c
?
< K(ǫ).rad(ac)1+ǫ =⇒ c = 424808316456140800

?
< K(0.5)× (3 809 590 886 010)1.5 =⇒

424808316456140800 < 405970304762905691174.98260818045(447)

Hence (694) is verified.

15.5. Examples : Case c = a + b

15.5.1. Example 1

We give here the example of Eric Reyssat [1], it is given by:

(448) 310 × 109 + 2 = 235 = 6436343

a = 310.109⇒ µa = 3
9 = 19683 and rad(a) = 3× 109,

b = 2⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042. For
example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(449) K(ǫ) = e9999.99 = 8.7477777149120053120152473488653e+ 4342

Let us verify (694):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343≪ K(0.01)× 150421.01(450)

Hence (694) is verified.
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15.5.2. Example 2

The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79(451)

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311(452)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953(453)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110(454)

15.5.2.1. Case 1

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< e0.0001.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 2.7657949971494838920022381186039e+ 1359

then (694) is verified.

15.5.2.2. Case 2

We take ǫ = 0.5, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(455)

613 474 845 886 230 468 750
?
< e4.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 8 450 961 319 227 998 887 403, 9993(456)

We obtain that (694) is verified.

15.5.2.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< e.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 831 072 936 124 776 471 158 132 100× e(457)

We obtain that (694) is verified.
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15.5.3. Example 3

It is of Ralf Bonse about the ABC conjecture [3] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(458)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e+ 33(459)

15.5.3.1. Case 1

For example, we take ǫ = 10, the expression of K(ǫ) becomes:

K(ǫ) = e0.01 = 1.007815740428295674320461741677

Let us verify (??):

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e0.01.(2.3.5.11.173.2543.182587.245983.2802983.85813163)11

=⇒ 3.4136998783296235160378273576498e+ 44 <

1.423620059649490817600812092572e+ 365(460)

The equation (694) is verified.

15.5.3.2. Case 2

We take ǫ = 0.4 =⇒ K(ǫ) = 12.18247347425151215912625669608, then: The

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e6.25.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.4

=⇒ 3.4136998783296235160378273576498e+ 44 <

3.6255465680011453642792720569685e+ 47(461)

And the equation (694) is verified.

Ouf, end of the mystery!

15.6. Conclusion

We have given an elementary proof of the abc conjecture, confirmed by some numer-
ical examples. We can announce the important theorem:
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Theorem 25. — (David Masser, Joseph Œsterlé & Abdelmajid Ben Hadj Salem;

2019) For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive integers

relatively prime with c = a+ b, then :

(462) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending of ǫ proposed as :

K(ǫ) = e

(
1

ǫ2

)

, ǫ > 0

Acknowledgements : The author is very grateful to Professors Mihăilescu
Preda and Gérald Tenenbaum for their comments about errors found in previous
manuscripts concerning proofs proposed of the abc conjecture.
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CHAPTER 16

IF c < R.exp(3
3
√
2
2 Log2/3R) =⇒ THE ABC

CONJECTURE TRUE

Assuming c < R.exp(3 3√2
2 Log2/3R) - A New Conjecture - Implies The abc

Conjecture True

Abstract. — In this paper about the abc conjecture, we propose a new conjecture

about an upper bound for c as c < R.exp(3 3√2
2 Log2/3R). Assuming the last condition

holds, we give the proof of the abc conjecture by proposing the expression of the
constant K(ǫ), then we approve that ∀ǫ > 0, for a, b, c positive integers relatively
prime with c = a+ b, we have c < K(ǫ).rad1+ǫ(abc). Some numerical examples are
given.

16.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(463) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(464) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 24. — ( abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(465) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending only of ǫ.
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The idea to try to write a paper about this conjecture was born after the
publication of an article in Quanta magazine about the remarks of professors Peter
Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt
concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the
abc conjecture is due to the incomprehensibility how the prime factors are organized
in c giving a, b with c = a+ b.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]. It is the key to resolve the abc conjecture. In my paper,

I propose the constant K(ǫ) = e

(
1

ǫ2

)

and assuming that c < R.exp(3 3√2
2 Log2/3R)

the new conjecture more stronger than c < R2. In my proof of the abc conjecture,

we will find that c must verify c < R.exp(3 3√2
2 Log2/3R) so we will obtain that the

abc conjecture is true. The paper is organized as follows: in the second section, we
give the proof of the abc conjecture. In sections three and four, we present some
numerical examples respectively for the cases c = a+ 1 and c = a+ b.

16.2. The Proof of the abc conjecture

Let a, b, c (respectively a, c) positive integers relatively prime with c = a + b, a >

b, b ≥ 2 (respectively c = a+ 1, a ≥ 2). We note R = rad(abc) in the case c = a+ b

or R = rad(ac) in the case c = a+ 1. I propose the constant K(ǫ) as:

(466) K(ǫ) = e

(
1

ǫ2

)

> 1, ∀ ǫ > 0

16.2.1. Case c < R:

As c < R =⇒ c < K(ǫ).R1+ǫ, ∀ǫ > 0 since K(ǫ) > 1 and the conjecture (36) is
verified.

16.2.2. Case c = R

Case to reject as a, b, c (respectively a, c) are relatively prime.

16.2.3. Case R < c

In this case, we have c/R > 1 =⇒ Log(c/R) > 0. Let for ∀ǫ > 0:

(467) y(ǫ) =
1

ǫ2
+ (1 + ǫ)LogR − Logc
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Our main task is give the proof that y(ǫ) > 0 =⇒ 1

ǫ2
+ (1 + ǫ)LogR > Logc, then

=⇒ Logc <
1

ǫ2
+ (1 + ǫ)LogR and we obtain c < e

(
1

ǫ2

)

.R1+ǫ = K(ǫ).R1+ǫ, ∀ǫ > 0.

We have also:

limǫ−→0y(ǫ) = +∞(468)

limǫ−→+∞y(ǫ) = +∞(469)

For ǫ > 0, the function derivative y′(ǫ) is given by:

(470) y′(ǫ) = − 2
ǫ3
+ LogR =

ǫ3LogR − 2
ǫ3

y′(ǫ) = 0 gives:

(471) ǫ0 =
3

√

2

LogR
≤ 3

√

2

Log6
≈ 1.03733

If R ր, then ǫ0 → 0. For ǫ = ǫ0, we obtain:

(472) y(ǫ0) =
1

ǫ2
0

+ (1 + ǫ0)LogR − Logc = LogR+
3

2
3
√
2Log2/3R − Logc

y(ǫ0) is positive if LogR+
3

2
3
√
2Log2/3R − Logc > 0. So we assume that :

(473) c < R.exp(
3

2
3
√
2Log2/3R) =⇒ y(ǫ0) > 0

Then the new conjecture proposed by us is :

(474) c < R.exp(
3

2
3
√
2Log2/3R)

From (468-469), the point (ǫ0, y(ǫ0)) is the minimum of the curve y(ǫ) for all ǫ > 0.
Then y(ǫ) > 0 and the proof of the abc conjecture is finished. We obtain that ∀ǫ > 0,
c = a+ b with a, b, c relatively coprime:

(475) c < K(ǫ).rad1+ǫ(abc) with K(ǫ) = e

(
1

ǫ2

)

, ǫ > 0

Remark 16.1. — We verify that R.exp(3
2

3
√
2Log2/3) < R1+2/3 for R large, R >

7 830 169 545.

Remark 16.2. — Nowadays, we know numerically [1] that
Logc

LogR
≤ 1.629912 <

1 + 2/3 ≈ 1.666667. All the numerical examples below verify c < R1+2/3, so, I
would suggest that c < R1+2/3 as a new open conjecture that it is more difficult
than c < R2.
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In the two following sections, we are going to verify some numerical examples.

16.3. Examples : Case c = a + 1

Example 16.3. — The example is given by:

(476) 1 + 5× 127× (2× 3× 7)3 = 196

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = 2 × 3 × 7 = 42 and rad(a) =

2× 3× 5× 7× 127, in this example, µa < rad(a).
c = 196 = 47 045 881⇒ rad(c) = 19. Then R = rad(ac) = 2×3×5×7×19×127 =
506 730.

We have c > R and R.exp(3
2

3
√
2Log2/3R) = 18 800 185 299.081 > c = 47 045 881.

16.3.0.1. Case ǫ = 0.01

c < K(ǫ).rad(ac)1+ǫ =⇒ 47 045 881
?
< e10000.506 7301.01. The expression of K(ǫ)

becomes:

(477) K(ǫ) = e
1

0.0001 = e10000 = 8.7477777149120053120152473488653e+ 4342

We deduce that c ≪ K(0.01).506 7301.01 and the equation (475) is verified.

16.3.0.2. Case ǫ = 0.1

K(0.1) = e
1

0.01 = e100 = 2.6879363309671754205917012128876e + 43 =⇒ c <

K(0.1)× 506 7301.01, and the equation (475) is verified.

16.3.0.3. Case ǫ = 1

K(1) = e =⇒ c = 47 045 881 < e.rad2(ac) = 697 987 143 184.212 and the equation
(475) is verified.

16.3.0.4. Case ǫ = 100

K(100) = e0.0001 =⇒ c = 47 045 881
?
< e0.0001.506 730101 =

1.5222350248607608781853142687284e+ 576

and the equation (475) is verified.

Example 16.4. — We give here the example 2 from https : //nitaj.users.lmno.cnrs.fr:

(478) 1 + 37 × 75 × 135 × 17× 1831 = 230 × 52 × 127× 3532

a = 37 × 75 × 135 × 17 × 1831 = 424 808 316 456 140 799 ⇒ rad(a) = 3 × 7 × 13 ×
17× 1831 = 8497671 =⇒ µa > rad(a),
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b = 1, c = a + 1 = 424 808 316 456 140 800 =⇒ rad(c) = 2 × 5 × 127 × 353.
Then R = rad(ac) = 8497671 × 448310 = 3 809 590 886 010 < c. We ob-
tain R.exp(3

2
3
√
2Log2/3R) = 210 209 917 628 130 447 085.912 > c, then c <

R.exp(3
2

3
√
2Log2/3R).

For example, we take ǫ = 0.5, the expression of K(ǫ) becomes:

(479) K(ǫ) = e1/0.25 = e4 = 54.59800313096579789056

Let us verify (475):

c
?
< K(ǫ).rad(ac)1+ǫ =⇒ c = 424 808 316 456 140 800

?
< K(0.5)× (3 809 590 886 010)1.5

=⇒ 424 808 316 456 140 800 < 405 970 304 762 905 691 174.98260818045(480)

Hence (475) is verified.

16.4. Examples : Case c = a + b

Example 16.5. — We give here the example of Eric Reyssat [1], it is given by:

(481) 310 × 109 + 2 = 235 = 6436343

a = 310.109 = 6 436 341⇒ µa = 3
9 = 19683 and rad(a) = 3× 109 =⇒ µa > rad(a),

b = 2⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343 ⇒ rad(c) = 23. Then R = rad(abc) = 2 × 3 × 109 × 23 =
15042 < c. Let us verify c < R.exp(3

2
3
√
2Log2/3R). We obtain : c = 6436 343 <

77 532 979.756.
For example, we take ǫ = 0.01, the expression of K(ǫ) becomes:

(482) K(ǫ) = e9999.99 = 8.7477777149120053120152473488653e+ 4342

Let us verify (475):

c
?
< K(ǫ).rad(abc)1+ǫ =⇒ c = 6436343

?
< K(0.01)× (3× 109× 2× 23)1.01 =⇒

6436343≪ K(0.01)× 150421.01(483)

Hence (475) is verified.

Example 16.6. — The example of Nitaj about the ABC conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79 = 11 297

b = 72.412.3113 = 2477 678 547 239⇒ rad(b) = 7.41.311 = 89 257

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953

R = rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110 < c

We have also µa > rad(a), µb > rad(b) > rad(a) and µb < µa. We find c <

R.exp(3
2

3
√
2Log2/3R) = 3 614 932 048 440 771 457 890.631.
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16.4.0.1. Case 1

we take ǫ = 100 we have:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< e0.0001.(2.3.5.7.11.13.41.79.311.953)101 =⇒

613 474 845 886 230 468 750 < 2.7657949971494838920022381186039e+ 1359

then (475) is verified.

