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The Kepler problem can be nicely treated in the language of geometric algebra, without
coordinates. From Newton's laws, we have (see Fig. 1)
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Fig. 1 The Kepler problem

mass), we define the angular momentum of the system

Fig. 2 The area swept
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P, u=G(m+m,).

Denoting v=F, p=mr, m:ﬂ (the reduced

m +m,

L=rap, l=rar,

whence, due to || ¥, we have

i=FAF+rAaf=0=L=0= L =const.

From Fig. 2, we see that the area swept by r in a small time is

A =1/2=const

(Kepler's second law).



Energy conservation

From
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that is
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where E is the total energy, T is the kinetic energy, while U is the potential energy
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Laplace-Runge-Lenz vector

From ff =—ff and i =0, we have

IF = r°PiF = — P = pif
—(IP—puf)=0,
and we can define the constant vector
c=Ifr—uf,

also known as the Laplace-Runge-Lenz vector. Note how easily we came to an important result.
Now we can write

lrr =cr + pufr =
[(F-r+FAr)=C-r+CAr+ur=
I(F-r=l)=c-r+car+ur,

whence, comparing grades, we have

(F-r)l=car (%



1P =c-r+ur (**)

From (*), we see that for ¥ L r (a major axis for planetary motions) it follows c|| r, which means
that the LRL vector is always parallel to the major axis.

Trajectories

As I <0, we define h?=-I?. Defining also c-r=crcos@, p=h*/u, and e=c/u, the
relation (**) gives

r= p ) (***)
1+ecosd

This is an equation of a conic, where e is the eccentricity and p is the semi-latus rectum.

Note that for circular motion we have e=0, for
— P 0<e<1 we have an ellipse, for e=1 we have a

parabola, while for e >1we have a hyperbola.
b For O<e<1 (ellipse, Kepler’s first law), we
a

have (for =0 and 8 =r)
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which is the semi-major axis.
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For the semi-minor axis, we have

— P .
T b= @ . From the expression for the surface of
an ellipse, for the period T we have
Fig. 3 An ellipse
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(Kepler’s third law).



Vis-Viva Equation

Consider the expression for the energy once again. Defining a new vector e =c/x, we can
write

If’:,u(e+f’).
From the property If =(r AT)F =—F(r A¥) (see [3]), we get

(16)" =—(r AP)FF(r Af) =212 =v?h?,
From (***), we have

whence follows that

and we see that the sing of the total energy is related to the eccentricity e. From the previous

definitions, we can also write
2a r a
(Vis-Viva Equation).

Finally, we can add that there is a much better approach to this problem, using eigenspinors
(see [3], Sect. 2.8).
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