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Abstract

Although the concept of Brownian motion or Wiener process is quite popu-

lar, proving its existence via construction is a relatively deep work and would not

be stressed outside mathematics. Taking the existence of Brownian motion in

C([0, 1],R) “for granted” and following an existing implicit thread, we intend to

present an explicit, simple treatment of the existence of Brownian motion in the

space C([0,+∞[,R) of all continuous real-valued functions on the ray [0,+∞[ with

moderate technical intensity. In between the developments, some informative little

results are proved.
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1 Introduction

Throughout, let R+ := [0,+∞[; let C(R+) be the space of all continuous R-valued

functions on R+ equipped with the sigma-algebra C obtained by relativizing the product

sigma-algebra of RR+ to C(R+). Denote by πt : C(R+) → R, f 7→ f(t) the natural

projection on C(R+) for all t ∈ R+. For every map f , the symbol f−1) denotes the

preimage map induced by f .

A probability measure W defined on C is called Wiener measure (over C(R+);

necessarily unique) if and only if π0 = 0 a.s.-W and W◦π−1)
t is the Gaussian distribution

with mean 0 and variance t for all t ∈ ]0,+∞[ with the property that 0 ≤ t1 < · · · <
tk < +∞ implies

W ◦ (πtk − πtk−1
, . . . , πt2 − πt1)−1) = ⊗kl=2W ◦ (πtl − πtl−1

)−1)

on the usual Borel sigma-algebra of Rk−1. A random element of C(R+) whose dis-

tribution is Wiener measure is called Wiener process or Brownian motion in C(R+).
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In plain words, Wiener process in C(R+) fixes the origin (almost surely), has Gaus-

sian coordinates with mean zero and variance being the corresponding index, and has

independent increments. We remark that the identity map of C(R+), being evidently

measurable-C and hence inducing W (having W as its distribution), is Brownian motion

in C(R+); thus the existence of Brownian motion in C(R+) follows immediately from

that of Wiener measure over C(R+).

Proving the existence of Wiener measure over C(R+) is far from elementary. The

original work Wiener [5] utilizes Kolmogorov’s extension theorem; one may also refer

to Shiryaev [3] or Billingsley [1] for suitable preliminaries regarding the Wiener’s ap-

proach. Tao [4] contains another approach relatively modern (self-similarity) that covers

more general cases. Billingsley [2] proves the existence of Wiener measure over the met-

ric space C([0, 1],R), equipped with the uniform metric, using Prokhorov’s theorem,

and implicitly leaves the existence of Wiener measure over C(R+) as an exercise. At

any rate, all the three representative approaches require a good deal of mathematical

preliminaries.

However, we find that Billingsley’s (implicit) approach would be more concrete and

less technical for pedagogical purposes; moreover, under this approach the measurability

of the space C(R+) requires no extra care. The Billingsley’s approach is thus technically

more simple.

Taking the existence of Wiener measure over C([0, 1],R) “as given”, we intend to

prove the existence of Wiener measure over C(R+) based on the stream of thought

suggested in Billingsley [2].

2 Construction of Wiener Measure over C(R+)

To begin with, we roughly describe the main ideas of proving the existence of Wiener

measure over C([0, 1],R) in Billingsley [2]. The existence of Wiener measure over

C([0, 1],R) is thereafter taken as given.

2.1 Proof sketch for existence of Wiener measure over the met-

ric space C([0, 1],R)

Given a sequence of independent identically distributed random variables with zero mean

and positive finite variance σ2, construct for each n ∈ N a “Donsker process” being a

random element of C([0, 1],R) obtained by linear interpolation, fixing the origin, between

the 1
σ
√
n

-scaled cumulative sums of the first n components of the given sequence. It then

can be shown that the finite-dimensional distributions of the Donsker processes converge

weakly to those of the “now hypothetical” probability measure over C([0, 1],R) that we
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refer to as Wiener measure (considered here as a measure on the Borel sigma-algebra

generated by the topology of C([0, 1],R) induced by the uniform metric).

It turns out that the sequence of Donsker processes is tight for some choice of the

“ingredient” sequence of random variables from which we construct Donsker processes,

and hence is precompact (relatively compact) by Prokhorov’s theorem; there is then

in particular some subsequence of the processes converging weakly to some probability

measure over C([0, 1],R). But this limiting probability measure has the desired finite-

dimensional distributions, and so it is Wiener measure.

2.2 From C([0, 1],R) to C(R+)

In checking the measurability of a map f : Ω → C([0, 1],R) on a given measurable

space Ω, one may use for convenience the fact that the Borel sigma-algebra generated

by the metric topology of C([0, 1],R) equals the cylinder sigma-algebra of C([0, 1],R);

the measurability check then reduces to the easy check of the measurability of each

function ft : Ω→ R whose value at every given ω is the value of the continuous function

f(ω) : [0, 1] → R at t. Thus far we have sketched what is explicitly said in Billingsley

[2].

Indeed, the same philosophy is readily applicable to checking the measurability of a

map with values in the measurable space C(R+). To this end, we state a useful fact,

which seems less well-documented:

Proposition 1. If Θ is a nonempty set, and if Sθ is a separable metric space equipped

with the Borel sigma-algebra BSθ generated by the metric topology of Sθ for all θ ∈ Θ,

then the cylinder sigma-algebra of the Cartesian product×θ∈Θ
Sθ equals the product

sigma-algebra
⊗

θ∈Θ BSθ of×θ∈Θ
Sθ.