16.4.0.2. Case 2

We take ǫ = 0.5, then:

c
?
< K(ǫ).rad(abc)1+ǫ =⇒(484)

613 474 845 886 230 468 750
?
< e4.(2.3.5.7.11.13.41.79.311.953)1.5 =⇒

613 474 845 886 230 468 750 < 8 450 961 319 227 998 887 403, 9993(485)

We obtain that (475) is verified.

16.4.0.3. Case 3

We take ǫ = 1, then

c
?
< K(ǫ).rad(abc)1+ǫ =⇒

613 474 845 886 230 468 750
?
< e.(2.3.5.7.11.13.41.79.311.953)2 =⇒

613 474 845 886 230 468 750 < 831 072 936 124 776 471 158 132 100× e(486)

We obtain that (475) is verified.

Example 16.7. — It is of Ralf Bonse about the ABC conjecture [3] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983(487)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983 = 3.4136998783296235160378273576498e+ 44

R = rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

R = 1, 5683959920004546031461002610848e+ 33 < c(488)

We have also: µa < rad(a), µb > rad(b) > µa, µc > rad(c) and µb < µc. The
calculate of A = R.exp(3

2
3
√
2Log2/3R gives:

A = 9.5054989139840681669171835013874e+ 47 > c
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16.4.0.4. Case 1

For example, we take ǫ = 10, the expression of K(ǫ) becomes:

K(ǫ) = e0.01 = 1.007815740428295674320461741677

Let us verify (475):

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e0.01.(2.3.5.11.173.2543.182587.245983.2802983.85813163)11

=⇒ 3.4136998783296235160378273576498e+ 44 <

1.423620059649490817600812092572e+ 365(489)

The equation (475) is verified.

16.4.0.5. Case 2

We take ǫ = 0.4 =⇒ K(ǫ) = 12.18247347425151215912625669608, then:

c
?
< K(ǫ).rad(abc)1+ǫ ⇒ c = 556.245983

?
<

e6.25.(2.3.5.11.173.2543.182587.245983.2802983.85813163)1.4

=⇒ 3.4136998783296235160378273576498e+ 44 <

3.6255465680011453642792720569685e+ 47(490)

And the equation (475) is verified.

16.5. Conclusion

Assuming c < R.exp(
3

2
3
√
2Log2/3R), we have given an elementary proof of the abc

conjecture, confirmed by some numerical examples. We can announce the theorem:

Theorem 26. — For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a + b, and assuming c < R.exp(
3

2
3
√
2Log2/3R) is

true, then :

(491) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending of ǫ proposed as :

K(ǫ) = e

(
1

ǫ2

)

, ǫ > 0

Acknowledgements : The author is very grateful to Professors Mihăilescu
Preda and Gérald Tenenbaum for their comments about errors found in previous
manuscripts concerning proofs proposed of the abc conjecture.
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CHAPTER 17

THE abc CONJECTURE IS FALSE

Abstract. — In this note, I give the proof that the abc conjecture is false because,
in the case c > rad(abc), for 0 < ǫ < 1 we can not find the constant K(ǫ) so that
c < K(ǫ).rad1+ǫ(abc) for c very large. A counter-example is given.

17.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(492) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(493) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 25. — For each ǫ > 0 , there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, then :

(494) c < K(ǫ).rad1+ǫ(abc), K(ǫ) depending only of ǫ.

The idea to try to write a paper about this conjecture was born after the
publication of an article in Quanta magazine, in November 2018, about the remarks
of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe
University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty
to find a proof of the abc conjecture is due to the incomprehensibility how the prime
factors are organized in c giving a, b with c = a+ b.
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We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]:

Conjecture 26. — Let a, b, c positive integers relatively prime with c = a+b, then:

(495) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

After studying the abc conjecture using different choices of the constant K(ǫ)

and having attacked the problem from diverse angles, I have arrived to conclude
that, assuming that c < rad2(abc) or c < rad1.63 is true, the abc conjecture does
not hold when 0 < ǫ < 1. Then the abc conjecture as it was defined is false.
In this note, I give a counter-example that the abc conjecture is not true, in
the case rad(abc) < c taking ǫ ∈]0, 1[ without assuming one of the two open ques-
tions : c < rad2(abc) and c < rad1.63(abc) that was proposed in 1996 by A. Nitaj [4].

The paper is organized as follows: in the second section, we give a counter-example
that abc conjecture is false in the case rad(abc) < c, choosing ǫ ∈]0, 1[.

17.2. Proof the abc conjecture is false

We note R = rad(ac) in the case c = a+ 1 (respectively R = rad(abc) if c = a+ b).

17.2.1. Case c < R:

As c < R =⇒ c < R =⇒ c < K(ǫ).R1+ǫ, ∀ǫ > 0 since we choose K(ǫ) ≥ 1 and the
conjecture (25) is verified.

17.2.2. Case c = R

Case to reject as a, b, c (respectively a, c) are relatively prime.

17.2.3. Case R < c

I will consider the case c = a+ 1. I give the following counter example:

8n = 23n = (7 + 1)n = 7n + 7n−1n+ . . .+ 7n+ 1 = 7(7n−1 + n7n−2 + . . .+ n) + 1 =⇒
23n = 7(7n−1 + n7n−2 + . . .+ n) + 1(496)

We suppose that for n odd and large, the abc conjecture holds taking ǫ = ǫ0 ∈]0, 1[.
Then ∃ K(ǫ0) > 0 and:

(497) 23n < K(ǫ0)R
1+ǫ0
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We obtain:

rad(c) = rad(23n) = 2

rad(a) = rad(7(7n−1 + n7n−2 + . . .+ n)) = 7.rad(7n−1 + n7n−2 + . . .+ n) =⇒
rad(a) ≤ 7.(7n−1 + n7n−2 + . . .+ n) ≤ n.7n =⇒ rad(a) ≤ 7nn(498)

We re-write the equation (497) in detail:

(499) 23n < K(ǫ0)2
1+ǫ0n1+ǫ07n(1+ǫ0)

That we can write as:

(500) e
3nLog2

(

1− (1 + ǫ0)
Log7

3Log2
− 1 + ǫ0

3Log2

Logn

n

)

< K(ǫ0)2
1+ǫ0

We choose ǫ0 = 0.06 and we consider that n is very large (n −→ +∞), then we
obtain:

(501) e3nLog2(1− 0.99193) ≤ K(0.06)21.06 =⇒ +∞ ≤ K(0.06)21.06

Hence the contradiction, and the abc conjecture is false for the value ǫ0 = 0.06.

We can announce the following theorems that are very easy to verify:

Theorem 27. — (The truncated abc conjecture:) For each ǫ > 0, there exists

K(ǫ) > 0 such that if a, b, c positive integers relatively prime with c = a + b, and

assuming c < rad2(abc) is true, then :

(502) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending of ǫ proposed as :

K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 1

and:

Theorem 28. — (The truncated abc conjecture:) For each ǫ ≥ 0.63, there

exists K(ǫ) > 0 such that if a, b, c positive integers relatively prime with c = a + b,

and assuming c < rad1.63(abc) is true, then :

(503) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending of ǫ proposed as :

K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 0.63

Ouf! The end of the mystery!

Acknowledgements : The author is very grateful to Professors Mihăilescu
Preda and Gérald Tenenbaum for their comments about errors found in previous
manuscripts concerning proofs proposed of the abc conjecture.
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CHAPTER 18

END OF THE MYSTERY OF THE abc

CONJECTURE

To the memory of my Father who taught me arithmetic

To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

Abstract. — In this note, I give the proof that the abc conjecture is false giving a
counterexample in the case ǫ ∈]0, 1[. because, in the case c > rad(abc), for 0 < ǫ < 1

we can not find the constant K(ǫ) so that c < K(ǫ).rad1+ǫ(abc) for c very large.

18.1. Introduction

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(504) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(505) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 27. — For each ǫ > 0 , there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, then :

(506) c < K(ǫ).rad1+ǫ(abc), K(ǫ) depending only of ǫ

The idea to try to write a paper about this conjecture was born after the
publication of an article in Quanta magazine, in November 2018, about the remarks
of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe
University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty
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to find a proof of the abc conjecture is due to the incomprehensibility how the prime
factors are organized in c giving a, b with c = a+ b.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]:

Conjecture 28. — Let a, b, c positive integers relatively prime with c = a+b, then:

(507) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

After studying the abc conjecture using different choices of the constant K(ǫ)

and having attacked the problem from diverse angles, I have arrived to conclude
that, assuming that c < rad2(abc) or c < rad1.63 is true, the abc conjecture
does not hold when 0 < ǫ < 1. Then the abc conjecture as it was defined is
false. In this note, I give a counterexample that the abc conjecture is not true, in
the case rad(abc) < c taking ǫ ∈]0, 1[ without assuming one of the two open ques-
tions : c < rad2(abc) and c < rad1.63(abc) that was proposed in 1996 by A. Nitaj [4].

The paper is organized as follows: in the second section, we give a counterexample
that abc conjecture is false in the case rad(abc) < c, choosing ǫ ∈]0, 1[.

18.2. Proof the abc Conjecture is False

We note R = rad(ac) in the case c = a+ 1 (respectively R = rad(abc) if c = a+ b).

18.2.1. Case c < R:

As c < R =⇒ c < R =⇒ c < K(ǫ).R1+ǫ, ∀ǫ > 0 since we choose K(ǫ) ≥ 1 and the
conjecture (27) is verified.

18.2.2. Case c = R

Case to reject as a, b, c (respectively a, c) are relatively prime.

18.2.3. Case R < c

I will consider the case c = a+ 1. I give the following counterexample:

(508) c = µc.rad(c) = 2n + 1, n > n0 > 0 =⇒ rad(a) = 2

18.2.3.1. Case rad(c) < µc:

In this case, we obtain as c = µcrad(c) < µ2
c =⇒ µc > (2n + 1)1/2 > 2n/2 and

c > rad2(c) =⇒ rad(c) < (2n + 1)1/2. we have also R < c. We suppose that for
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n odd and large, the abc conjecture holds taking ǫ = ǫ0 ∈]0, 1[. Then ∃ K(ǫ0) > 0

and:

2n + 1 < K(ǫ0)R
1+ǫ0 =⇒ 2n + 1 < K(ǫ0)2

1+ǫ0rad1+ǫ0(c) =⇒
2n + 1 < K(ǫ0)2

1+ǫ0rad1+ǫ0(c) < K(ǫ0)2
1+ǫ0(2n + 1)

1+ǫ0
2 =⇒

(2n + 1)
1−ǫ0

2 < K(ǫ0)2
1+ǫ0(509)

We consider that n is very large (n −→ +∞), then we obtain as 1− ǫ0 > 0:

(510) +∞ ≤ K(ǫ0)2
1+ǫ0 < +∞

Hence the contradiction, and the abc conjecture is false when ǫ ∈]0, 1|.

18.2.3.2. Case rad(c) ≥ µc:

c = µc.rad(c) ≤ rad2(c) =⇒ c < R2. We have also c > R =⇒ µc > 2,
if not, µc = 2 =⇒ (a, c) Ó= 1 then the contradiction with a, c coprime; if
µc = 1 =⇒ c = rad(c) < R, case to reject, then R < c =⇒ µc ≥ 3 =⇒ c ≥ 3rad(c).
Suppose that c = 3rad(c), we can write c = rad(c)1+α with 0 < α < 1 equal to

Log3

Log(rad(c))
. Then as rad(c) < c < rad2(c) =⇒ ∃α ∈]0, 1[ that we can take equal

to
Log c

rad(c)

Log(rad(c))
< 1 so that c ≥ rad1+α(c) and α depends only of c.

