
Longest Common Increasing Subsequence: An

Enumerative Solution

Chun Lin

October 19, 2020

1 Introduction

1.1 definition

In this article, we present a solution to the longest common increasing subsequence

problem: given two integer sequences a and b, with lengths m and n respectively, find any
sequence s that satisfies the following two conditions and ∣s∣ is the maximum possible: (1)
the common condition: s is a subsequence of both a and b (2) the increasing condition:
s is strictly increasing.

1.2 example

For example, consider the following sequences: a = [2,3,4,6,8,4], b = [5,1,2,6,3,4], the
sequence c = [6,4] is a subsequence to both a and b, but it is not strictly increasing; the
sequence d = [2,4] is a subsequence to both a and b, but it does not constitute a valid
answer since there exists a longer sequence e = [2,3,4] satisfying both the ”common” and
”increasing” conditions. One can easily verify that e constitutes a valid answer. In this
case, e is one longest common increasing subsequence of a and b.

2 Input Restrictions

We assume that the input sequences a and b meet the following conditions:
(1) Each entry of a and b is an integer between [0, z − 1], where z is given as input or a

fixed integer.
(2) z is not longer than the word-size under our RAM model. That is, operations such

as addition, subtraction or logical-OR between any two number can be treated as O(1) in
time-complexity.

Condition (1) can be ensured by preprocessing the input sequences with additional O(m+
n+z log z) time cost, if there are no more than z different integers considering both sequences.
This does not affect the overall complexity as we will see.

In short, we intend to efficiently solve the cases where the value set of the sequences is
extremely small compared to the lengths of the sequences.

1

Longest Common Increasing Subsequence: An Enumerative Solution

Chun Lin
October 19, 2020

Abstract
The problem of LCS (longest common subsequence) and LIS (longest increasing
subsequence) are both well-solved; the former was proved to be solvable in $O(nm/log{n})
$ \cite{masek} and the later $O(nlog{log{n}})$ \cite{segal}. Recently, the problem LCIS
(longest common increasing subsequence) was proposed. While it can be seen as a
combination of the two aforementioned problems, it seems difficult to adapt their solutions
to the LCIS problem. Most of the approaches to LCIS utilizes dynamic programming and
sophisticated data structure to speed up, while we use a simple algorithm to attack the
case where the alphabet size is extremely small comparing to the sequence lengths.

3 Sketch of the Algorithm

3.1 Overview

We will explain the algorithm in two parts: the main procedure LCIS and the subroutine
ENUMERATE-IS. We shall first carefully explain ENUMERATE-IS since it is central to
the whole algorithm.

3.2 Procedure: ENUMERATE-IS

3.2.1 Input

A sequence a consisting of integers ranging from 0 to z − 1.

3.2.2 Output

An array Has of size 2z that has the information of every increasing subsequence (ab-
breviated as IS from now on) of a.

3.2.3 Steps

1. Initialize a boolean array Has of size 2z. Set Has[0] ← true, then for each integer
i from 1 to 2z − 1, set Has[i] ← false. We can show a 1-1 correspondence of every
possible increasing subsequence consisting of integers in [0, z − 1] to the integers in
[0,2z − 1]. That is, we may represent each increasing subsequence in a by an integer
in [0,2z − 1]. We intend to update Has such that Has[i] = true if and only if the
increasing subsequence represented by integer i has been found in a. It is straightfor-
ward to convert an increasing subsequence to its integer representation and back, as
will be explained in the ”analysis” section. Initially, only Has[0] is set to true because
we use 0 to represent an empty sequence, which is indeed an increasing subsequence
of a.

2. Initialize z lists: TODO[0], TODO[1], ..., TODO[z−1]. Each list can be implemented
using any data structure that supports O(1) time insertion and O(1) time deletion
(e.g. a dynamic array). It does not matter how the elements within the lists are
ordered. For each integer i from 0 to z − 1, list TODO[i] initially contains a single
integer i. The purpose of each list, say TODO[x], is to store every increasing sequence
s such that s ends with x, and s is not found in a so far, but s−x (s after deleting its
last element) has already been found in a. These lists help us update Has efficiently.

3. The main for loop runs for each position of a. For the ith position, we have to first
update the array Has: for each integer s ∈ TODO[ai], delete s from TODO[ai], and
set Has[s] to true. Then, for every integer x > ai, insert s + 2

x into TODO[x].

4. After the main for-loop terminates, we return the whole array Has.

3.3 Procedure: LCIS

3.3.1 Input

Two sequences a, b consisting of integers ranging from 0 to z − 1.

2

3.3.2 Output

An integer representing an LCIS of a, b. We will explain in the ”analysis” section how to
retrieve a sequence from its integer representation.

