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ABSTRACT
The aim of this paper is to give a computational treatment to compute the cup i-
product and Steerod operations on cohomology rings of as many groups as possible.
We find a new method that could be faster than the methods of Rusin, Vo, and
Guillot. There are some available approaches for computing Steenrod operations on
these cohomology rings (see [11, 20, 24]). The computation of all Steenrod squares
on the Mod 2 cohomology of all groups of order dividing 32 and all but 58 groups of
order 64; partial information on Steenrod square is obtained for all but two groups
of order 64. For groups of order 32 this paper completes the partial results due to
Rusin[20], Thanh Tung Vo [24] and Guillot [11].
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1. Introduction

For an explicit description of the homomorphism Sqi we follow [3, 18] and [21], but
as in [6] specialize to the case B = BG. This special case has the advantage that
we can resort to the fact that the universal covering space B̃ = EG is contractible,
and that the chain complex C∗(B̃) is thus exact. In this case, we can avoid having to
implement the Acyclic Carrier Theorem. Additionally, we focus our concerns on the
classifying space B = BG of a finite p-group. For any group G there are various ways
to construct CW -space EG on which G acts freely, with cell permuted by the action.
We say that EG is the total space for G. The quotient space BG = EG/G obtained
by killing the action is a classifying space for G. The cellular chain complex C∗(EG)
is a free ZG-resolution and C∗(BG) = C∗(EG)⊗ZG Z. Thus H∗(BG,Zp) = H∗(G,Zp).
The cellular chain complex C∗(EG) is the chain complex with Ck(EG) the free abelian
group generated by all k-cells in EG

Ck(EG) =

bk∑
i=1

Zeki
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where bk is the number of k-cells; and where the boundary map is defined by using
singular homology (see [2, 12] for details). In our work, we use a different approach to
compute the Steenrod square, namely the cup i-product that is constructed in Mosher
and Tangora’s book [18] and Steenrod’s paper [21]. We are interested in finding a
new method that could be faster than the methods of Rusin, Vo, and Guillot. For
instance, the running time for Small Group(32,32) is approximatly 15 minutes.Vo [24]
mentioned that the running time for Small Group (32, 32) is approximately 2 months.

Definition 1.1. [15, 17]The homology groups of a CW -space EG are defined to be
the homology groups of the cellular chain complex C∗(EG).

Definition 1.2. [22] A cohomology operation of type (A,n,B,m) is a natural trans-
formation, φ : Hn(−, A) −→ Hm(−, B), that for any spaces, X, Y and for any
map f : X −→ Y there are functions φX , φY satisfying the naturality condition
f∗φY = φXf

∗ (i.e., the following diagram commutes).

Hn(X,A)
φX // Hm(X,B)

Hn(Y,A)
φY //

f∗

OO

Hm(Y,B)

f∗

OO

We know the Bockstein homomorphism as an example of a cohomology operation
of type (Zp, n,Zp, n+ 1).

Definition 1.3. Consider the cohomology of a space B with coefficients in the field
of p elements, p a prime number. The Steenrod squares are cohomology operations of
type (Zp, n,Zp, n+ i) for p = 2,

Sqi : Hn(B,Z2) −→ Hn+i(B,Z2), i ≥ 0 (1)

and the Steenrod powers are cohomology operations of type (Zp, n,Zp, n + i(p − 1))
for p > 2,

P i : Hn(B,Zp) −→ Hn+i(p−1)(B,Zp), i ≥ 0. (2)

The Steenrod squares Sqi of 1, defined for i ≥ 0 satisfy the following properties:

1. Sq1 is the Bockstein homomorphism (denoted β in the previous chapter).
2. Sq0 is the identity homomorphism.
3. if deg(x) = i then Sqi(x) = x2.
4. if deg(x) < i then Sqi(x) = 0.
5. (Cartan formula) Sqn(xy) =

∑
i+j=n Sq

i(x) ^ Sqj(y).

6. Sqi(x+ y) = Sqi(x) + Sqi(y).
7. Naturality: means that for any map f : B −→ B′, Sqi(f∗) = f∗(Sqi) for the
cohomology homomorphism f∗ induced by the map f .

8. (Adem relations) SqaSqb =
∑a/2

c=0

(
b−c−1
a−2c

)
Sqa+b−cSqc, for a < 2b, where

SqaSqb denotes the composition of the Steenrod squares and the binomial coef-
ficient is taken modulo 2.