We return to the abc conjecture considering our example giving by the equation
(508). We suppose that for n odd and large, the abc conjecture holds taking ǫ =

ǫ0 ∈]0, 1[. Then ∃ K(ǫ0) > 0 and:

(511) 2n + 1 < K(ǫ0)R
1+ǫ0 =⇒ 2n + 1 < K(ǫ0)2

1+ǫ0rad1+ǫ0(c)

As seen above, we have rad(c) ≤ c
1

1+α , let β =
α − ǫ0

α+ 1
and the equation (511)

becomes:

2n + 1 < K(ǫ0)2
1+ǫ0

(

c
1

1+α

)1+ǫ0

=⇒

(2n + 1)β < K(ǫ0)2
1+ǫ0 =⇒ 2nβ

(

1 +
1

2n

)β

< K(ǫ0)2
1+ǫ0(512)

We choose ǫ0 so that ǫ0 < α =⇒ β > 0, for example ǫ0 = α/10 =⇒ β =

9α/(10(1 + α)). Then if n is very large, the parameter β remains positive not zero
and 2nβ becomes very large, it follows (2n+1)β > K(ǫ0)2

1+ǫ0 , then the contradiction.

For our counterexample presented in the paper, in the two cases, we have found
a contradiction in the application of the abc conjecture. Hence the abc conjecture
is false.

However, we can announce the following theorems that are very easy to prove:
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Theorem 29. — (The truncated abc conjecture:) For each ǫ ≥ 1, there exists

K(ǫ) > 0 such that if a, b, c positive integers relatively prime with c = a + b, and

assuming c < rad2(abc) is true, then :

(513) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending of ǫ proposed as :

K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 1

and:

Theorem 30. — (The truncated abc conjecture:) For each ǫ ≥ 0, there exists

K(ǫ) > 0 such that if a, b, c positive integers relatively prime with c = a + b, and

assuming c < rad1.63(abc) is true, then :

(514) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending of ǫ proposed as :

K(ǫ) = e

(
1

ǫ2

)

, ǫ ≥ 0.63

Ouf! The end of the mystery!

Acknowledgements
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CHAPTER 19

PROGRESS IN THE PROOF OF THE

CONJECTURE c < rad2(abc) - CASE : c = a + 1

Abstract. — In this paper, we consider the abc conjecture. We give some progress
in the proof of the conjecture c < rad2(abc) in the case c = a+ 1.

To the memory of my Father who taught me arithmetic

To my wife Wahida, my daughter Sinda and my son Mohamed

Mazen

19.1. Introduction and notations

Let a a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(515) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(516) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) ([4]). It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 29. — (abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(517) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.
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We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 ([2]). A conjecture was

proposed that c < rad2(abc) ([1]). Here we will give a proof of it for the case
c = a+ 1.

Conjecture 30. — Let a, b, c positive integers relatively prime with c = a+b, then:

(518) c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2

This result, I think is the key to obtain the final proof of the veracity of the abc

conjecture.

19.2. A Proof of the conjecture (30) case c = a + 1

Let a, c positive integers, relatively prime, with c = a + 1 and R = rad(ac),

c =
∏

j′∈J ′ c
βj′

j′ , βj′ ≥ 1.

If c < rad(ac) then we obtain:

(519) c < rad(ac) < rad2(ac) =⇒ c < R2

and the condition (518) is verified.

If c = rad(ac), then a, c are not coprime, case to reject.

In the following, we suppose that c > rad(ac) and c and a are not prime numbers.

(520) c = a+ 1 = µarad(a) + 1
?
< rad2(ac)

19.2.1. µa Ó= 1 , µa ≤ rad(a)

We obtain :

(521) c = a+ 1 < 2µa.rad(a)⇒ c < 2rad2(a)⇒ c < rad2(ac) =⇒ c < R2

Then (520) is verified.

19.2.2. µc Ó= 1, µc ≤ rad(c)

We obtain :

(522) c = µcrad(c) ≤ rad2(c) < rad2(ac) =⇒ c < R2

and the condition (520) is verified.
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19.2.3. µa > rad(a) and µc > rad(c)

19.2.3.1. Case: µa = radq(a), q ≥ 2, µc = radp(c), p ≥ 2:

In this case, we write c = a + 1 as radp+1(c) − radq+1(a) = 1. Then rad(c), rad(a)

are solutions of the Diophantine equation: :

(523) Xp+1 − Y q+1 = 1 with (p+ 1)(q + 1) ≥ 9

But the solutions of the equation (523) are :(X = ±3, p+1 = 2, Y = +2, q+1 = 3),

we obtain p = 1 < 2, then rad(c), rad(a) are not solutions of (523) and the case

µa = radq(a), q ≥ 2, µc = radp(c), p ≥ 2 is to reject.

19.2.3.2. Case: rad(c) < µc < rad2(c) and rad(a) < µa < rad2(a):

We can write:

µc < rad2(c) =⇒ c < rad3(c)

µa < rad2(a) =⇒ a < rad3(a)







=⇒ ac < R3 =⇒ a2 < ac < R3 =⇒

a < R
√

R < R2 =⇒ c = a+ 1 < R2(524)

19.2.3.3. Case: µc > rad2(c) or µa > rad2(a)

I- We suppose that µc > rad2(c) and rad(a) < µa ≤ rad2(a):

I-1- Case rad(a) < rad(c): In this case a = µa.rad(a) ≤ rad2(a).rad(a) <

rad2(a)rad(c) < rad2(ac) =⇒ a < R2 =⇒ c < R2 .

I-2- Case rad(c) < rad(a) < rad2(c): As a ≤ rad2(a).rad(a) < rad2(a).rad2(c) =⇒
a < R2 =⇒ c < R2 .

Example: 230.52.127.3532 = 37.55.135.17.1831 + 1, rad(c) = 2.5.127.353 =

448 310, rad2(c) = 200 981 856 100,

µc = 2
29.5.353 = 947 577 159 680 =⇒ rad2(c) < µc < rad3(c),

rad(a) = 3.5.13.17.1831 = 6 069 765, rad2(a) = 36 842 047 155 225,

µa = 3
6.54.134 = 13 013 105 625 < rad2(a). It is the case : rad(c) < µc < rad2(c)

and rad(a) < µa ≤ rad2(a) with rad(c) = 448 310 < rad(a) = 6 069 765 < rad2(c) =

200 981 856 100.

I-3- Case rad2(c) < rad(a):

I-3-1- We suppose that c ≤ rad6(c), we obtain:

c ≤ rad6(c) =⇒ c ≤ rad2(c).rad4(c) =⇒ c < rad2(c).(rad(a))2 = R2 =⇒ c < R2
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Example: 58.72 = 2437.547 + 1 =⇒ 19 140 625 = 19 140 624 + 1, rad(c) = 5.7 =

35, rad(a) = 2.3.547 = 3 282 =⇒ rad(a) > rad2(c), we obtain c = 19140 625 >

rad3(c) = 42 875 and c < rad6(c) = 1 838 265 625 and 3 282 = rad(a) < µa =

5832 < rad2(a) = 10 771 524 =⇒ a < rad3(a) = 35 352 141 768.

I-3-2- We suppose c > rad6(c) =⇒ µc > rad5(c), we suppose µa = rad2(a) =⇒ a =

rad3(a). Then we obtain that X = rad(a) is a solution in positive integers of the

equation:

(525) X3 + 1 = c = µc.rad(c)

If c = radn(c) with n ≥ 7, we obtain an equation like (523) that gives a contradiction.
In the following, we will study the cases µc = A.radn(c) with rad(c) ∤ A, n ≥ 0. The
above equation (525) can be written as :

(526) (X + 1)(X2 − X + 1) = c

Let δ any divisor of c, then:

X + 1 = δ(527)

X2 − X + 1 =
c

δ
= c′ = δ2 − 3X(528)

We recall that rad(a) > rad2(c), it follows that δ must verifies δ − 1 > rad2(c) =⇒
δ > rad2(c) + 1.

I-3-2-1- We suppose that δ = l.rad(c) =⇒ lrad(c) > rad2(c)+1 =⇒ l >
rad2(c) + 1

rad(c)
.

We obtain l ≥ rad(c) + 2 so rad(c) and l have the same parity. We have δ =

l.rad(c) < c = µc.rad(c) =⇒ l < µc. As δ is a divisor of c, then l is a divisor of µc,

we write µc = l.m. From µc = l(δ2 − 3X), we obtain:

m = l2rad2(c)− 3rad(a) =⇒ 3rad(a) = l2rad2(c)− m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µc = ml = 3m′l =⇒ 3|rad(c) and

(rad(c), m′) not coprime. We obtain:

rad(a) = l2rad(c).
rad(c)

3
− m′

It follows that a,c are not coprime, then the contradiction.

B - Case m = 3 =⇒ µc = 3l =⇒ c = 3lrad(c) = 3δ = δ(δ2 − 3X) =⇒ δ2 =

3(1 +X) = 3δ =⇒ δ = lrad(c) = 3, then the contradiction.

I-3-2-2- We suppose that δ = l.rad2(c), l ≥ 2. In this case rad(a) = lrad2(c) − 1
verifies rad(a) > rad2(c). If lrad(c) ∤ µc then the case to reject. We suppose that
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lrad(c)|µc =⇒ µc = m.lrad(c), then
c

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) =

rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c). Then

the contradiction.

E - Case m Ó= 1, 3, we obtain: 3rad(a) = l2rad4(c) − m =⇒ rad(a) and rad(c)

are not coprime. Then the contradiction.

I-3-2-3- We suppose that δ = l.radn(c), l ≥ 2 with n ≥ 3. From c = µc.rad(c) =

lradn(c)(δ2 − 3rad(a)), let m = δ2 − 3rad(a).

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradic-

tions, it follows the reject of these cases.

G - Case m Ó= 1, 3. Let q a prime that divides m, it follows q|µc =⇒ q = cj′
0
=⇒

cj′
0
|δ2 =⇒ cj′

0
|3rad(a). Then rad(a) and rad(c) are not coprime. It follows the

contradiction.

I-3-2-4- We suppose that δ =
∏

j∈J1
c

βj

j , βj ≥ 1 with at least one j0 ∈ J1 with

βj0 ≥ 2, rad(c) ∤ δ and δ − 1 = ∏

j∈J1
c

βj

j − 1 > rad2(c) =
∏

j′∈J ′ c2
j′ , J1 ⊂ J ′. We

can write:

δ = µδ.rad(δ), rad(c) = m.rad(δ)

Then we obtain:

c = µc.rad(c) = µc.m.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
m.µc = µδ(δ

2 − 3X)(529)

- If µc = µδ =⇒ m = δ2 − 3X = (µc.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒
m > δ =⇒ rad(c) > m > µc.rad(δ) > rad5(c) because µc > rad5(c), it follows

rad(c) > rad5(c). Then the contradiction.

- We suppose that µc < µδ. As rad(a) = µδrad(δ)− 1, we obtain:

rad(a) > µc.rad(δ)− 1 > 0 =⇒ R > c.rad(δ)− rad(c) > 0 =⇒

c > R > c.rad(δ)− rad(c) > 0 =⇒ 1 > rad(δ)− rad(c)

c
> 0, rad(δ) ≥ 2

=⇒ The contradiction(530)
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- We suppose that µδ < µc. In this case, from the equation (529) and as (m, µδ) = 1,

it follows that we can write:

µc = µ1.µ2, µ1, µ2 > 1(531)

so that m.µ1 = δ2 − 3X, µ2 = µδ(532)

But:

rad(a) = δ − 1 = µδrad(δ)− 1 > rad2(c) =⇒ 0 > m2rad2(δ)− µ2rad(δ) + 1

Let P (Z) the polynomial:

(533) P (Z) = m2Z2 − µ2Z + 1 =⇒ P (rad(δ)) < 0

The discriminant of P (Z) is:

(534) ∆ = µ2
2 − 4m2

- ∆ = 0 =⇒ µ2 = 2m, but (m, µ2) = 1, then the contradiction. Case to reject.