Proof. Evidently from definition, the product sigma-algebra
⊗

θ BSθ is included in the

cylinder sigma-algebra of×θ
Sθ.

For the other inclusion relation, we recall that a countable product of second-

countable spaces is still second-countable. Since, as can be shown, a separable metric

space is precisely a second-countable metric space, every open set of a finite product

Sθ1×· · ·×Sθn is a countable union of sets of the form V1×· · ·×Vn with each Vi being a

basic open set of Sθi . If I ⊂ Θ is finite with cardinality n, and if πI : (xθ)θ∈Θ 7→ (xθ)θ∈I

on×θ
Sθ, then

⋃
(V1,...,Vn)

π
−1)
I (V1 × · · · × Vn) =

⋃
(V1,...,Vn)

n⋂
i=1

π
−1)
i (Vi)

∈
⊗
θ

BSθ
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for every countable collection of n-tuples (V1, . . . , Vn) with each Vi being a basic open

set of Sθi . Since the πI -preimage of every given open set of×θ∈I Sθ lies in
⊗

θ BSθ ,

the sigma-algebra generated by πI is included in
⊗

θ BSθ ; the desired inclusion then

follows.

We remark in passing that, since R is a separable metric space, the Borel sigma-

algebra of C([0, 1],R) is by Proposition 1 also equal to the product sigma-algebra of

R[0,1] relativized to C([0, 1],R).

Since Wiener measure over C([0, 1],R) exists, let W be Wiener process in C([0, 1],R).

If

W ◦t := W t − tW 1

for all t ∈ [0, 1], then, since i) given any ω ∈ Ω, the function t 7→ W t(ω) − tW 1(ω)

is evidently continuous on [0, 1], and since ii) given any t ∈ [0, 1], the function ω 7→
W t(ω)− tW 1(ω) on Ω is evidently measurable (and hence a random variable), the map

W ◦ is a random element of C([0, 1],R). Indeed, the process W ◦ is simply Brownian

bridge in C([0, 1],R).

The interesting observation, as suggested in Problem 8.2 in Billingsley [2], is to

consider the map W : Ω→ RR+ whose value is the function

t 7→ (1 + t)W ◦t/(1+t)

on R+. We will prove

Theorem 1 (Problem 8.2, Billingsley). If W ◦ is Brownian bridge in C([0, 1],R), and if

Wt := (1 + t)W ◦t/(1+t) for all t ∈ R+ on the same probability space, then W ≡ (Wt)t∈R+

is Brownian motion in the measurable space C(R+).

Since W by Theorem 1 induces exactly Wiener measure on C , the desired existence

matter is done.

In proving Theorem 1, it would be useful to apply a well-known fact, which may also

serve as a nice exercise:

Proposition 2. If P is a probability measure over C(R+), and if P(π0 = 0) = 1, then P
is Wiener measure if and only if P ◦ (πt1 , . . . , πtk)−1) is the Gaussian distribution with

mean zero and covariance matrix having each (i, j)-entry being ti ∧ tj for all 0 ≤ t1 <

· · · < tk < +∞.

Proof. The “only if” part is standard.

The “if” part is technically simple, but seems relatively less articulated. That P ◦
π
−1)
t is the Gaussian distribution with mean zero and variance t for all real t > 0 is
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evident. To see the independence of increments, recall that a Gaussian random vector

has independent components if and only if the components are pairwise uncorrelated. If

X is a random element of C(R+) inducing P, and if 0 ≤ t1 < t2 < t3 are real numbers,

then the assumption implies that E(Xt3 −Xt2)(Xt2 −Xt1) = t2 − t1 − t2 + t1 = 0; the

desired independence then follows.

Thanks to Proposition 2, the existence of a random element of C(R+) whose finite-

dimensional distributions satisfy the characterization of Proposition 2 is equivalent to

that of Wiener measure over C(R+).

We now give

Proof of Theorem 1. It is a straightforward exercise to show that EW ◦t = 0 for all

t ∈ [0, 1] and that EW ◦sW ◦t = (s ∧ t)(1− s ∨ t) for all s, t ∈ [0, 1].

We remark that the function t 7→ (1 + t)W ◦t/(1+t)(ω) is continuous on R+ for all

ω in the underlying probability space; moreover, it holds that t ∈ R+ implies that

(1 + t)W ◦t/(1+t) is a random variable. Since W is then measurable-C by Proposition 1;

the map W is indeed a random element of C(R+).

Since a nonsingular linear transform of a Gaussian random vector is again Gaussian,

Brownian bridge W ◦ in C([0, 1],R) as previously defined is evidently a Gaussian process,

i.e. has every finite-dimensional distribution being Gaussian. The function t 7→ t/(1+ t)

is a bijection; and so W is also a Gaussian process.

The proof is complete once we show that the finite-dimensional distributions of W

satisfy the moment conditions required by the characterization given in Proposition 2.

It is evident that EWt = 0 for all t ∈ R+. In addition, for all s ≤ t we have

EWsWt = (1 + s)(1 + t)EW ◦s/(1+s)W
◦
t/(1+t)

= (1 + s)(1 + t)

(
s

1 + s
∧ t

1 + t

)(
1− s

1 + s
∨ t

1 + t

)
= (s+ st)−

(
s2(1 + t)

1 + s
∨ st

)
= (s+ st)−

(
s2(1 + t)

1 + s
∨ st+ s2t

1 + s

)
= s+ st− st

= s.

But then the distribution of W is Wiener measure over C(R+).
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