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 The Kepler problem can be nicely treated in the language of geometric algebra, without 

coordinates. From Newton’s laws, we have (see Fig. 1) 
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( r̂  is a unit vector) 
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whence, due to ˆr r , we have 
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From Fig. 2, we see that the area swept by r  in a small time is 
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(Kepler's second law). 
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Fig. 1 The Kepler problem 
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Fig. 2 The area swept 



Energy conservation 
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that is 
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where E  is the total energy, T  is the kinetic energy, while U  is the potential energy 
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Laplace-Runge-Lenz vector 

 

From ˆ ˆ ˆ ˆ rr rr  and 0l , we have 
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and we can define the constant vector 

ˆ c lr r , 

also known as the Laplace-Runge-Lenz vector. Note how easily we came to an important result. 

Now we can write 
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whence, comparing grades, we have 
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2 r   l c r         (**) 

From (*), we see that for r r  (a major axis for planetary motions) it follows c r , which means 

that the LRL vector is always parallel to the major axis. 

 

Trajectories 

 

As 2 0l , we define  2 2h  l . Defining also coscr  c r , 2p h  , and e c  , the 

relation (**) gives 
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This is an equation of a conic, where e  is the eccentricity and p  is the semi-latus rectum.  

 

Note that for circular motion we have 0e  , for 

0 1e   we have an ellipse, for 1e   we have a 

parabola, while for 1e  we have a hyperbola. 

For 0 1e   (ellipse, Kepler’s first law), we 

have (for 0   and   ) 
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which is the semi-major axis.  

For the semi-minor axis, we have 

b ap . From the expression for the surface of 

an ellipse, for the period T  we have 
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(Kepler’s third law). 
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Fig. 3 An ellipse 



Vis-Viva Equation 

 

Consider the expression for the energy once again. Defining a new vector e c  , we can 

write 

 ˆ lr e r . 

From the property        lr r r r r r r  (see [3]), we get 
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and we see that the sing of the total energy is related to the eccentricity e . From the previous 

definitions, we can also write 
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(Vis-Viva Equation). 

Finally, we can add that there is a much better approach to this problem, using eigenspinors 

(see [3], Sect. 2.8). 
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