- ∆ < 0 =⇒ P (Z) has no real roots. From (533) it follows that P (Z) > 0, ∀Z ∈ R.

Then the contradiction with P (rad(δ)) < 0. Case to reject.

- ∆ > 0 =⇒ µ2 > 2m =⇒ µ2

m
> 2. We denote t =

√
∆ > 0. The roots of P (Z) = 0

are Z1, Z2 with Z1 < Z2, given by:

(535) Z1 =
µ2 − t

2m2
, Z2 =

µ2 + t

2m2

We approximate t by t̃:

t =
√

µ2
2 − 4m2 = µ2

(

1− 4m
2

µ2
2

) 1
2

=⇒ t̃ = µ2 − 2m
2

µ2
> 0

Then, we obtain Z̃1, Z̃2 as :

(536) Z̃1 =
µ2 − t̃

2m2
=
1

µ2
, Z̃2 =

µ2 + t̃

2m2
=

µ2

m2
− 1

µ2

As µ2
2−4m2 > 0 =⇒ µ2

2−m2 > 3m2 > 0 =⇒ µ2
2

m2
−1 > 0, we will give below the proof

that rad(δ) > Z̃2 =⇒ P (rad(δ)) > 0, then the contradiction with P (rad(δ)) < 0;

we write:

rad(δ)
?
>

µ2

m2
− 1

µ2
, µ2 > 0 =⇒

µ2.rad(δ)
?
>

µ2
2

m2
− 1

δ
?
>

µ2
2 − m2

m2
>
3m2

m2

as δ > 3 =⇒ δ >
µ2

2

m2
− 1 > 3 =⇒ rad(δ) >

µ2

m2
− 1

µ2
>
3

µ2
(537)
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If follows P (rad(δ)) > 0 and the contradiction with the conclusion of the equation

(533).

It follows that the case c > rad6(c) and a = rad3(a) is impossible.

I-3-3- We suppose c > rad6(c) =⇒ c = rad6(c) + h, h > 0 and µa < rad2(a) =⇒
a+ l = rad3(a), l > 0. Then we obtain :

(538) rad6(c) + h = rad3(a)− l + 1

As rad2(c) < rad(a) (see I-3), we obtain the equation:

rad3(a)− (rad2(c))3 = h+ l − 1 = m > 0

Let X = rad(a)−rad2(c), then X is an integer root of the polynomial H(X) defined

as:

(539) H(X) = X3 + 3R.rad(c)X − m = 0

To resolve the above equation, we note X = u+v, then we obtain the two conditions:

u3 + v3 = m, u.v = −R.rad(c) < 0 =⇒ u3.v3 = −R3rad3(c)

It follows that u3, v3 are the roots of the polynomial G(t) given by:

(540) G(t) = t2 − mt − R3rad3(c) = 0

The discriminant of G(t) is :

(541) ∆ = m2 + 4R3rad3(c) = α2, α > 0

The two real roots of (540) are:

t1 = u3 =
m+ α

2
(542)

t2 = v3 =
m − α

2
(543)

As m = rad3(a)− rad6(c) > 0, we obtain that α = rad3(a)+ rad6(c) > 0, then from

the equation (541), it follows that (α = x, m = y) is a solution of the Diophantine

equation:

(544) x2 − y2 = N

with N = 4R3rad3(c) > 0. From the equations (542-543), we remark that α and m

verify the following equations:

x+ y = 2u3 = 2rad3(a)(545)

x − y = −2v3 = 2rad6(c)(546)

then x2 − y2 = N = 4R3rad3(c)(547)
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Let Q(N) be the number of the solutions of (544) and τ(N) is the number of suitable

factorization of N , then we announce the following result concerning the solutions

of the Diophantine equation (544) (see theorem 27.3 in [3]):

- If N ≡ 2(mod 4), then Q(N) = 0.

- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].

- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].

[x] is the integral part of x for which [x] ≤ x < [x] + 1.

Let (α′, m′), α′, m′ ∈ N∗ be another pair, solution of the equation (544), then

α′2 − m′2 = x2 − y2 = N = 4R3rad3(c), but α = x and m = y verify the equation

(545) given by x + y = 2rad3(a), it follows α′, m′ verify also α′ + m′ = 2rad3(a),

that gives α′ − m′ = 2rad6(c), then α′ = x = α = rad3(a) + rad6(c) and

m′ = y = m = rad3(a) − rad6(c). We have given the proof of the uniqueness

of the solutions of the equation (544) with the condition x + y = 2rad3(a). As

N = 4R3rad3(c) ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2] = [τ(rad6(c).rad3(a))/2] > 1.

But Q(N) = 1, then the contradiction.

It follows that the case µa ≤ rad2(a) and c > rad6(c) is impossible.

II- We suppose that rad(c) < µc ≤ rad2(c) and µa > rad5(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad2(c).rad(c) =⇒ c <

rad2(c).rad(a) =⇒ c < R2 .

II-2- Case rad(a) < rad(c) < rad2(a) : As c ≤ rad3(c) = rad2(c).rad(c) =⇒ c <

rad2(c).rad2(a) =⇒ c < R2 .

II-3- Case rad2(a) < rad(c):

II-3-1- We suppose that a ≤ rad6(a) =⇒ a ≤ rad2(a).rad4(a) =⇒ a <

rad2(a).(rad(c))2 = R2 =⇒ a < R2 =⇒ 1 + a ≤ R2, but (c, a) = 1, it fol-

lows c < R2 .

II-3-2- We suppose a > rad6(a) and µc ≤ rad2(c). Using the same method as

it was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive at a

contradiction. It follows that the case µc ≤ rad2(c) and a > rad6(a) is impossible.
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19.2.3.4. III - Case µc > rad2(c) and µa > rad2(a)

We can write c > rad3(c) =⇒ c = rad3(c) + h and a = rad3(a) + l with h, l > 0

positive integers.

III-1- We suppose rad(a) < rad(c). We obtain the equation:

(548) rad3(c)− rad3(a) = l − h+ 1 = m > 0

LetX = rad(c)−rad(a), from the above equation, X is a real root of the polynomial:

(549) P (X) = X3 + 3RX − m = 0

As above, to resolve (672), we put X = u+ v, then we obtain the two conditions:

u3 + v3 = m(550)

uv = −R < 0 =⇒ u3.v3 = −R3(551)

Then u3, v3 are the roots of the equation:

(552) H(Z) = Z2 − mZ − R3 = 0

The discriminant of H(Z) is:

(553)

∆ = m2+4R3 = (rad3(c)+rad3(a))2 = α2, taking α > 0⇒ α = rad3(c)+rad3(a)

From the equation (676), we obtain that (α = x, m = y) is a solution of the Dio-

phantine equation:

(554) x2 − y2 = N

with N = 4R3 > 0 and N ≡ 0(mod 4). Using the same method as in I-3-3-, we

arrive to a contradiction.

III-2- We suppose rad(c) < rad(a). We obtain the equation:

(555) rad3(a)− rad3(c) = h − l − 1 = m > 0

LetX = rad(a)−rad(c), from the above equation, X is a real root of the polynomial:

(556) P (X) = X3 + 3RX − m = 0

As above, to resolve (618), we put X = u+ v, then we obtain the two conditions:

u3 + v3 = m(557)

uv = −R < 0 =⇒ u3.v3 = −R3(558)

Then u3, v3 are the roots of the equation:

(559) H(Z) = Z2 − mZ − R3 = 0

The discriminant of H(Z) is:

(560)

∆ = m2+4R3 = (rad3(c)+rad3(a))2 = α2, taking α > 0⇒ α = rad3(c)+rad3(a)
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From the equation (622), we obtain that (α = x, m = y) is a solution of the Dio-

phantine equation:

(561) x2 − y2 = N

with N = 4R3 > 0 and N ≡ 0(mod 4). Using the same method as in I-3-3-, we

arrive to a contradiction.

It follows that the case µc > rad2(c) and µa > rad2(a) is impossible.

We can annonce the following theorem:

Theorem 31. — (Abdelmajid Ben Hadj Salem, 2020) Let a, c positive inte-

gers relatively prime with c = a+ 1, then c < rad2(ac).
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CHAPTER 20

THE PROOF OF THE CONJECTURE c < rad1.63(ac)

Abstract. —

In this paper, we consider the abc conjecture. We give the proof of the conjecture
c < rad1.63(abc) in the case c = a+ 1.

To my teachers and to Madam Fatma Moalla, Mr Chedly Touibi

my professors of mathematics at the Faculty of Sciences of Tunis

20.1. Introduction and notations

Let a be a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(562) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We denote:

(563) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [7]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 31. — (abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(564) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.
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We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [5]. It concerned the best

example given by E. Reyssat [5]:

(565) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 32. — Let a, b, c be positive integers relatively prime with c = a + b,

then:

c < rad1.63(abc)(566)

abc < rad4.42(abc)(567)

Here, we will give a proof of the conjecture given by (628) in the case c = a+ 1.
This result, I think is the key to obtain the final proof of the veracity of the abc

conjecture especially when 0 < ǫ < 1.

20.2. A Proof of the conjecture (32) case c = a + 1

Let a, c be positive integers, relatively prime, with c = a + 1 and R = rad(ac),

c =
∏

j′∈J ′ c
βj′

j′ , βj′ ≥ 1.

If c < rad(ac), then we obtain:

(568) c < rad(ac) < rad1.63(ac) =⇒ c < R1.63

and the condition (628) is satisfied.

If c = rad(ac), then a, c are not coprime, case to reject.

In the following, we suppose that c > rad(ac) and c and a are not prime numbers.

(569) c = a+ 1 = µarad(a) + 1
?
< rad1.63(ac)

20.2.1. µa Ó= 1 , µa ≤ rad0.63(a)

We obtain :

(570) c = a+ 1 ≤ rad1.63(a) + 1 < rad1.63(ac)⇒ c < rad1.63(ac) =⇒ c < R1.63

Then (631) is satisfied.
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20.2.2. µc Ó= 1, µc ≤ rad0.63(c)

We obtain :

(571) c = µcrad(c) ≤ rad1.63(c) < rad1.63(ac) =⇒ c < R1.63

and the condition (631) is satisfied.

20.2.3. µa > rad0.63(a) and µc > rad0.63(c)

20.2.3.1. Case: µa = radq(a), q ≥ 2, µc = radp(c), p ≥ 2:

In this case, we write c = a + 1 as radp+1(c) − radq+1(a) = 1. Then rad(c), rad(a)

are solutions of the Diophantine equation:

(572) Xp+1 − Y q+1 = 1, with (p+ 1)(q + 1) ≥ 9

But the solutions of the equation (572) are [2] :(X = ±3, p+1 = 2, Y = +2, q+1 =

3), we obtain p = 1 < 2, then rad(c), rad(a) are not solutions of (572) and the case
µa = radq(a), q ≥ 2, µc = radp(c), p ≥ 2 is to reject.

20.2.3.2. Case: rad0.63(c) < µc ≤ rad1.63(c) and rad0.63(a) < µa ≤ rad1.63(a):

We can write:

µc ≤ rad1.63(c) =⇒ c ≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a ≤ rad2.63(a)







=⇒ ac ≤ R2.63 =⇒ a2 < ac ≤ R2.63 =⇒

a < R1.315 < R1.63 =⇒ c = a+ 1 < R1.63(573)

20.2.3.3. Case: µc > rad1.63(c) or µa > rad1.63(a)

I- We suppose that µc > rad1.63(c) and µa ≤ rad2(a):

I-1- Case rad(a) < rad(c): In this case a = µa.rad(a) ≤ rad3(a) ≤ rad1.63(a)rad1.37(a) <

rad1.63(a).rad1.37(c) < rad1.63(ac) =⇒ a < R1.63 =⇒ c < R1.63 .

I-2- Case rad(c) < rad(a) < rad
1.63
1.37 (c): As a ≤ rad1.63(a).rad1.37(a) <

rad1.63(a).rad1.63(c) =⇒ a < R1.63 =⇒ c < R1.63 .