3.3.3 Steps

1. Call ENUMERATE-IS(a) and ENUMERATE-IS(b) and let the returned array be
Hasa and Hasb respectively.

2. A common increasing subsequence exists if and only if its integer representation s is
true in both Hasa and Hasb. So all that is left is to, using a simple for-loop, find any
such sequence with the maximum possible length. To find the length of the sequence
represented by integer s, we just need to calculate how many 1’s there are in s’s binary
representation (This computation is short-handed as ”bitcount(x)” in our pseudocode.
For now, we assume this can be done in O(1); for implementation details, see section
”Analysis”).

3. Return the integer representation of the LCIS of a, b that has been found (or one can,
alternatively, convert it back to a sequence and return it).

3

4 Pseudocode

Algorithm 1 Longest Common Increasing Subsequence

1: procedure ENUMERATE-IS(a) ▷ input: a sequence a

2: for i← 0...2z − 1 do ▷ initialize Has
3: Has[i]← false

4: Has[0]← true

5: for i← 0...z − 1 do ▷ initialize TODO
6: TODO[i]← ∅
7: Push 2i into TODO[i]

8: for i← 1...∣a∣ do ▷ main dynamic programming loop
9: for every s ∈ TODO[ai] do ▷ make new IS using ai

10: Pop s from TODO[ai]
11: Has[s]← true

12: for x← (ai + 1)...(z − 1) do ▷ update TODO
13: Push s + 2x into TODO[x]

14: return Has ▷ information of every IS in a

15: procedure LCIS(a, b) ▷ input: two sequences a, b of lengths m,n

16: Hasa ← ENUMERATE − IS(a) ▷ use the above procedure
17: Hasb ← ENUMERATE − IS(b)
18: maxCISid← 0 ▷ records the longest CIS seen so far
19: maxCISlen← 0
20: for i← 1...2z − 1 do

21: if Hasa[i] = true & Hasb[i] = true & bitcount(i) >maxCISlen then

22: maxCISlen← bitcount(i)
23: maxCISid← i

24: return maxCISid

5 Analysis

5.1 Correctness

5.1.1 Lemma 1

Let S be the set of all possible increasing sequences consisting of only integers in [0, z − 1],
where z is some positive integer. Then ∣S∣ = 2z.

Proof We prove this theorem by directly establishing a bijection between the S and
[0,2z−1]. Let s be an increasing sequence consisting of only integers in [0, z−1], and consider
an integer r whose ith bit in binary representation is 1 if and only if i − 1 is contained in s.
It is easy to see that this is indeed a bijection as any increasing sequence maps to exactly
one integer, and one can easily map the integer back to the sequence by checking which bits
in its binary representation are 1.

And it is also quite easy to see the minimum integer that can be mapped on is 0 while
the maximum is 2z − 1, respectively representing an empty sequence and the sequence:
(0,1,2, ..., z − 1). ∎

Example. The increasing sequence (0,1,2), by our method, maps to 7; while an empty
sequence maps to 0.

4

5.1.2 Theorem 1

The array Has returned by ENUMERATE-IS(a) has Has[i] = true if and only if the in-
creasing sequence that maps to integer i (by the method used in the proof of Lemma 1) is
contained in a as a subsequence.

Proof We prove the following statement by induction: after i ∈ {0, ..., ∣a∣} step(s) of the
for-loop at line 8, the array Has and each TODO list contain the correct data considering
prefix of length i of a.

First we prove the case i = 0. Considering the prefix of length 0 of a, which is an empty
sequence. Only one increasing subsequence can be found in this prefix, that is the empty
sequence - which is mapped to 0 by our method used in Lemma 1. Hence obviously, Has

and each TODO list contain the correct information.
Secondly we prove the induction case: assume the statement is true for every i ∈ {0...k},

where ∣a∣ > k ≥ 0. Now, Has[i] = true if and only if the increasing subsequence that
maps to i is contained in prefix a1...ak, and for any integer s contained in TODO[ak+1],
Has[s − 2ak+1] = true and Has[s] = false. Now, we need to update Has and TODO such
that they are correct considering the prefix a1, ..., ak+1; and it is sufficient to to check if
there is some increasing sequence that is not contained in prefix a1, ..., ak but contained in
a1, ..., ak+1.