Proposition 1.4. [1] Let G = L × K be the direct product of groups L and K, for
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l ∈ H∗(L,Z2), k ∈ H∗(K,Z2) and (l × k) ∈ H∗(L × K,Z2) we have Sqn(l × k) =∑
i+j=n Sq

i(l)× Sqj(k)

Proof. The first projection p1 : L×K � L and the second projection p2 : L×K � K
induce ring inclusions p∗1 : H∗(L,Z2) � H∗(L×K,Z2) and p∗2 : H∗(K,Z2) � H∗(L×
K,Z2) from property 5 we have Sqn(l × k) = Sqn((l × 1) ∪ (1 × k)) =

∑
i Sq

i(l ×
1)Sqn−i(1× k), then Sqi(l × 1) = Sqi(p∗1(l)) = p∗1Sq

i(l) = Sqi(l)× 1.

H∗(L,Z2)
Sqi×1

((

p∗1 //

Sqi

��

H∗(L×K,Z2)

Sqi

��

H∗(K,Z2)

Sqi

��

1×Sqi

vv

p∗2oo

H∗+i(L,Z2) p∗1

// H∗+i(L×K,Z2) H∗+i(K,Z2)p∗2

oo

Accordingly Sqn(l × k) =
∑

i+j=n Sq
i(l × 1)Sqj(1 × k) =

∑
i+j=n(Sqi(l) × 1) ∪ (1 ×

Sqj(k)) =
∑

i+j=n Sq
i(l)× Sqj(k).

Example 1.5. To compute all Steenrod squares on H∗(G,Z2), we use the formulas
provided by properties in definition 1.3 as well as the cup product and Bockstein
homomorphism. For instance, the following commands show that for the small group
G = G32,4 of order 32 and number 4 in the small group library of the computer
algebra system GAP, in cases where this cohomology algebra is generated by elements
of degrees 1 and 2, the image of the homomorphism

Sq3 : H4(G32,4,Z2) −→ H7(G32,4,Z2)

is generated by xv3; here the algebra H∗(G32,4,Z2) is generated by four elements x, y
of degree 1 and z, v of degree 2.

GAP session

gap> G:=SmallGroup(32,4);;

gap> A:=ModPSteenrodAlgebra(G,7);;

gap> gens:=ModPRingGenerators(A);

[ v.1, v.2, v.3, v.5, v.6 ]

gap> List(gens,A!.degree);

[ 0, 1, 1, 2, 2 ]

gap> H4:=Filtered(Basis(A),x->A!.degree(x)=4);;

gap> Sq3H4:=List(H4,x->Sq(A,3,x));

[ 0*v.1, 0*v.1, 0*v.1, v.33+v.35, 0*v.1 ]

gap> PrintAlgebraWordAsPolynomial(A, Sq3H4[4]);

v.6*v.6*v.6*v.2

We use the HAP fuction Sq(A,n, u) which makes use of the Cartan relation and
the properties in Definition 1.3, but it does not make any use of the Adem relations.
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Algorithm 1.1 Steenrod squares for Mod-2 cohomology rings

Input:

• ModPSteenrodAlgebra, an integer n ≥ 0 and a homogeneous element
u ∈ H∗(G,Z2).

Output: The information for the Steenrod squares Sq2
k

.

Procedure:

1: if i = 0 then
2: Sqi(u) = u
3: end if
4: if i > degrees of all homogeneous elements then
5: Sqi = 0
6: if degree u=i then
7: Sqi(u) = u2

8: if Length u > 1 then
9: Sqi(u1 + u2 + ...+ un) = Sqi(u1) + Sqi(u2) + ...+ Sqi(un)

10: if u is product of generators and Length u > 1 then
11: for k ∈ {1, ..., i} do
12: a := Sqk(u1)
13: b := Sqk−i(u{2..Length(u)})

14: Sqi(u1un−1) =
∑
a ∗ b

15: end for
16: end if
17: end if
18: end if
19: end if
20: return the information of Steenrod squares.
21: EndProcedure:

2. Implementation of the cup i-product

For an explicit description of the homomorphism Sqi we follow [3, 18] and [21], but as
in [6] specialize to the case B = BG. This special case has the advantage that we can
resort to the fact that the universal covering space B̃ = EG is contractible, and that
the chain complex C∗(B̃) is thus exact. In this case, we can avoid having to implement
the Acyclic Carrier Theorem.