I-3- Case rad
1.63
1.37 (c) < rad(a):

I-3-1- We suppose c ≤ rad3.26(c), we obtain:

c ≤ rad3.26(c) =⇒ c ≤ rad1.63(c).rad1.63(c) =⇒
c < rad1.63(c).rad(a)1.37 < R1.63 =⇒ c < R1.63
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I-3-2- We suppose c > rad3.26(c) =⇒ µc > rad2.26(c). We consider the case µa =

rad2(a) =⇒ a = rad3(a). Then, we obtain that X = rad(a) is a solution in positive
integers of the equation:

(574) X3 + 1 = c = µc.rad(c)

If c = radn(c) with n ≥ 4, we obtain an equation like (572) that gives a contradiction.
In the following, we will study the cases µc = A.radn(c) with rad(c) ∤ A, n ≥ 0. The
above equation (635) can be written as :

(575) (X + 1)(X2 − X + 1) = c

Let δ any divisor of c, then:

X + 1 = δ(576)

X2 − X + 1 =
c

δ
= c′ = δ2 − 3X(577)

I-3-2-1- We suppose δ = l.rad(c). We obtain δ = l.rad(c) < c = µc.rad(c) =⇒
l < µc. As δ is a divisor of c, then l is a divisor of µc, we write µc = l.m. From
µc = l(δ2 − 3X), we obtain:

m = l2rad2(c)− 3rad(a) =⇒ 3rad(a) = l2rad2(c)− m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µc = ml = 3m′l =⇒ 3|rad(c) and
(rad(c), m′) not coprime. We obtain:

rad(a) = l2rad(c).
rad(c)

3
− m′

It follows that a,c are not coprime, then the contradiction.

B - Case m = 3 =⇒ µc = 3l =⇒ c = 3lrad(c) = 3δ = δ(δ2 − 3X) =⇒ δ2 =

3(1 +X) = 3δ =⇒ δ = lrad(c) = 3, then the contradiction.

I-3-2-2- We suppose δ = l.rad2(c), l ≥ 2. If lrad(c) ∤ µc then the case is to reject.

We suppose lrad(c)|µc =⇒ µc = m.lrad(c), then
c

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) =

rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c). Then
the contradiction.

E - Case m Ó= 1, 3, we obtain: 3rad(a) = l2rad4(c) − m =⇒ rad(a) and rad(c)

are not coprime. Then the contradiction.
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I-3-2-3- We suppose δ = l.radn(c), l ≥ 2 with n ≥ 3. From c = µc.rad(c) =

lradn(c)(δ2 − 3rad(a)), we denote m = δ2 − 3rad(a) = δ2 − 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradic-
tions, it follows the reject of these cases.

G - Case m Ó= 1, 3. Let q be a prime that divides m, it follows q|µc =⇒ q =

cj′
0
=⇒ cj′

0
|δ2 =⇒ cj′

0
|3rad(a). Then rad(a) and rad(c) are not coprime. It follows

the contradiction.

I-3-2-4- We suppose δ =
∏

j∈J1
c

βj

j , βj ≥ 1 with at least one j0 ∈ J1 with βj0 ≥ 2,
rad(c) ∤ δ. We can write:

(578) δ = µδ.rad(δ), rad(c) = m.rad(δ), m > 1, (m, µδ) = 1

Then, we obtain:

c = µc.rad(c) = µc.m.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
m.µc = µδ(δ

2 − 3X)(579)

- If µc = µδ =⇒ m = δ2 − 3X = (µc.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒ m > δ =⇒
rad(c) > m > µc.rad(δ) > rad3(c) because µc > rad2.26(c) (see I-3-2), it follows
rad(c) > rad2(c). Then the contradiction.

- We suppose µc < µδ. As rad(a) = µδrad(δ)− 1, we obtain:

rad(a) > µc.rad(δ)− 1 > 0 =⇒ R > c.rad(δ)− rad(c) > 0 =⇒

c > R > c.rad(δ)− rad(c) > 0 =⇒ 1 > rad(δ)− rad(c)

c
> 0, rad(δ) ≥ 2

=⇒ The contradiction(580)

- We suppose µδ < µc. In this case, from the equation (641) and as (m, µδ) = 1, it
follows we can write:

µc = µ1.µ2, µ1, µ2 > 1(581)

c = µcrad(c) = µ1.µ2.rad(δ).m = δ.(δ2 − 3X)(582)

so that m.µ1 = δ2 − 3X, µ2 = µδ =⇒ δ = µ2.rad(δ)(583)

**We suppose (µ1, µ2) Ó= 1, then ∃ cj0 so that cj0 |µ1 and cj0 |µ2. But µδ = µ2 ⇒ c2
j0

|δ.
From 3X = δ2 − mµ1 =⇒ cj0 |3X =⇒ cj0 |X or cj0 = 3.

- If cj0 |X, it follows the contradiction with (c, a) = 1.
- If cj0 = 3. We have mµ1 = δ2 − 3X = δ2 − 3(δ − 1) =⇒ δ2 − 3δ+ 3− m.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3
kµ′

1, 3 ∤ µ′
1, k ≥ 1, we obtain:

(584) δ2 − 3δ + 3(1− 3k−1mµ′
1) = 0
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- We consider the case k > 1 =⇒ 3 ∤ (1 − 3k−1mµ′
1). Let us recall the Eisenstein

criterion [1]:

Theorem 32. — (Eisenstein Criterion) Let f = a0+· · ·+anXn be a polynomial

∈ Z[X]. We suppose that ∃ p a prime number so that:

- p ∤ an,

- p|ai, (0 ≤ i ≤ n − 1),
- p2 ∤ a0.

Then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(585) R(Z) = Z2 − 3Z + 3(1− 3k−1mµ′
1)

then:
- 3 ∤ 1,
- 3|(−3),
- 3|3(1− 3k−1mµ′

1),
- 32 ∤ 3(1− 3k−1mµ′

1).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with
R(δ) = 0.

- We consider the case k = 1, then µ1 = 3µ
′
1 and (µ′

1, 3) = 1, we obtain:

(586) δ2 − 3δ + 3(1− mµ′
1) = 0

* If 3 ∤ (1− m.µ′
1), we apply the same Eisenstein criterion to the polynomial R′(Z)

given by:

R′(Z) = Z2 − 3Z + 3(1− mµ′
1)

and we find a contradiction with R′(δ) = 0.

* We consider that 3|(1 − m.µ′
1) =⇒ mµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗. δ is an
integer root of the polynomial R′(Z):

R′(Z) = Z2 − 3Z + 3(1− mµ′
1) = 0 =⇒ the descriminant of R′(Z) is :

∆ = 32 + 3i+1 × 4.h(587)

As the root δ is an integer, it follows that ∆ = l2 > 0 with l a positive integer. We
obtain:

∆ = 32(1 + 3i−1 × 4h) = l2(588)

=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(589)
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We can write the equation (648) as :

δ(δ − 3) = 3i+1.h =⇒ 33µ′
1

rad(δ)

3
.
(
µ′

1rad(δ)− 1
)
= 3i+1.h =⇒(590)

µ′
1

rad(δ)

3
.
(
µ′

1rad(δ)− 1
)
= h(591)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
1rad(δ)(µ′

1rad(δ)− 1). q satisfies :

q2 − 1 = 12h =⇒ (q − 1)
2

.
(q + 1)

2
= 3h = (µ′

1rad(δ)− 1).µ′
1rad(δ) =⇒(592)

q − 1 = 2µ′
1rad(δ)− 2(593)

q + 1 = 2µ′
1rad(δ)(594)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(595) x2 − y2 = N

with N = 12h > 0. Let Q(N) be the number of the solutions of (657) and τ(N)

is the number of suitable factorization of N , then we announce the following result
concerning the solutions of the Diophantine equation (657) (see theorem 27.3 in [6]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

Let (α′, m′), α′, m′ ∈ N∗ be another pair, solution of the equation (657), then
α′2 − m′2 = x2 − y2 = N = 12h, but q = x and 1 = y satisfy the equation (656)
given by x + y = 2µ′

1rad(δ), it follows α′, m′ verify also α′ + m′ = 2µ′
1rad(δ),

that gives α′ − m′ = 2(µ′
1rad(δ) − 1), then α′ = x = q = 2µ′

1rad(δ) and
m′ = y = 1. So, we have given the proof of the uniqueness of the so-
lutions of the equation (657) with the condition x + y = 2µ′

1rad(δ). As
N = 12h ≡ 0(mod4) =⇒ Q(N) = [τ(N/4)/2] = [τ(3h)/2], the expression of
3h = µ′

1.rad(δ).
(
µ′

1rad(δ)− 1
)
, then Q(N) = [τ(3h)/2] > 1. But Q(N) = 1, then

the contradiction and the case 3|(1− m.µ′
1) is to reject.

** We suppose that (µ1, µ2) = 1.

From the equation mµ1 = δ2 − 3X = δ2 − 3(δ − 1), we obtain that δ is a root of the
following polynomial :

(596) R(Z) = Z2 − 3Z + 3− m.µ1 = 0

The discriminant of R(Z) is:

(597) ∆ = 9− 4(3− m.µ1) = 4m.µ1 − 3 = q2 with q ∈ N∗ as δ ∈ N∗
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- We suppose that 2|mµ1 =⇒ c is even. Then q2 ≡ 5(mod 8), it gives a contradic-
tion because a square is ≡ 0, 1 or 4(mod 8).

- We suppose c an odd integer, then a is even. It follows a = rad3(a) ≡
0(mod 8) =⇒ c ≡ 1(mod 8). As c = δ2 − 3X.δ, we obtain δ2 − 3X.δ ≡ 1(mod 8).
If δ2 ≡ 1(mod 8) =⇒ −3X.δ ≡ 0(mod 8) =⇒ 8|X.δ =⇒ 4|δ =⇒ c is even. Then,
the contradiction. If δ2 ≡ 4(mod 8) =⇒ δ ≡ 2(mod 8) or δ ≡ 6(mod 8). In the two
cases, we obtain 2|δ. Then, the contradiction with c an odd integer.

It follows that the case c > rad3.26(c) and a = rad3(a) is impossible.

I-3-3- We suppose c > rad3.26(c) =⇒ c = rad3(c) + h, h > rad3(c), for 1 ≪ c, h a
positive integer and µa < rad2(a) =⇒ a+ l = rad3(a), l > 0. Then we obtain :

(598) rad3(c) + h = rad3(a)− l + 1 =⇒ rad3(a)− rad3(c) = h+ l − 1 > 0

as rad(a) > rad
1.63
1.37 (c). We obtain the equation:

(599) rad3(a)− rad3(c) = h+ l − 1 = m > 0

Let X = rad(a)− rad(c), then X is an integer root of the polynomial H(X) defined
as:

(600) H(X) = X3 + 3RX − m = 0

To resolve the above equation, we denote X = u + v, then we obtain the two
conditions:

u3 + v3 = m, u.v = −R < 0 =⇒ u3.v3 = −R3

It follows that u3, v3 are the roots of the polynomial G(t) given by:

(601) G(t) = t2 − mt − R3 = 0

The discriminant of G(t) is :

(602) ∆ = m2 + 4R3 = α2, α > 0

The two real roots of (663) are:

t1 = u3 =
m+ α

2
(603)

t2 = v3 =
m − α

2
(604)

As m = rad3(a)− rad3(c) > 0, we obtain that α = rad3(a)+ rad3(c) > 0, then from
the equation (664), it follows that (α = x, m = y) is a solution of the Diophantine
equation:

(605) x2 − y2 = N
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with N = 4R3 > 0. From the equations (665-666), we remark that α and m verify
the following equations:

x+ y = 2u3 = 2rad3(a)(606)

x − y = −2v3 = 2rad3(c)(607)

then x2 − y2 = N = 4R3 = 4rad3(a).rad3(c)(608)

Let Q(N) be the number of the solutions of (667) and τ(N) is the number of
suitable factorization of N , and using the same method as in the paragraph I-3-2-4-
(case 3|(1− m.µ′

1)), we obtain a contradiction.