Quite straightforwardly, every s ∈ TODO[ak+1] is a new increasing subsequence after
considering one more entry ak+1, by each TODO list’s definition. So naturally, for every
s ∈ TODO[ak+1], we need to set Has[s]← true and for every x ∈ {ak+1 + 1, ..., z − 1}, insert
s + 2x into TODO[x]. One can see that after such updates, the data structures Has and
TODO[x] for x ∈ 0, ..., z − 1 fit their corresponding definitions. ∎

5.1.3 Theorem 2

The procedure LCIS(a, b) returns the integer representing some LCIS of a, b.
Proof By Theorem 1, some common increasing subsequence s of a, b exists if and only if

its integer representation i is true in both Hasa and Hasb (see line 16, line 17 of Algorithm
1). By simply enumerating through every entry of Hasa and Hasb, one can find a longest
common increasing subsequence for certain. ∎

5.2 Time and Space Complexity

5.2.1 Theorem 3

The time and space complexity of ENUMERATE-IS(a) are O(∣a∣ + 2z).
Proof Any of the possible 2z increasing sequences is deleted from some TODO list at

most once: when it is at first found in a; and any sequence s is inserted into some TODO

list at most once: when the sequence made by deleting s’s last entry is found in a.
This can be proved by contradiction: suppose during the course of the procedure, some

sequence is pushed into some TODO list twice, we name the first sequence to be pushed
twice into some TODO list s. s must have length greater than 1, because all possible
sequence of length 1 is pushed only at the initialization stage. Deleting the last element
of s gives another non-empty increasing sequence s′. Note that s′ must be inserted into
some TODO list twice before s does, because the first time s is inserted, s′ is deleted from
the TODO lists; thus, to insert s once again, s′ must be inserted twice before s does.
This obviously contradicts the assumption that s is the first such sequence to be inserted

5

twice. And it follows straightforwardly that if no sequences can be inserted twice, then no
sequences can be deleted twice. Thus, we have proven the total time and space complexity
on the operation of TODO is O(2z).

Similarly, the time complexity on the updates of array Has must also be O(2z), because
except for the empty sequence, every sequence s is deleted from some TODO list when
Has[i] is set to true, where i is s’s integer representation. So the total time and space
complexity are both O(∣a∣ + 2z). ∎

5.2.2 Theorem 4

The time and space complexity of ENUMERATE-IS(a) are O(∣a∣ + ∣b∣ + 2z).
Proof This procedure requires calling ENUMERATE-IS(a) and ENUMERATE-IS(b),

which makes it already O(∣a∣ + ∣b∣ + 2z) in time and space before the main for-loop at line
20. Now we prove that the main for-loop’s time complexity is O(2z).

For the function bitcount(x), one possible implementation is to simply tabulate the bit
count of each integer i ∈ [0,2z − 1] (for detail, see Algorithm 2). One can verify that for
any positive integer x, the integer (x&(x − 1)) is exactly x without its least significant bit
in binary representation (”&” represents binary AND operation). Initially, we record the
bit count of 0 to be 0, then for each integer successively, the bit count can be obtained by
simply calculating bitcount(x&(x − 1)) + 1.

Thus, we can spend O(2z) time and space in precomputation stage to store the bit count
of each integer in [0,2z − 1], that makes the main for-loop (between line 20 and 23) O(2z)
in time. ∎

We provide an implementation of bitcount(x) in pseudocode:

Algorithm 2 counting bits in binary representation

1: procedure tabulate ▷ this function should be called before LCIS
2: bits[0]← 0 ▷ this array should be accessible by function LCIS
3: for i← 1...2z − 1 do

4: bits[i]← bits[i&(i − 1)] + 1

5: procedure bitcount(x) ▷ input: a non-negative integer x
6: return bits[x]

6 Alternative Algorithm

In this section, we provide another straightforward dfs-based LCIS algorithm. This algo-
rithm may be advantageous in that it does not require an additional array to record the
bit-count of each integer, and although its time complexity is still O(∣a∣+ ∣b∣+2z), it does not
branch into sequences whose prefixes are not all common increasing subsequences of a, b.

In cases where there are only very few common increasing subsequences, this algorithm
may run a lot faster than Algorithm 1 in that it does not iterate through all 2z possible
candidates.

6

Algorithm 3 Longest Common Increasing Subsequence

1: procedure dfs(pos, now, len) ▷ input: position, current common increasing
subsequence, current length

2: if pos = z then

3: if len >maxCISlen then maxCISlen← len maxCISid← now

4: return

5: if Hasa[now + 2
pos] = true and Hasb[now + 2

pos] = true then

6: DFS(pos + 1, now + 2pos, len + 1)

7: DFS(pos + 1, now, len)

8: procedure LCIS(a, b) ▷ input: two sequences a, b of lengths m,n

9: Hasa ← ENUMERATE − IS(a) ▷ use the above procedure
10: Hasb ← ENUMERATE − IS(b)
11: maxCISid← 0 ▷ records the longest CIS seen so far
12: maxCISlen← 0
13: DFS(0,0,0)
14: return maxCISid

7 Conclusion

In this article, we have presented an O(∣a∣ + ∣b∣ + 2z) algorithm for the LCIS problem. This
algorithm, when z is the order of O(log(∣a∣ + ∣b∣)), is optimal in time complexity.

7