2.1. Construction of cup i-product

Let S∞ denote the infinite-dimensional sphere. There exists a cell structure on S∞ as
a CW -complex, with two cells in each dimension. Let RC2

∗ be the free mathbbZC2-
resolution of Z obtained from the cellular chain complex for S∞ with one free
mathbbZC2-generator kn in each degree n.

RC2
∗ : · · · // Z[C2]

t−1 // Z[C2]
t+1 // Z[C2]

t−1 // Z[C2]
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Here C2 = 〈t : t2 = 1〉 is the group of order 2 generated by t. Let B = BG for
some group G and set RG∗ = C∗(B̃). Let en1 , e

n
2 , ... denote free generators for the free

ZG-module RGn . The group C2 acts on RGp ⊗Z R
G
q = RG×Gn by the interchange map

τ : RG∗ ⊗RG∗ −→ RG∗ ⊗RG∗ ,

t · (g′epi ⊗ g
′′eqj) = (−1)pqg′′eqj ⊗ g

′epi

The tensor product RG×G∗ = RG∗ ⊗Z R
G
∗ is a free Z[G × G]-resolution of Z with free

Z[G × G]-generators epi ⊗ e
q
j in degree n = p + q. With a free abelian group RG×Gn is

freely generated via g′epi ⊗ g′′e
q
j , such that (g′, g′′) ∈ G×G. The action extends to an

action of C2 ×G via the formula

(t, g) · (g′epi ⊗ g
′′eqj) = (−1)pqgg′′eqj ⊗ gg

′epi .

We view RG×G∗ as an exact chain complex of Z[G × G]-modules. The tensor product
RC2×G
∗ = RC2

∗ ⊗Z R
G
∗ is a free Z[C2 ×G]-resolution of Z.

We will consider the Z[C2 ×G]-equivariant homomorphism

φ0 : RC2

0 ⊗R
G
0 −→ RG0 ⊗RG0 ,

defined by φ0(k
0⊗e0i ) = e0i ⊗e0i . The map φ0 extends, using the freeness of RC2

∗ ⊗RG∗
and the exactness of RG∗ ⊗RG∗ to a Z[C2 ×G]-equivariant chain map

φ∗ : RC2
∗ ⊗RG∗ −→ RG∗ ⊗RG∗ (3)

and the diagram below describes the φn,

RC2×G
n

∂n //

φn

��

RC2×G
n−1 · · ·

φn−1

��

// RC2×G
1

∂1 //

φ1

��

RC2×G
0

φ0

��
RG×Gn

∂n // RG×Gn−1 · · · // RG×G1
∂1 // RG×G0

and φ∗ is unique up to chain homotopy. The chain map φ∗ is computed from a con-
tracting homotopy (or discrete vector field) on RG×G∗ . Let ∆ : G −→ G × G be the
diagonal map ∆(x) = (x, x), π1 : C2 × G −→ C2 be the first projection given by
π1(t, g) = t, and π2 : C2×G −→ G be the second projection given by π2(t, g) = g. Let
i1 : G −→ G×G, i1(g) = (g, 1) and i2 : G −→ G×G, i2(g) = (1, g) the specified embed-
dings to G×G. We now consider the cochain complex C∗(RG∗ ) = HomZG(RG∗ ,Z). The
group Cn(RG∗ ) is a free abelian group with free abelian generators ēni corresponding to
the free ZG-generators eni of RGn . More precisely, ēni : RGn −→ Z is the ZG-equivariant
homomorphism sending eni 7→ 1, enj 7→ 0 for j 6= i. This notation describes a homo-
morphism

RGn −→ Cn(RG∗ ), u 7→ ū.



3 The computation of Steenrod squares 6

For each integer i ≥ 0 define a Z-linear cup-i product

Cp(RG∗ )⊗Z C
q(RG∗ ) −→ Cp+q−i(RG∗ ), ū⊗ v̄ 7→ ū ^i v̄ (4)

by the formula

(ū ^i v̄)(c) = (ū⊗ v̄)φp+q(k
i ⊗ c) (5)

for c ∈ RGp+q−i.

Algorithm 2.1 The function HAP-PHI

Input:

• G finite group and
• an integer n ≥ 0.

Output: A list [φ∗, R
C2×G
∗ , RG×G∗ ].

Procedure:

1: Construct diagonal function G −→ G×G.
2: Construct interchange map τ : RG∗ ⊗ RG∗ −→ RG∗ ⊗ RG∗ , t · (g′epi ⊗ g′′eqj) =

(−1)pqg′′eqj ⊗ g′e
p
i .

