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Abstract

The article considers tensor transformations of the differential elements pertaining to the coordinates
to derive that the nth order differential behaves as a tensor. This stands in contradiction to accepted
notions. It also derives by considering the Taylor series, a significant and an unexpectedly conflicting
result that the nth order partial derivatives of scalar functions with respect to the coordinates behave
like rank ‘n‘covariant tensors.

Introduction

It is known to us from standard theory that first order differentials of the coordinates behave as
contravariant tensors of rank one. Derivatives of scalar functions with respect to the coordinates
behave as rank one covariant tensors. In this article we derive the stunning facts that higher order
differentials[pertaining to the coordinates] do behave as rank one contravariant tensors. By considering
the Taylor series we prove that the nth order partial derivative of scalar functions[with respect to the
coordinates] behave as rank n covariant tensors

Higher order Differentials as Tensors

We consider the definition of the rank one contravariant tensor!
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Each term with equation (2) is a second order differential. But this is a delusion since due to cancellation
effect between the term to the left and the first term on the right side we have only one second order
differential with equation (2). Let us check

Equation (1) may be written as
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[prime dos not denote differentiation]

Taking differentials on either side we have,
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Applying equation (1) on (4) we have,
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In the above dx%d ( Py ) is a second order differential while the other terms are first order differentials.

Therefore

From (1) and (6) we have
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Taking differentials on either side of (7) we have,
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In the above equation d?x%*d ( ) is a third order differential while the other terms are second order

differentials. Therefore, we may ignore d?x%*d ( ) [especially in the limit]
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we may show that
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Proof:

Taking differentials on either side of (10) we obtain
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Applying (10) on (12) we obtain
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With equation (14) the second term on the right side is an nth order differential while the others are of
n-1th order. Therefore we do have
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From equations (10) and (15) we have
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Thus we arrive at our intended equation that is at (11):
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h = dA where 1 is an invariant parameter like the line element. In the difference table for ‘A’ the various
values of A may or may be unequally spaces. For subsequent considerations we consider equally space t.
The various values of x*correspond to the several values of ‘1. Line element squared ds? = c?dt? = 71
is an invariant parameter even in the n-dimensional case
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Now we have,
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Therefore
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is a tensor.From (1)
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Again by differentiation
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The last equation stands in contradiction to (18) for n=2 if the second term on the right side is non zero.

Tensors and Taylor Series

We start with scalars and their differentiation
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Since by scalar property @(x*) = @(x*) we have the standard result
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which embodies the information that the derivative of a scalar is a rank one covariant tensor.

By differentiation (20) with respect to XV we obtain
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Taylor expansion of the scalar @(x*) = @ (x%)
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Since
o(x*+ Ax*:a=1,23...n) = p(x* + Ax*:u=123...n)

we have from (24) and (25)
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Keeping in the mind that Ax%, Ax? . AxY
diverge we should have
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Tensors. That is not true

Even if the range of the convergence for 23 or (25) is narrow but of a continuous nature we could think
of an infinite number of possible values for Ax®, Ax?, AxY ........

Equation (26.1) holds ; it expresses the fact that the first order derivative is a covariant vector of rank
one.
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Let us try verifying (26.2)
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Equation (26.2) fails in the process of verification
Conclusion

As claimed at the outset we have proved the stunning facts that higher order differentials of the
coordinates do behave as rank one contravariant tensors. By considering the Taylor series we have
proved that the nth order partial derivative of scalar functions behave as rank n covariant tensors. These
notions stand against accepted beliefs.
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