It follows that the case µa ≤ rad2(a) and c > rad3.26(c) is impossible.

II- We suppose that µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒
c < rad1.63(c).rad1.37(a) < rad1.63(ac) =⇒ c < R1.63 .

II-2- Case rad(a) < rad(c) < rad
1.63
1.37 (a) : As c ≤ rad3(c) ≤ rad1.63(c).rad1.37(c)

=⇒ c < rad1.63(c).rad1.63(a) =⇒ c < R1.63 .

II-3- Case rad
1.63
1.37 (a) < rad(c):

II-3-1- We suppose a ≤ rad3.26(a) =⇒ a ≤ rad1.63(a).rad1.63(a) =⇒ a <

rad1.63(a).rad1.37(c) =⇒ a < rad1.63(a).rad1.63(c) =⇒ 1+a < R1.63 =⇒ c < R1.63 .

II-3-2- We suppose a > rad3.26(a) and µc ≤ rad2(c). Using the same method as it
was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive at a contra-
diction. It follows that the case µc ≤ rad2(c) and µa > rad2.26(a) =⇒ a > rad3.26(a)

is impossible.

Finally, we have finished the study of the case µc ≤ rad2(c) and µa >

rad2.26(a) =⇒ a > rad3.26(a).

20.2.3.4. Case µc > rad1.26(c) and µa > rad2(a)

III - As c > rad2.26(c) and a > rad3(a), we can write c = rad3(c) + h and a =

rad3(a) + l with l > 0 positive integer, h ∈ Z. We obtain the equation:

(609) rad3(c)− rad3(a) = l − h+ 1
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III-1- We suppose that l − h+ 1 > 0. Let m = l − h+ 1 > 0, then rad(c) > rad(a).
We obtain the equation:

(610) rad3(c)− rad3(a) = l − h+ 1 = m > 0

Let X = rad(c)−rad(a), from the above equation, X is a real root of the polynomial:

(611) P (X) = X3 + 3RX − m = 0

As above, to resolve (672), we put X = u+ v, then we obtain the two conditions:

u3 + v3 = m(612)

uv = −R < 0 =⇒ u3.v3 = −R3(613)

Then u3, v3 are the roots of the equation:

(614) H(Z) = Z2 − mZ − R3 = 0

The discriminant of H(Z) is:
(615)
∆ = m2+4R3 = (rad3(c)+rad3(a))2 = α2, taking α > 0⇒ α = rad3(c)+rad3(a)

From the equation (676), we obtain that (α = x, m = y) is a solution of the Dio-
phantine equation:

(616) x2 − y2 = N

with N = 4R3 > 0 and N ≡ 0(mod 4). Using the same method as in I-3-3-, we
arrive to a contradiction.

III-2- We suppose l − h+ 1 < 0, let m = h − l − 1, the equation (683) becomes:

(617) rad3(a)− rad3(c) = h − l − 1 = m > 0

Let X = rad(a)−rad(c), from the above equation, X is a real root of the polynomial:

(618) P (X) = X3 + 3RX − m = 0

As above, to resolve (618), we put X = u+ v, then we obtain the two conditions:

u3 + v3 = m(619)

uv = −R < 0 =⇒ u3.v3 = −R3(620)

Then u3, v3 are the roots of the equation:

(621) H(Z) = Z2 − mZ − R3 = 0

The discriminant of H(Z) is:
(622)
∆ = m2+4R3 = (rad3(c)+rad3(a))2 = α2, taking α > 0⇒ α = rad3(c)+rad3(a)

From the equation (622), we obtain that (α = x, m = y) is a solution of the Dio-
phantine equation:

(623) x2 − y2 = N
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with N = 4R3 > 0 and N ≡ 0(mod 4). Using the same method as in I-3-3-, we
arrive to a contradiction.

It follows that the case µc > rad1.26(c) and µa > rad2(a) is impossible.

20.2.3.5. Case µa > rad1.26(a) and µc > rad2(c)

IV - This case is similar to the case III above and we obtain the same result:
µa > rad1.26(a) and µc > rad2(c) impossible to obtain. Then the case is to reject.

Finally, we can annonce the following important theorem:

Theorem 33. — Let a, c positive integers relatively prime with c = a + 1, then

c < rad1.63(ac).
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CHAPTER 21

THE PROOF OF THE CONJECTURE c < rad1.63(abc)

Abstract. — In this paper, we consider the abc conjecture. We give the proof of
the conjecture c < rad1.63(abc) that constitutes the key to resolve the abc conjecture.

To my teachers and to Madam Fatma Moalla, Mr Chedly Touibi

my professors of mathematics at the Faculty of Sciences of Tunis

21.1. Introduction and notations

Let a be a positive integer, a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

(624) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We denote:

(625) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [8]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 33. — (abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(626) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [5]. It concerned the best

example given by E. Reyssat [5]:

(627) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)
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A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 34. — Let a, b, c be positive integers relatively prime with c = a + b,

then:

c < rad1.63(abc)(628)

abc < rad4.42(abc)(629)

Here, we will give a proof of the conjecture given by (628). This result, I think is
the key to obtain the final proof of the veracity of the abc conjecture.

21.2. A Proof of the conjecture (34) case c = a + b

Let a, b, c be positive integers, relatively prime, with c = a + b, b < a and

R = rad(abc), c =
∏

j′∈J ′ c
βj′

j′ , βj′ ≥ 1.

In a previous paper [1], we has given, for the case c = a + 1, the proof that c <

rad1.63(ac). In the following, we will give the proof for the case c = a+ b.

Proof. — If c < rad(abc), then we obtain:

(630) c < rad(abc) < rad1.63(abc) =⇒ c < R1.63

and the condition (628) is satisfied.

If c = rad(abc), then a, b, c are not coprime, case to reject.

In the following, we suppose that c > rad(abc) and a, b and c are not prime numbers.

(631) c = a+ b = µarad(a) + µbrad(b)
?
< rad1.63(abc)

21.2.1. µa Ó= 1 , µa ≤ rad0.63(a)

We obtain :
(632)

c = a+ b < 2a ≤ 2rad1.63(a) < rad1.63(abc) =⇒ c < rad1.63(abc) =⇒ c < R1.63

Then (631) is satisfied.

21.2.2. µc Ó= 1, µc ≤ rad0.63(c)

We obtain :

(633) c = µcrad(c) ≤ rad1.63(c) < rad1.63(abc) =⇒ c < R1.63

and the condition (631) is satisfied.
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21.2.3. µa > rad0.63(a) and µc > rad0.63(c)

21.2.3.1. Case: rad0.63(c) < µc ≤ rad1.63(c) and rad0.63(a) < µa ≤ rad1.63(a):

We can write:

µc ≤ rad1.63(c) =⇒ c ≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a ≤ rad2.63(a)







=⇒ ac ≤ rad2.63(ac) =⇒ a2 < ac ≤ rad2.63(ac)

=⇒ a < rad1.315(ac) =⇒ c < 2a < 2rad1.315(ac) < rad1.63(abc)

=⇒ c = a+ b < R1.63(634)

21.2.3.2. Case: µc > rad1.63(c) or µa > rad1.63(a)

I- We suppose that µc > rad1.63(c) and µa ≤ rad2(a):

I-1- Case rad(a) < rad(c): In this case a = µa.rad(a) ≤ rad3(a) ≤ rad1.63(a)rad1.37(a) <

rad1.63(a).rad1.37(c) =⇒ c < 2a < 2rad1.63(a).rad1.37(c) < rad1.63(abc) =⇒ c <

R1.63 =⇒ c < R1.63 .

I-2- Case rad(c) < rad(a) < rad
1.63
1.37 (c): As a ≤ rad1.63(a).rad1.37(a) <

rad1.63(a).rad1.63(c) =⇒ c < 2a < 2rad1.63(a).rad1.63(c) < R1.63 =⇒ c < R1.63 .

I-3- Case rad
1.63
1.37 (c) < rad(a):

I-3-1- We suppose c ≤ rad3.26(c), we obtain:

c ≤ rad3.26(c) =⇒ c ≤ rad1.63(c).rad1.63(c) =⇒
c < rad1.63(c).rad(a)1.37 < rad1.63(c).rad(a)1.63.rad1.63(b) = R1.63 =⇒ c < R1.63

I-3-2- We suppose c > rad3.26(c) =⇒ µc > rad2.26(c). We consider the case µa =

rad2(a) =⇒ a = rad3(a). Then, we obtain that X = rad(a) is a solution in positive
integers of the equation:

(635) X3 + 1 = c − b+ 1 = c′

But it is the case c′ = 1 + a. If c′ = radn(c′) with n ≥ 4, we obtain the equation:

(636) radn(c′)− rad3(a) = 1

But the solutions of the equation (636) are [2] :(rad(c′) = 3, n = 2, rad(a) = +2), it
follows the contradiction with n ≥ 4 and the case c′ = radn(c′), n ≥ 4 is to reject.
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In the following, we will study the cases µ′
c = A.radn(c′) with rad(c′) ∤ A, n ≥ 0.

The above equation (635) can be written as :

(637) (X + 1)(X2 − X + 1) = c′

Let δ any divisor of c′, then:

X + 1 = δ(638)

X2 − X + 1 =
c′

δ
= c” = δ2 − 3X(639)

We recall that rad(a) > rad
1.63
1.37 (c).

I-3-2-1- We suppose δ = l.rad(c′). We have δ = l.rad(c′) < c′ = µ′
c.rad(c′) =⇒

l < µ′
c. As δ is a divisor of c′, then l is a divisor of µ′

c, we write µ′
c = l.m. From

µ′
c = l(δ2 − 3X), we obtain:

m = l2rad2(c′)− 3rad(a) =⇒ 3rad(a) = l2rad2(c′)− m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µ′
c = ml = 3m′l =⇒ 3|rad(c′) and

(rad(c′), m′) not coprime. We obtain:

rad(a) = l2rad(c′).
rad(c′)

3
− m′

It follows that a,c’ are not coprime, then the contradiction.

B - Case m = 3 =⇒ µ′
c = 3l =⇒ c′ = 3lrad(c′) = 3δ = δ(δ2 − 3X) =⇒ δ2 =

3(1 +X) = 3δ =⇒ δ = lrad(c′) = 3, then the contradiction.

I-3-2-2- We suppose δ = l.rad2(c′), l ≥ 2. If lrad(c′) ∤ µ′
c then the case is to reject.

We suppose lrad(c′)|µ′
c =⇒ µ′

c = m.lrad(c′), then
c′

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c′/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) =

rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c′), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c′). Then
the contradiction.

E - Case m Ó= 1, 3, we obtain: 3rad(a) = l2rad4(c′)− m =⇒ rad(a) and rad(c′) are
not coprime. Then the contradiction.

I-3-2-3- We suppose δ = l.radn(c′), l ≥ 2 with n ≥ 3. From c′ = µ′
c.rad(c′) =

lradn(c′)(δ2 − 3rad(a)), we denote m = δ2 − 3rad(a) = δ2 − 3X.
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F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions,
it follows the reject of these cases.

G - Case m Ó= 1, 3. Let q be a prime that divides m, it follows q|µ′
c =⇒ q = c′

j′
0
=⇒

c′
j′

0
|δ2 =⇒ c′

j′
0
|3rad(a). Then rad(a) and rad(c′) are not coprime. It follows the

contradiction.

I-3-2-4- We suppose δ =
∏

j∈J1
c

′βj

j , βj ≥ 1 with at least one j0 ∈ J1 with βj0 ≥ 2,
rad(c′) ∤ δ. We can write:

(640) δ = µδ.rad(δ), rad(c′) = m.rad(δ), m > 1, (m, µδ) = 1

Then, we obtain:

c′ = µ′
c.rad(c′) = µ′

c.m.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
m.µ′

c = µδ(δ
2 − 3X)(641)

- If µ′
c = µδ =⇒ m = δ2 − 3X = (µ′

c.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒ m >

δ =⇒ rad(c′) > m > µ′
c.rad(δ) > rad3(c′) because µ′

c > rad2.26(c′), it follows
rad(c′) > rad2(c′). Then the contradiction.