3: Construct φ0 : RC2 ⊗RG0 −→ RG0 ⊗RG0 , φ0(k
0 ⊗ e0i ) = e0i ⊗ e0i .

4: The output {φ1, φ2, ..., φn}, RC2×G
n and RG×Gn .

5: EndProcedure:

3. The computation of Steenrod squares

In this section, we give a computational treatment to compute Steenrod squares on
cohomology rings of finite 2-groups. There are alternative approaches for computing
Steenrod square by Rusin, Guillot and Vo. Steenrod squares for all 2-groups of order
32 have been computed by Rusin, except for two of them, the groups of numbers 8
and 44 in the GAP’s library of small groups; and most of the computations were done
by hand. For more details, see [20]. Guillot calculated for the five groups of order 8,
for 28 of the 51 groups of order 32, for 13 of the 14 groups of order 16, and for 61 of
the 267 groups of order 64. The Steenrod squares for all 2-groups of order less than
or equal 16, all 2-groups of order 32, except one group of number 8, ( He mentions to
compute 210 groups of order 64 but gives no details) were calculated by Thanh Tung
Vo.

Theorem 3.1. [18] The operation

Cn(RG∗ ) −→ C2n−i(RG∗ ), ū 7→ ū ^i ū

induces a homomorphism

Sqi : Hn(G,Z2) −→ H2n−i(G,Z2).
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The homomorphism

Sqi = Sqn−i : Hn(G,Z2) −→ Hn+i(G,Z2) (6)

is independent of the choices in φ∗ made in 3 and satisfies the properties of Definition
1.3.

We use the HAP function Mod2Steenrodalgebra(G,n) which is an implementation of
Sqi defined in 6 that inputs a finite 2-group G and a non-negative integer and returns
the first nth degree of Steenrod squares.

Example 3.2. To compute the Steenrod square Sqk for each generator and each
positive 2-power k = 2i < degree(x), x ∈ H∗(G,Z2) for G32,10 the small group of
order 32 and number 10 in GAP’s library, see the following GAP session.

GAP session

gap> G:=SmallGroup(32,10);;

gap> A:=Mod2SteenrodAlgebra(G,8);;

gap> gens:=ModPRingGenerators(A);

[ v.1, v.2, v.3, v.4, v.6, v.9, v.15 ]

gap> List(gens,A!.degree);

[ 0, 1, 1, 2, 2, 3, 4 ]

gap> List(gens,x->Sq(A,2,x));

[ 0*v.1, 0*v.1, 0*v.1, v.13, v.11, v.21, v.23+v.24+v.25 ]

gap> PrintAlgebraWordAsPolynomial(A, List(gens,x->Sq(A,2,x))[4]);

v.4*v.4

gap> PrintAlgebraWordAsPolynomial(A, List(gens,x->Sq(A,2,x))[5]);

v.4*v.3*v.3

gap> PrintAlgebraWordAsPolynomial(A, List(gens,x->Sq(A,2,x))[6]);

v.15*v.2

gap> PrintAlgebraWordAsPolynomial(A, List(gens,x->Sq(A,2,x))[7]);

v.4*v.4*v.6

gap> List(gens,x->Sq(A,4,x));

[ 0*v.1,0*v.1,0*v.1,0*v.1,0*v.1,0*v.1, v.37+v.38+v.39+v.40+v.45 ]

gap> PrintAlgebraWordAsPolynomial(A, List(gens,x->Sq(A,4,x))[7]);

v.15*v.15

Also we using the HAP command CohomologicalData(G,n) to determine and print
details of the group order, group number, cohomology ring generators with degree
and relations and the Steenrod square Sqk(x) for each generator x and each positive
2-power k = 2i < degree(x). If we want the cohomology ring details printed to a
file then this file name is included as an optional third input to the command. Also
the command CohomologicalData(G,n) returns the following information for n = 6
and G32,30 the small group of order 32 and number 30 in GAP’s library. It prints
correct information for the cohomology ring H∗(G,Z2) of a 2-group G provided that
the integer n is at least the maximal degree of a relator in a minimal set of relators
for the ring, moreover n trems of a free ZG-resolution is enough to compute the whole
mod-2 cohomology ring by the tables of King and Green [10]. When Steenrod squares
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are composed, the composetion satisfy certain relations known the Adem relation 1.3,