- We suppose µ′
c < µδ. As rad(a) = µδrad(δ)− 1, we obtain:

rad(a) > µ′
c.rad(δ)− 1 > 0 =⇒ rad(ac′) > c′.rad(δ)− rad(c′) > 0 =⇒

c′ > rad(ac′) > c′.rad(δ)− rad(c′) > 0 =⇒ 1 > rad(δ)− rad(c′)

c′ > 0, rad(δ) ≥ 2
=⇒ The contradiction(642)

- We suppose µδ < µ′
c. In this case, from the equation (641) and as (m, µδ) = 1, it

follows we can write:

µ′
c = µ1.µ2, µ1, µ2 > 1(643)

c′ = µ′
crad(c′) = µ1.µ2.rad(δ).m = δ.(δ2 − 3X)(644)

so that m.µ1 = δ2 − 3X, µ2 = µδ =⇒ δ = µ2.rad(δ)(645)

**We suppose (µ1, µ2) Ó= 1, then ∃ c′
j0
so that c′

j0
|µ1 and c′

j0
|µ2. But µδ = µ2 ⇒ c′2

j0
|δ.

From 3X = δ2 − mµ1 =⇒ c′
j0

|3X =⇒ c′
j0

|X or c′
j0
= 3.

- If c′
j0

|X, it follows the contradiction with (c′, a) = 1.
- If c′

j0
= 3. We have mµ1 = δ2 − 3X = δ2 − 3(δ − 1) =⇒ δ2 − 3δ+ 3− m.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3
kµ′

1, 3 ∤ µ′
1, k ≥ 1, we obtain:

(646) δ2 − 3δ + 3(1− 3k−1mµ′
1) = 0

- We consider the case k > 1 =⇒ 3 ∤ (1 − 3k−1mµ′
1). Let us recall the Eisenstein

criterion [7]:
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Theorem 34. — (Eisenstein Criterion) Let f = a0+· · ·+anXn be a polynomial

∈ Z[X]. We suppose that ∃ p a prime number so that:

- p ∤ an,

- p|ai, (0 ≤ i ≤ n − 1),
- p2 ∤ a0.

Then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(647) R(Z) = Z2 − 3Z + 3(1− 3k−1mµ′
1)

then:
- 3 ∤ 1,
- 3|(−3),
- 3|3(1− 3k−1mµ′

1),
- 32 ∤ 3(1− 3k−1mµ′

1).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with
R(δ) = 0.

- We consider the case k = 1, then µ1 = 3µ
′
1 and (µ′

1, 3) = 1, we obtain:

(648) δ2 − 3δ + 3(1− mµ′
1) = 0

* If 3 ∤ (1− m.µ′
1), we apply the same Eisenstein criterion to the polynomial R′(Z)

given by:

R′(Z) = Z2 − 3Z + 3(1− mµ′
1)

and we find a contradiction with R′(δ) = 0.

* We consider that 3|(1 − m.µ′
1) =⇒ mµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗. δ is an
integer root of the polynomial R′(Z):

R′(Z) = Z2 − 3Z + 3(1− mµ′
1) = 0 =⇒ the discriminant of R′(Z) is :

∆ = 32 + 3i+1 × 4.h(649)

As the root δ is an integer, it follows that ∆ = l2 > 0 with l a positive integer. We
obtain:

∆ = 32(1 + 3i−1 × 4h) = l2(650)

=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(651)

We can write the equation (648) as :

δ(δ − 3) = 3i+1.h =⇒ 33µ′
1

rad(δ)

3
.
(
µ′

1rad(δ)− 1
)
= 3i+1.h =⇒(652)

µ′
1

rad(δ)

3
.
(
µ′

1rad(δ)− 1
)
= h(653)
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We obtain i = 2 and q2 = 1+12h = 1+4µ′
1rad(δ)(µ′

1rad(δ)− 1). Then, q satisfies :

q2 − 1 = 12h ⇒ (q−1)
2 . (q+1)

2 = 3h = (µ′
1rad(δ)− 1).µ′

1rad(δ)⇒(654)

q − 1 = 2µ′
1rad(δ)− 2(655)

q + 1 = 2µ′
1rad(δ)(656)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(657) x2 − y2 = N

with N = 12h > 0. Let Q(N) be the number of the solutions of (657) and τ(N)

is the number of suitable factorization of N , then we announce the following result
concerning the solutions of the Diophantine equation (657) (see theorem 27.3 in [6]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

Let (α′, m′), α′, m′ ∈ N∗ be another pair, solution of the equation (657), then
α′2 − m′2 = x2 − y2 = N = 12h, but q = x and 1 = y satisfy the equation (656)
given by x + y = 2µ′

1rad(δ), it follows α′, m′ verify also α′ + m′ = 2µ′
1rad(δ),

that gives α′ − m′ = 2(µ′
1rad(δ) − 1), then α′ = x = q = 2µ′

1rad(δ) and
m′ = y = 1. So, we have given the proof of the uniqueness of the so-
lutions of the equation (657) with the condition x + y = 2µ′

1rad(δ). As
N = 12h ≡ 0(mod4) =⇒ Q(N) = [τ(N/4)/2] = [τ(3h)/2], the expression of
3h = µ′

1.rad(δ).
(
µ′

1rad(δ)− 1
)
, then Q(N) = [τ(3h)/2] > 1. But Q(N) = 1, then

the contradiction and the case 3|(1− m.µ′
1) is to reject.

** We suppose that (µ1, µ2) = 1.

From the equation mµ1 = δ2 − 3X = δ2 − 3(δ − 1), we obtain that δ is a root of the
following polynomial :

(658) R(Z) = Z2 − 3Z + 3− m.µ1 = 0

The discriminant of R(Z) is:

(659) ∆ = 9− 4(3− m.µ1) = 4m.µ1 − 3 = q2 with q ∈ N∗ as δ ∈ N∗

- We suppose that 2|mµ1 =⇒ c′ is even. Then q2 ≡ 5(mod 8), it gives a contradic-
tion because a square is ≡ 0, 1 or 4(mod 8).

- We suppose c′ an odd integer, then a is even. It follows a = rad3(a) ≡
0(mod 8) =⇒ c′ ≡ 1(mod 8). As c′ = δ2 − 3X.δ, we obtain δ2 − 3X.δ ≡ 1(mod 8).
If δ2 ≡ 1(mod 8) =⇒ −3X.δ ≡ 0(mod 8) =⇒ 8|X.δ =⇒ 4|δ =⇒ c′ is even. Then,
the contradiction. If δ2 ≡ 4(mod 8) =⇒ δ ≡ 2(mod 8) or δ ≡ 6(mod 8). In the two
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cases, we obtain 2|δ. Then, the contradiction with c′ an odd integer.

It follows that the case c > rad3.26(c) and a = rad3(a) is impossible.

I-3-3- We suppose c > rad3.26(c) and large, then c = rad3(c) + h, h > rad3(c), h a
positive integer and µa < rad2(a) =⇒ a+ l = rad3(a), l > 0. Then we obtain :

(660) rad3(c) + h = rad3(a)− l + b =⇒ rad3(a)− rad3(c) = h+ l − b > 0

as rad(a) > rad
1.63
1.37 (c). We obtain the equation:

(661) rad3(a)− rad3(c) = h+ l − b = m > 0

Let X = rad(a)− rad(c), then X is an integer root of the polynomial H(X) defined
as:

(662) H(X) = X3 + 3rad(ac)X − m = 0

To resolve the above equation, we denote X = u + v, then we obtain the two
conditions:

u3 + v3 = m, u.v = −rad(ac) < 0 =⇒ u3.v3 = −rad3(ac)

It follows that u3, v3 are the roots of the polynomial G(t) given by:

(663) G(t) = t2 − mt − rad3(ac) = 0

The discriminant of G(t) is :

(664) ∆ = m2 + 4rad3(ac) = α2, α > 0

The two real roots of (663) are:

t1 = u3 =
m+ α

2
(665)

t2 = v3 =
m − α

2
(666)

As m = rad3(a)− rad3(c) > 0, we obtain that α = rad3(a)+ rad3(c) > 0, then from
the equation (664), it follows that (α = x, m = y) is a solution of the Diophantine
equation:

(667) x2 − y2 = N

with N = 4rad3(ac) > 0. From the equations (665-666), we remark that α and m

verify the following equations:

x+ y = 2u3 = 2rad3(a)(668)

x − y = −2v3 = 2rad3(c)(669)

then x2 − y2 = N = 4rad3(a).rad3(c)(670)

Let Q(N) be the number of the solutions of (667) and τ(N) is the number of
suitable factorization of N , and using the same method as in the paragraph I-3-2-4-
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(case 3|(1− m.µ′
1)), we obtain a contradiction.

It follows that the cases µa ≤ rad2(a) and c > rad3.26(c) are impossible.

II- We suppose that rad1.63(c) < µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒
c < rad1.63(c).rad1.37(a) < rad1.63(ac) < rad1.63(abc) =⇒ c < R1.63 .

II-2- Case rad(a) < rad(c) < rad
1.63
1.37 (a) : As c ≤ rad3(c) ≤ rad1.63(c).rad1.37(c)

=⇒ c < rad1.63(c).rad1.63(a) < rad1.63(abc) =⇒ c < R1.63 .

II-3- Case rad
1.63
1.37 (a) < rad(c):

II-3-1- We suppose rad2.63(a) < a ≤ rad3.26(a) =⇒ a ≤ rad1.63(a).rad1.63(a) =⇒
a < rad1.63(a).rad1.37(c) =⇒ c = a + b < 2a < 2rad1.63(a).rad1.63(c) <

rad1.63(abc) =⇒ c < R1.63 =⇒ c < R1.63 .

II-3-2- We suppose a > rad3.26(a) and µc ≤ rad2(c). Using the same method as
it was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive at a
contradiction. It follows that the case µc ≤ rad2(c) and a > rad3.26(a) is impossible.

Finally, we have finished the study of the case rad1.63(c) < µc ≤ rad2(c) and µa >

rad1.63(a).

21.2.3.3. Case µc > rad1.63(c) and µa > rad1.63(a)

Taking into account the cases studied above, it remains to see the following two
cases:

- µc > rad2(c) and µa > rad1.63(a),
- µa > rad2(a) and µc > rad1.63(c).

III-1- We suppose µc > rad2(c) and µa > rad1.63(a) =⇒ c > rad3(c) and
a > rad2.63(a). We can write c = rad3(c) + h and a = rad3(a) + l with h a positive
integer and l ∈ Z.

III-1-1- We suppose rad(c) < rad(a). We obtain the equation:

(671) rad3(a)− rad3(c) = h − l − b = m > 0

Let X = rad(a)−rad(c), from the above equation, X is a real root of the polynomial:

(672) H(X) = X3 + 3rad(ac)X − m = 0
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As above, to resolve (672), we denote X = u+v, then we obtain the two conditions:

u3 + v3 = m(673)

uv = −rad(ac) < 0 =⇒ u3.v3 = −rad3(ac)(674)

It follows that u3, v3 are the roots of the polynomial G(t) given by :

(675) G(t) = t2 − mt − rad3(ac) = 0

The discriminant of G(t) is:

(676) ∆ = m2 + 4rad3(ac) = α2, α >

The two real roots of (675) are:

t1 = u3 =
m+ α

2
(677)

t2 = v3 =
m − α

2
(678)

As m = rad3(a)− rad3(c) > 0, we obtain that α = rad3(a)+ rad3(c) > 0, then from
the equation (676), it follows that (α = x, m = y) is a solution of the Diophantine
equation:

(679) x2 − y2 = N

with N = 4rad3(ac) > 0. From the equations (677-678), we remark that α and m

verify the following equations:

x+ y = 2u3 = 2rad3(a)(680)

x − y = −2v3 = 2rad3(c)(681)

then x2 − y2 = N = 4rad3(a).rad3(c)(682)

Let Q(N) be the number of the solutions of (679) and τ(N) is the number of
suitable factorization of N , and using the same method as in the paragraph I-3-2-4-
(case 3|(1− m.µ′

1)), we obtain a contradiction.