SqaSqb =

a/2∑
j=0

(
b− j − 1

a− 2j

)
Sqa+b−jSqj ,

for a < 2b, where SqaSqb denotes the composition of the Steenrod squares and the
binomail coefficient is taken modulo 2. A detailed proof the Adem relation can found
in [1, 18].
Suppose that i = a+b where b = 2k and 0 < a < 2k. Then we can rewritten the Adem
relations in the form(

b− 1

a

)
Sqi = SqaSqb +

a/2∑
j=1

(
b− j − 1

a− 2j

)
Sqa+b−jSqj ,

if a ≤ b − 1 that
(
b−1
a

)
≡ 1(mod2) which proof in [Proposition 15.6 [1]], we can used

recursively to express Sqi in terms of Sq2k. For instance,there are relations Sq1Sq1 =
0, Sq1Sq3 = 0 ,...;Sq1Sq2n+1 = 0 and Sq3 = Sq1Sq2, Sq5 = Sq1Sq4,... Sq2n+1 =
Sq1Sq2n. The expression of Sq6 in terms of squares of the form Sq2

k

as Sq6 = Sq2Sq4+
Sq5Sq1,...,Sq4n+2 = Sq2Sq4n +Sq4n+1Sq1. Also, Sq3Sq4n+2 = 0, Sq2n−1Sqn = 0, and
more details see [18].
Group order: 32
Group number: 30
Group description: (C4 x C2 x C2) : C2
Cohomology generators
Degree 1: a, b, c
Degree 2: d
Degree 3: e, f
Degree 4: g
Cohomology relations
1 : a ∗ f
2 : a ∗ c
3 : a ∗ b+ c2

4 : c2 ∗ d+ c ∗ e
5 : b ∗ c ∗ d+ b ∗ e+ c ∗ e+ c ∗ f
6 : b ∗ c2
7 : b3 ∗ e+ b2 ∗ c ∗ f + c ∗ d ∗ f + e ∗ f
8 : b4 ∗ d+ b2 ∗ c ∗ f + c2 ∗ g + c ∗ d ∗ e+ f2

9 : a4 ∗ d+ a3 ∗ e+ a2 ∗ g + c ∗ d ∗ e+ e2

Poincare series
(x3 + x+ 1)/(−x6 + 2 ∗ x5 − x4 + x2 − 2 ∗ x+ 1)
Steenrod squares
Sq1(d) = d ∗ a+ d ∗ c
Sq1(e) = d ∗ a ∗ b+ e ∗ b
Sq2(e) = d ∗ a ∗ a ∗ a+ d ∗ b ∗ b ∗ c+ d ∗ d ∗ c+ g ∗ a
Sq1(f) = d ∗ b ∗ b+ d ∗ b ∗ c+ e ∗ b
Sq2(f) = d ∗ d ∗ c+ f ∗ b ∗ b+ g ∗ c
Sq1(g) = d ∗ a ∗ a ∗ a+ d ∗ b ∗ b ∗ c+ e ∗ a ∗ a
Sq2(g) = d ∗ a ∗ a ∗ a ∗ a+ d ∗ b ∗ b ∗ b ∗ b+ d ∗ d ∗ a ∗ a+ d ∗ d ∗ a ∗ b+ d ∗ d ∗ b ∗ b+ d ∗
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d ∗ b ∗ c+ e ∗ a ∗ a ∗ a+ e ∗ b ∗ b ∗ b+ f ∗ f + g ∗ b ∗ b

4. Detection Method

Definition 4.1. [2] Let G be a finite group, K ≤ G a proper subgroup and i : K −→ G
the inclusion map. The induced cohomology homomorphism

iGK : H∗(G,Z2) −→ H∗(K,Z2)

is called restriction map.

Definition 4.2. [16] Let G be a finite group, and κ a collection of proper subgroups
of G. We say that κ detects the cohomology H∗(G,Z2) if the product of the restriction
maps ∏

K∈κ
iGK : H∗(G,Z2) −→

∏
K∈κ

H∗(K,Z2)

is an injection.

The HAP function Mod2Steenrodalgebra(G,n) and ModPSteenrodAlgebra(G,n) be-
come less practical as the size of the finite 2-group G increases. For large G it
can be useful using Definition 4.2. We are using the HAP function InducedSteen-
rodHomomorphism(f,n) which input a homomorphism f : K −→ G of finite 2-groups
and a positive integer n. It returns a triple [HG,HK, l], where HG = H≤n(G,Z2),
HK = H≤n(K,Z2) and l is a list [l1, l2, ..., ln] with li : H i(G,Z2) −→ H i(K,Z2) the

linear homomorphism induced by f . For each Steenrod square Sq2
k

and each element
v in the generating set of H∗(G,Z2), we have∏

K∈κ
iGK(Sq2

k

(v)) =
∏
K∈κ

Sq2
k

(iGK(v)).

If iGK(Sq2
k

(v)) = Sq2
k

(iGK(v)) = 0, then the Steenrod square Sq2
k

(v) ∈ Kernel(l1) ∩
Kernel(l2) ∩ ... ∩Kernel(ln).

Example 4.3. Consider the group G=G32,10 namely the small group of order 32
and number 10 in GAP’s library. The six generators of H∗(G,Z2) can be denoted
a1, b1, c2, d2, e3, f4, where the index of each generator indicates the degree of the el-
ement. One can check that the cohomology of G is not detected by any family of
proper subgroups as in example 3.2. However it is possible to determine some infor-
mation about Steenrod squares for G using Steenrod square computations in a proper
subgroup K. The group G32,10 has three subgroups of order 16; we denote them by
[K16,4, K16,12, K16,5]. Let K16,12 < G denote the subgroup of order 16 and number
12. The following GAP session uses a Steenrod square computation in H∗(K,Z2) in
order to determine that either Sq2(f4) = c ∗ d ∗ b ∗ b + c ∗ c ∗ d or Sq2(f4) = c ∗ c ∗ d
[In Example 3.2, we know that Sq2(f4) = c ∗ c ∗ d]
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GAP session

gap> G:=SmallGroup(32,10);;

gap> K:=MaximalSubgroups(G)[2];;

gap> f:=GroupHomomorphismByFunction(K,G,x->x);;

gap> L:=InducedSteenrodHomomorphisms(f,8);;

gap> HG:=L[1];;

gap> HK:=L[2];;

gap> iota:=L[3];;

gap> gens:=ModPRingGenerators(HG);

[ v.1, v.2, v.3, v.4, v.6, v.9, v.15 ]

gap> List(gens,HG!.degree);

[ 0, 1, 1, 2, 2, 3, 4 ]

gap> w:=Sq(HK,2,Image(iota[5],gens[7]));

v.34

gap> P:=List(PreImagesElm(iota[7],w),x->x);

[ v.22+v.24+v.25, v.23+v.24+v.25 ]

gap> PrintAlgebraWordAsPolynomial(HG,P[1]);

v.4*v.6*v.3*v.3 + v.4*v.4*v.6

gap> PrintAlgebraWordAsPolynomial(HG,P[2]);

v.4*v.4*v.6

Also, we are using the HAP command CohomologicalDetected(G,K,n) which inputs a
finite 2-group, K are maximal subgroups and positive integer n to determine and print
details of the group order, group number, a list of maximal subgroups, cohomology
ring generators with their degree, and Steenrod squares Sqk for each generator. If a
file name is included as an optional fourth input to the command then the details are
printed to this file.
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Algorithm 4.1 Detects the cohomology H∗(G,Z2)

Input:

• Finite 2-group, maximal subgroups, an nonnegative integer n.
• The information for the Steenrod squares Sq2

k

.

Procedure:

1: for i ∈ gens of H∗(G,Z2) do
2: for k ∈ degree gens in H∗(G,Z2) do
3: for j ∈ Maximal subgroup L do
4: Ii := H i(G,Z2) −→ H i(Lj ,Z2)

5: if k = 2log(k,2) then
6: w = Sqk(Ii+1(gensi))
7: if w = 0 then
8: P = Kernel(I{i+k+1})
9: else

10: P = I−1{i+k+1}(w)

11: end if
12: end if
13: end for
14: end for
15: end for
16: return the information of Steenrod squares.
17: EndProcedure:

Example 4.4. From the previous example we can use the command CohomologicalDe-
tected(G,K,n), which returns the following information for G32,10, n = 8 and the three
maximal subgroups of order 16.
Group order: 32
Group number: 10
Group description: Q8 : C4
Subgroup List:[ [ 16, 4 ], [ 16, 12 ], [ 16, 5 ] ]
Cohomology generators
Degree 1: a, b
Degree 2: c, d
Degree 3: e
Degree 4: f
Steenrod squares Sq1(c) = [0, d ∗ b, c ∗ b, c ∗ b+ d ∗ b]
Sq1(d) = [0, d ∗ b, c ∗ b, c ∗ b+ d ∗ b]
Sq1(e) = [0, c ∗ b ∗ b+ d ∗ b ∗ b, c ∗ b ∗ b, d ∗ b ∗ b]
Sq2(e) = [f ∗ a+ f ∗ b, f ∗ a, c ∗ c ∗ b+ f ∗ a+ f ∗ b, c ∗ c ∗ b+ f ∗ a, c ∗ d ∗ b+ f ∗ a+
f ∗ b, c ∗ d ∗ b+ f ∗ a, c ∗ c ∗ b+ c ∗ d ∗ b+ f ∗ a+ f ∗ b, c ∗ c ∗ b+ c ∗ d ∗ b+ f ∗ a]
Sq1(f) = [0, f∗b, c∗c∗b, c∗c∗b+f∗b, c∗d∗b, c∗d∗b+f∗b, c∗c∗b+c∗d∗b, c∗c∗b+c∗d∗b+f∗b]
Sq2(f) = [c∗c∗b∗b+c∗c∗d, c∗c∗b∗b+c∗c∗d+f∗b∗b, c∗d∗b∗b+c∗c∗d, c∗d∗b∗b+c∗c∗d+
f∗b∗b, c∗c∗b∗b+c∗d∗b∗b+c∗c∗d, c∗c∗b∗b+c∗d∗b∗b+c∗c∗d+f∗b∗b, c∗c∗d, c∗c∗d+f∗b∗b]
Cohomology generators
Degree 1: a, b
Degree 2: c, d
Degree 3: e
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Degree 4: f
Steenrod squares
Sq1(c) = [0, c ∗ a]
Sq1(d) = [c ∗ b+ d ∗ b, c ∗ a+ c ∗ b+ d ∗ b]
Sq1(e) = [0, d ∗ b ∗ b]
Sq2(e) = [0, f ∗ a, c ∗ c ∗ a, c ∗ c ∗ a+ f ∗ a]
Sq1(f) = [c ∗ c ∗ b+ c ∗ d ∗ b, c ∗ c ∗ b+ c ∗ d ∗ b+ f ∗ a, c ∗ c ∗ a+ c ∗ c ∗ b+ c ∗ d ∗ b, c ∗
c ∗ a+ c ∗ c ∗ b+ c ∗ d ∗ b+ f ∗ a]
Sq2(f) = [c ∗ d ∗ b ∗ b+ c ∗ c ∗ d, c ∗ c ∗ d]
Cohomology generators
Degree 1: a, b
Degree 2: c, d
Degree 3: e
Degree 4: f
Steenrod squares
Sq1(c) = [0, d ∗ b, c ∗ a+ c ∗ b, c ∗ a+ c ∗ b+ d ∗ b]
Sq1(d) = [c ∗ b, c ∗ b+ d ∗ b, c ∗ a, c ∗ a+ d ∗ b]
Sq1(e) = [0, c ∗ b ∗ b+ d ∗ b ∗ b, c ∗ b ∗ b, d ∗ b ∗ b]
Sq2(e) = [f ∗ a, f ∗ b, c ∗ c ∗ a+ c ∗ c ∗ b+ c ∗ d ∗ b+ f ∗ a, c ∗ c ∗ a+ c ∗ c ∗ b+ c ∗ d ∗ b+
f ∗ b, c ∗ d ∗ b+ f ∗ a, c ∗ d ∗ b+ f ∗ b, c ∗ c ∗ a+ c ∗ c ∗ b+ f ∗ a, c ∗ c ∗ a+ c ∗ c ∗ b+ f ∗ b]
Sq1(f) = [c ∗ c ∗ b, c ∗ c ∗ b+ f ∗ a+ f ∗ b, c ∗ c ∗ a+ c ∗ d ∗ b, c ∗ c ∗ a+ c ∗ d ∗ b+ f ∗ a+
f ∗ b, c ∗ c ∗ b+ c ∗ d ∗ b, c ∗ c ∗ b+ c ∗ d ∗ b+ f ∗ a+ f ∗ b, c ∗ c ∗ a, c ∗ c ∗ a+ f ∗ a+ f ∗ b]
Sq2(f) = [c∗c∗b∗b+c∗c∗d, c∗c∗b∗b+c∗c∗d+f∗b∗b, c∗d∗b∗b+c∗c∗d, c∗d∗b∗b+c∗c∗d+
f∗b∗b, c∗c∗b∗b+c∗d∗b∗b+c∗c∗d, c∗c∗b∗b+c∗d∗b∗b+c∗c∗d+f∗b∗b, c∗c∗d, c∗c∗d+f∗b∗b]