III-1-2- We suppose rad(a) < rad(c). We obtain the equation:

(683) rad3(c)− rad3(a) = b+ l − h = m > 0

Using the same calculations as in III-1-1-, we find a contradiction.

It follows that the case µc > rad2(c) and µa > rad1.63(a) is impossible.

III-2- We suppose µa > rad2(a) and µc > rad1.63(c) =⇒ a > rad3(a) and
c > rad2.63(c). We can write a = rad3(a) + h and c = rad3(c) + l with h a positive
integer and l ∈ Z.
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The calculations are similar to those in case III-1-. We obtain the same results
namely the cases of III-2- to be rejected.

It follows that the case µc > rad1.63(c) and µa > rad2(a) is impossible.

We can state the following important theorem:

Theorem 35. — Let a, b, c positive integers relatively prime with c = a + b, then

c < rad1.63(abc).
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CHAPTER 22

ASSUMING c < R2(abc), THE abc CONJECTURE IS

TRUE

Abstract. — In this paper, we consider the abc conjecture. Assuming that c <

rad2(abc) is true, we give the proof of the abc conjecture for ǫ ≥ 1, then for ǫ ∈]0, 1[.

To the memory of my Father who taught me arithmetic, To my wife
Wahida, my daughter Sinda and my son Mohamed Mazen

22.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(684) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(685) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 35. — (abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(686) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending only of ǫ.

The idea to try to write a paper about this conjecture was born after the
publication in September 2018, of an article in Quanta magazine about the remarks
of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe
University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty
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to find a proof of the abc conjecture is due to the incomprehensibility how the prime

factors are organized in c giving a, b with c = a + b. So, I will give a simple proof

that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]. It is the key to resolve the abc conjecture. In my

paper, I assume that the conjecture c < rad2(abc) holds, I propose an elementary

proof of the abc conjecture. The paper is organized as follows: in the second section,

we give the proof of the abc conjecture.

22.2. The Proof of the abc conjecture

We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case c = a + 1.

We assume that c < R2 is true. We recall the following proposition [4]:

Proposition 22.1. — Let ǫ −→ K(ǫ) the application verifying the abc conjecture,

then:

(687) limǫ→0K(ǫ) = +∞

22.2.1. Case : ǫ ≥ 1

Using the result that c < R2, we have ∀ǫ ≥ 1:

(688) c < R2 ≤ R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = e, ǫ ≥ 1

Then the abc conjecture is true.

22.2.2. Case: ǫ < 1

22.2.2.1. Case: c < R

In this case, we can write :

(689) c < R < R1+ǫ < K(ǫ).R1+ǫ, with K(ǫ) = e > 1, ǫ < 1

Then the abc conjecture is true.

22.2.2.2. Case: c > R

In this case, we consider the contradiction of the abc conjecture:

(690)

∃ ǫ0 ∈]0, 1[, ∀ K(ǫ), ∃ c0 = a0 + b0 so that c0 > K(ǫ0)R
1+ǫ0
0 =⇒ c0 not a prime
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We choose the constant K(ǫ) = e

1

ǫ2 . Let :

(691) Yc0(ǫ) =
1

ǫ2
+ (1 + ǫ)LogR0 − Logc0, ǫ ∈]0, 1[

We have limǫ−→1Yc0(ǫ) = 1 + Log(R2
0/c0) > 0 and limǫ−→0Yc0(ǫ) = +∞. The

function Yc0(ǫ) has a derivative for ǫ ∈ ]0, 1[, we obtain:

(692) Y ′
c0
(ǫ) = − 2

ǫ3
+ LogR0 =

ǫ3LogR0 − 2
ǫ3

Y ′
c0
(ǫ) = 0 =⇒ ǫ = ǫ′ = 3

√

2

LogR0
∈ ]0, 1[.

Discussion:

- If Yc0(ǫ
′) > 0, it follows that ∀ǫ ∈]0, 1[, Yc0(ǫ) > 0, then the contradiction with

Yc0(ǫ0) < 0 =⇒ c0 > K(ǫ0)R
1+ǫ0
0 . Hence the abc conjecture is true for ǫ ∈ ]0, 1[.

- If Yc0(ǫ
′) < 0 =⇒ ∃ 0 < ǫ1 < ǫ′ < ǫ2 < 1, so that Yc0(ǫ1) = Yc0(ǫ2) = 0. Then we

obtain c0 = K(ǫ1)R
1+ǫ1
0 = K(ǫ2)R

1+ǫ2
0 . We consider the equality :

(693) c0 = K(ǫ1)R
1+ǫ1
0 =⇒ µc0 = e

1

ǫ2
1 rad(ab)Rǫ1

0

If the right member of the above equation is an integer, we obtain a contradiction

with a0, b0, c0 coprime. If not, we find that an integer µc0 is equal to a real number

e

1

ǫ2
1 rad(ab)Rǫ1

0 . Then the contradiction again, it follows that the abc conjecture is

true.

Then the proof of the abc conjecture is finished. We obtain that ∀ǫ > 0, c = a+ b

with a, b, c relatively coprime:

(694) c < K(ǫ).rad1+ǫ(abc)

and the constant K(ǫ) depends only of ǫ.

Q.E.D

Ouf, end of the mystery!

22.3. Conclusion

Assuming c < R2 is true, we have given an elementary proof of the abc conjecture.

We can announce the important theorem:

Theorem 36. — For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, assuming c < rad2(abc) holds, then:

(695) c < K(ǫ).rad1+ǫ(abc)
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where K is a constant depending of ǫ.
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manuscripts concerning proofs proposed of the abc conjecture.
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CHAPTER 23

A PROOF OF THE abc CONJECTURE

Abstract. — In this paper about the abc conjecture, assuming the condition c <

rad2(abc) holds, and the constant K(ǫ) is a smooth function, having a derivative for

ǫ ∈]0, 1[, then we give the proof of the abc conjecture.

To the memory of my Father who taught me arithmetic

To my wife Wahida, my daughter Sinda and my son Mohamed

Mazen

23.1. Introduction and notations

Let a positive integer a =
∏

i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(696) a =
∏

i

aαi
i = rad(a).

∏

i

aαi−1
i

We note:

(697) µa =
∏

i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris

6) [1]. It describes the distribution of the prime factors of two integers with those

of its sum. The definition of the abc conjecture is given below:

Conjecture 36. — (abc Conjecture): For each ǫ > 0 , there exists K(ǫ) > 0

such that if a, b, c positive integers relatively prime with c = a+ b, then :

(698) c < K(ǫ).rad1+ǫ(abc)

where K is a constant depending only of ǫ.

The idea to try to write a paper about this conjecture was born after the pub-

lication of an article in Quanta magazine, in September 2018, about the remarks
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of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe

University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty

to find a proof of the abc conjecture is due to the incomprehensibility how the prime

factors are organized in c giving a, b with c = a+ b.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was pro-

posed that c < rad2(abc) [3]. It is the key to resolve the abc conjecture. In my paper,

we assume that the last conjecture holds, and the constant K(ǫ) for ǫ ∈]0, 1[ is a

smooth function having a derivative for ǫ ∈]0, 1[. The paper is organized as follows:

in the second section, we begin by presenting some properties of the constant K(ǫ),

then we give the proof of the abc conjecture.

23.2. The Proof of the abc Conjecture

Let a, b, c positive integers relatively prime with c = a+ b, a > b, b ≥ 2. We denote

R = rad(abc), I =]0, 1[. For c < R, it is trivial that the abc conjecture holds. In the

following, we consider the triples (a, b, c) with a, b, c relatively coprime and c > R.

As we assume that c < R2, it follows that ∀ ǫ ≥ 1, it suffices to take K(ǫ) = 1 and c

satisfies c < K(ǫ)R1+ǫ and the abc conjecture is true.

23.2.1. Properties of the constant K(ǫ)

- From the definition of the abc conjecture, above, the constant K(ǫ) is a positive

real number, and for every ǫ > 0, it exists a number K(ǫ) dependent only of ǫ.

- In the following, we consider that ǫ ∈ I. We can say that K is a function

K : ǫ ∈ I −→ K(ǫ) ∈]0,+∞[, so that c < K(ǫ)R1+ǫ holds, if the abc conjecture is

true. Assuming that c < R2 is satisfying, we can adopt that K(ǫ = 1) = 1, because

c < K(1)R1+1. Then we choose K(ǫ) so that limǫ−→1−K(ǫ) = K(1)

- We obtain also that K(ǫ) > 1 if ǫ ∈ I. If not, we consider the example 9 = 8 + 1,

we take ǫ = 0.2, then c < K(0.2)R1.02 < 1.R1.2. But c = 9 > 61.2 ≈ 8.58, then the

contradiction.

- In 1996, A. Nitaj had confirmed that the constant K(ǫ) verifies [4]:

(699) limǫ−→0K(ǫ) = +∞

It follows that the function K(ǫ) is very large when ǫ is very small.
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23.2.2. The proof of the abc conjecture

Proof. — Let us suppose that K(ǫ) is a smooth function having a derivative in every

point ∈]0, 1[. Let a, b, c positive integers relatively prime with c = a+ b, c > R. We

denote :

(700) Yc(ǫ) = LogK(ǫ) + (1 + ǫ)LogR − Logc

We obtain limǫ→1Yc(ǫ) = 2LogR − Logc = y1 > 0, assuming c < R2, and

limǫ−→0Yc(ǫ) = +∞. The derivative of Yc(ǫ) gives:

(701) Y ′
c (ǫ) =

K ′(ǫ)

K(ǫ)
+ LogR

We have the following cases:

i)- If Y ′
c (ǫ) > 0 for all ǫ ∈]0, 1[, then Y is an increasing function of ǫ. It follows

the contradiction because limǫ−→0Yc(ǫ) = +∞.

ii) - If Y ′
c (ǫ) < 0 for all ǫ ∈]0, 1[, then Y is a decreasing function of ǫ. It follows

∀ ǫ, Yc(ǫ) > 0 =⇒ c < K(ǫ)R1+ǫ is satisfied. As c is an arbitrary integer with the

condition c > R, we deduce that the abc conjecture is true.

iii) - If Y ′
c (ǫ) = 0 for some ǫ0 ∈]0, 1[. ǫ0 is a solution of the equation :

−K ′(ǫ0)

K(ǫ0)
= LogR

We remark that ǫ0 depends of R, then of a, b, c.

* If Yc(ǫ0) is positive, then 0 < Yc(ǫ0) ≤ Yc(ǫ) =⇒ Yc(ǫ) > 0. As above, we

deduce that the abc conjecture holds for the triplet (a, b, c).

** If Yc(ǫ0) is negative, then it exists two values ǫ1, ǫ2 with 0 < ǫ1 < ǫ0 < ǫ2 < 1,

so that Yc(ǫ1) = Yc(ǫ2) = 0. It follows for example, that c = K(ǫ1)R
ǫ1 .rad(abc).

Suppose that K(ǫ1)R
ǫ1 is an integer, we obtain that a, b, c are not coprime. Then

the contradiction and this case to reject.

Then, we have obtained that the abc conjecture holds for ∀ǫ ∈ I for the triplet

(a, b, c), as it is chosen arbitrary with the condition c > rad(abc). It follows that the

abc conjecture is true, assuming that c < R2.

Q.E.D

End of the mystery!
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23.3. Conclusion

Finally, assuming c < R2, and choosing the constant K(ǫ) as a smooth function,

having a derivative for ǫ ∈]0, 1[, we have given an elementary proof that the abc

conjecture is true.

We can announce the important theorem:

Theorem 37. — For each ǫ > 0, there exists K(ǫ) > 0 such that if a, b, c positive

integers relatively prime with c = a+ b, assuming c < rad2(abc), then :

(702) c < K(ǫ).rad(abc)1+ǫ

where K is a constant depending only of ǫ and varying smoothly, having a derivative.
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