In the example above, we can find the Steenrod square taking the intersection of
the Steenrod squares over all maximal subgroups. For instance Sq1(c) = 0 by taking
the intersection between the list of Sq1(c) over K16,4, Sq

1(c) over K16,12 and Sq1(c)
over K16,5. We proceed analogously with the other generators.
Occasionally, the HAP command CohomologicalDetected(G,K,n) gives us a huge infor-
mation therefore we use the HAP commend CohomologicalDetectedIntersection(G,K,n)
which input a finite 2-group, K a maximal subgroups and positive integer n, and
output the information of Steenrod square see the example below.

Example 4.5. Let the small group G64,175 of order 64 and number 175 in GAP’s
library. The five generators of H∗(G,Z2) can be denoted a1, b1, c1, d2, e4, where the
index of each generator indicates the degree of the element. We can use the commend
CohomologicalDetectedIntersection(G,K,n) returns the following information for G64,175,
n = 8 and maximal subgroups and we can see the Steenrod square Sq2(e) for generator
e, which have two result we can choose one of them.
Group order: 64
Group number: 175
Group description:C4 : Q16
Maximal Subgroups:[ [ 32, 41 ], [ 32, 35 ], [ 32, 41 ], [ 32, 3 ], [ 32, 41 ], [ 32, 35 ], [ 32,
41 ] ]
Cohomology generators
Degree 1: a, b, c
Degree 2: d
Degree 4: e
Steenrod squares
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Sq1(d) = d ∗ a
Sq1(e) = d ∗ a ∗ a ∗ b+ d ∗ a ∗ a ∗ c
Sq2(e) = d∗a∗a∗b∗c+d∗d∗a∗a+d∗d∗a∗b+d∗d∗a∗c, d∗d∗a∗a+d∗d∗a∗b+d∗d∗a∗c

In special cases, we can use the direct products to compute the Steenrod square.
Let G = L × K be the direct product of groups L and K. Then it is known that
the projections G � L and G � K induce ring inclusions H∗(L,Z2) � H∗(G,Z2)
and H∗(K,Z2) � H∗(G,Z2) see Proposesion 1.4, and so we can think of H∗(L,Z2)
and H∗(K,Z2) as subrings of H∗(G,Z2). It is known that the ring H∗(G,Z2) is gen-
erated by the generators of two subrings H∗(L,Z2) and H∗(K,Z2). In fact we have
an isomorphism H∗(G,Z2) ∼= H∗(L ×K,Z2) ∼= H∗(L,Z2) ⊗Z2

H∗(K,Z2). All of this
means that the cohomology ring and the Steenrod squares for H∗(G,Z2) are com-
pletly determined by the ring and operations for H∗(L,Z2) and H∗(K,Z2). In other
words, if a group G of order 64 is a direct product then we already have the Steenrod
operations since we have computed the rings and operations for groups of order less
than 64. The Steenrod operations on H∗(G,Z2) are determined by the Cartan formula
Sqn(x × y) =

∑
i+j=n Sq

i(x) × Sqj(y). For example the group G32,48 is the group of
order 32 and number 48, and we can compute the Steenrod Squares over it by use of
the Cartan formula; in fact, G32,48

∼= G16,13 × C2.

5. Experimental results

We present a sample of results from our implementation of Steenrod operations on
finite 2-groups.

The implementation is able to compute the Steenrod squares of the following finite
2-groups:
• All groups of order 2,4,8,16 and 32 .

• all but 58 groups of order 64. Partial information on Steenrod squares is obtained
for all but two groups of order 64.
We use different methods to compute the above.
Method (1)- For all groups of order less than or equal 32, except the groups G32,8,
G32,44, G32,47, G32,48, G32,49 and G32,50 and some groups of order 64 which have
cohomology generators in degree one and two, we used only the HAP command
CohomologicalData(G,n) .
Method (2)-For the following groups of order 64 we used in addition to the HAP
command CohomologicalData(G,n), the HAP command CohomologicalDetected(G,K,n)
and the command CohomologicalDetectedIntersection(G,K,n) on the specified maximal
subgroups.
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